/** * Copyright 2014 Paul Querna * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ /* Portions of this file are on Go stdlib's strconv/atof.go */ // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package internal // decimal to binary floating point conversion. // Algorithm: // 1) Store input in multiprecision decimal. // 2) Multiply/divide decimal by powers of two until in range [0.5, 1) // 3) Multiply by 2^precision and round to get mantissa. import "math" var optimize = true // can change for testing func equalIgnoreCase(s1 []byte, s2 []byte) bool { if len(s1) != len(s2) { return false } for i := 0; i < len(s1); i++ { c1 := s1[i] if 'A' <= c1 && c1 <= 'Z' { c1 += 'a' - 'A' } c2 := s2[i] if 'A' <= c2 && c2 <= 'Z' { c2 += 'a' - 'A' } if c1 != c2 { return false } } return true } func special(s []byte) (f float64, ok bool) { if len(s) == 0 { return } switch s[0] { default: return case '+': if equalIgnoreCase(s, []byte("+inf")) || equalIgnoreCase(s, []byte("+infinity")) { return math.Inf(1), true } case '-': if equalIgnoreCase(s, []byte("-inf")) || equalIgnoreCase(s, []byte("-infinity")) { return math.Inf(-1), true } case 'n', 'N': if equalIgnoreCase(s, []byte("nan")) { return math.NaN(), true } case 'i', 'I': if equalIgnoreCase(s, []byte("inf")) || equalIgnoreCase(s, []byte("infinity")) { return math.Inf(1), true } } return } func (b *decimal) set(s []byte) (ok bool) { i := 0 b.neg = false b.trunc = false // optional sign if i >= len(s) { return } switch { case s[i] == '+': i++ case s[i] == '-': b.neg = true i++ } // digits sawdot := false sawdigits := false for ; i < len(s); i++ { switch { case s[i] == '.': if sawdot { return } sawdot = true b.dp = b.nd continue case '0' <= s[i] && s[i] <= '9': sawdigits = true if s[i] == '0' && b.nd == 0 { // ignore leading zeros b.dp-- continue } if b.nd < len(b.d) { b.d[b.nd] = s[i] b.nd++ } else if s[i] != '0' { b.trunc = true } continue } break } if !sawdigits { return } if !sawdot { b.dp = b.nd } // optional exponent moves decimal point. // if we read a very large, very long number, // just be sure to move the decimal point by // a lot (say, 100000). it doesn't matter if it's // not the exact number. if i < len(s) && (s[i] == 'e' || s[i] == 'E') { i++ if i >= len(s) { return } esign := 1 if s[i] == '+' { i++ } else if s[i] == '-' { i++ esign = -1 } if i >= len(s) || s[i] < '0' || s[i] > '9' { return } e := 0 for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { if e < 10000 { e = e*10 + int(s[i]) - '0' } } b.dp += e * esign } if i != len(s) { return } ok = true return } // readFloat reads a decimal mantissa and exponent from a float // string representation. It sets ok to false if the number could // not fit return types or is invalid. func readFloat(s []byte) (mantissa uint64, exp int, neg, trunc, ok bool) { const uint64digits = 19 i := 0 // optional sign if i >= len(s) { return } switch { case s[i] == '+': i++ case s[i] == '-': neg = true i++ } // digits sawdot := false sawdigits := false nd := 0 ndMant := 0 dp := 0 for ; i < len(s); i++ { switch c := s[i]; true { case c == '.': if sawdot { return } sawdot = true dp = nd continue case '0' <= c && c <= '9': sawdigits = true if c == '0' && nd == 0 { // ignore leading zeros dp-- continue } nd++ if ndMant < uint64digits { mantissa *= 10 mantissa += uint64(c - '0') ndMant++ } else if s[i] != '0' { trunc = true } continue } break } if !sawdigits { return } if !sawdot { dp = nd } // optional exponent moves decimal point. // if we read a very large, very long number, // just be sure to move the decimal point by // a lot (say, 100000). it doesn't matter if it's // not the exact number. if i < len(s) && (s[i] == 'e' || s[i] == 'E') { i++ if i >= len(s) { return } esign := 1 if s[i] == '+' { i++ } else if s[i] == '-' { i++ esign = -1 } if i >= len(s) || s[i] < '0' || s[i] > '9' { return } e := 0 for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { if e < 10000 { e = e*10 + int(s[i]) - '0' } } dp += e * esign } if i != len(s) { return } exp = dp - ndMant ok = true return } // decimal power of ten to binary power of two. var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26} func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) { var exp int var mant uint64 // Zero is always a special case. if d.nd == 0 { mant = 0 exp = flt.bias goto out } // Obvious overflow/underflow. // These bounds are for 64-bit floats. // Will have to change if we want to support 80-bit floats in the future. if d.dp > 310 { goto overflow } if d.dp < -330 { // zero mant = 0 exp = flt.bias goto out } // Scale by powers of two until in range [0.5, 1.0) exp = 0 for d.dp > 0 { var n int if d.dp >= len(powtab) { n = 27 } else { n = powtab[d.dp] } d.Shift(-n) exp += n } for d.dp < 0 || d.dp == 0 && d.d[0] < '5' { var n int if -d.dp >= len(powtab) { n = 27 } else { n = powtab[-d.dp] } d.Shift(n) exp -= n } // Our range is [0.5,1) but floating point range is [1,2). exp-- // Minimum representable exponent is flt.bias+1. // If the exponent is smaller, move it up and // adjust d accordingly. if exp < flt.bias+1 { n := flt.bias + 1 - exp d.Shift(-n) exp += n } if exp-flt.bias >= 1<>= 1 exp++ if exp-flt.bias >= 1<>float64info.mantbits != 0 { return } f = float64(mantissa) if neg { f = -f } switch { case exp == 0: // an integer. return f, true // Exact integers are <= 10^15. // Exact powers of ten are <= 10^22. case exp > 0 && exp <= 15+22: // int * 10^k // If exponent is big but number of digits is not, // can move a few zeros into the integer part. if exp > 22 { f *= float64pow10[exp-22] exp = 22 } if f > 1e15 || f < -1e15 { // the exponent was really too large. return } return f * float64pow10[exp], true case exp < 0 && exp >= -22: // int / 10^k return f / float64pow10[-exp], true } return } // If possible to compute mantissa*10^exp to 32-bit float f exactly, // entirely in floating-point math, do so, avoiding the machinery above. func atof32exact(mantissa uint64, exp int, neg bool) (f float32, ok bool) { if mantissa>>float32info.mantbits != 0 { return } f = float32(mantissa) if neg { f = -f } switch { case exp == 0: return f, true // Exact integers are <= 10^7. // Exact powers of ten are <= 10^10. case exp > 0 && exp <= 7+10: // int * 10^k // If exponent is big but number of digits is not, // can move a few zeros into the integer part. if exp > 10 { f *= float32pow10[exp-10] exp = 10 } if f > 1e7 || f < -1e7 { // the exponent was really too large. return } return f * float32pow10[exp], true case exp < 0 && exp >= -10: // int / 10^k return f / float32pow10[-exp], true } return } const fnParseFloat = "ParseFloat" func atof32(s []byte) (f float32, err error) { if val, ok := special(s); ok { return float32(val), nil } if optimize { // Parse mantissa and exponent. mantissa, exp, neg, trunc, ok := readFloat(s) if ok { // Try pure floating-point arithmetic conversion. if !trunc { if f, ok := atof32exact(mantissa, exp, neg); ok { return f, nil } } // Try another fast path. ext := new(extFloat) if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float32info); ok { b, ovf := ext.floatBits(&float32info) f = math.Float32frombits(uint32(b)) if ovf { err = rangeError(fnParseFloat, string(s)) } return f, err } } } var d decimal if !d.set(s) { return 0, syntaxError(fnParseFloat, string(s)) } b, ovf := d.floatBits(&float32info) f = math.Float32frombits(uint32(b)) if ovf { err = rangeError(fnParseFloat, string(s)) } return f, err } func atof64(s []byte) (f float64, err error) { if val, ok := special(s); ok { return val, nil } if optimize { // Parse mantissa and exponent. mantissa, exp, neg, trunc, ok := readFloat(s) if ok { // Try pure floating-point arithmetic conversion. if !trunc { if f, ok := atof64exact(mantissa, exp, neg); ok { return f, nil } } // Try another fast path. ext := new(extFloat) if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float64info); ok { b, ovf := ext.floatBits(&float64info) f = math.Float64frombits(b) if ovf { err = rangeError(fnParseFloat, string(s)) } return f, err } } } var d decimal if !d.set(s) { return 0, syntaxError(fnParseFloat, string(s)) } b, ovf := d.floatBits(&float64info) f = math.Float64frombits(b) if ovf { err = rangeError(fnParseFloat, string(s)) } return f, err } // ParseFloat converts the string s to a floating-point number // with the precision specified by bitSize: 32 for float32, or 64 for float64. // When bitSize=32, the result still has type float64, but it will be // convertible to float32 without changing its value. // // If s is well-formed and near a valid floating point number, // ParseFloat returns the nearest floating point number rounded // using IEEE754 unbiased rounding. // // The errors that ParseFloat returns have concrete type *NumError // and include err.Num = s. // // If s is not syntactically well-formed, ParseFloat returns err.Err = ErrSyntax. // // If s is syntactically well-formed but is more than 1/2 ULP // away from the largest floating point number of the given size, // ParseFloat returns f = ±Inf, err.Err = ErrRange. func ParseFloat(s []byte, bitSize int) (f float64, err error) { if bitSize == 32 { f1, err1 := atof32(s) return float64(f1), err1 } f1, err1 := atof64(s) return f1, err1 } // oroginal: strconv/decimal.go, but not exported, and needed for PareFloat. // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Multiprecision decimal numbers. // For floating-point formatting only; not general purpose. // Only operations are assign and (binary) left/right shift. // Can do binary floating point in multiprecision decimal precisely // because 2 divides 10; cannot do decimal floating point // in multiprecision binary precisely. type decimal struct { d [800]byte // digits nd int // number of digits used dp int // decimal point neg bool trunc bool // discarded nonzero digits beyond d[:nd] } func (a *decimal) String() string { n := 10 + a.nd if a.dp > 0 { n += a.dp } if a.dp < 0 { n += -a.dp } buf := make([]byte, n) w := 0 switch { case a.nd == 0: return "0" case a.dp <= 0: // zeros fill space between decimal point and digits buf[w] = '0' w++ buf[w] = '.' w++ w += digitZero(buf[w : w+-a.dp]) w += copy(buf[w:], a.d[0:a.nd]) case a.dp < a.nd: // decimal point in middle of digits w += copy(buf[w:], a.d[0:a.dp]) buf[w] = '.' w++ w += copy(buf[w:], a.d[a.dp:a.nd]) default: // zeros fill space between digits and decimal point w += copy(buf[w:], a.d[0:a.nd]) w += digitZero(buf[w : w+a.dp-a.nd]) } return string(buf[0:w]) } func digitZero(dst []byte) int { for i := range dst { dst[i] = '0' } return len(dst) } // trim trailing zeros from number. // (They are meaningless; the decimal point is tracked // independent of the number of digits.) func trim(a *decimal) { for a.nd > 0 && a.d[a.nd-1] == '0' { a.nd-- } if a.nd == 0 { a.dp = 0 } } // Assign v to a. func (a *decimal) Assign(v uint64) { var buf [24]byte // Write reversed decimal in buf. n := 0 for v > 0 { v1 := v / 10 v -= 10 * v1 buf[n] = byte(v + '0') n++ v = v1 } // Reverse again to produce forward decimal in a.d. a.nd = 0 for n--; n >= 0; n-- { a.d[a.nd] = buf[n] a.nd++ } a.dp = a.nd trim(a) } // Maximum shift that we can do in one pass without overflow. // Signed int has 31 bits, and we have to be able to accommodate 9<>k == 0; r++ { if r >= a.nd { if n == 0 { // a == 0; shouldn't get here, but handle anyway. a.nd = 0 return } for n>>k == 0 { n = n * 10 r++ } break } c := int(a.d[r]) n = n*10 + c - '0' } a.dp -= r - 1 // Pick up a digit, put down a digit. for ; r < a.nd; r++ { c := int(a.d[r]) dig := n >> k n -= dig << k a.d[w] = byte(dig + '0') w++ n = n*10 + c - '0' } // Put down extra digits. for n > 0 { dig := n >> k n -= dig << k if w < len(a.d) { a.d[w] = byte(dig + '0') w++ } else if dig > 0 { a.trunc = true } n = n * 10 } a.nd = w trim(a) } // Cheat sheet for left shift: table indexed by shift count giving // number of new digits that will be introduced by that shift. // // For example, leftcheats[4] = {2, "625"}. That means that // if we are shifting by 4 (multiplying by 16), it will add 2 digits // when the string prefix is "625" through "999", and one fewer digit // if the string prefix is "000" through "624". // // Credit for this trick goes to Ken. type leftCheat struct { delta int // number of new digits cutoff string // minus one digit if original < a. } var leftcheats = []leftCheat{ // Leading digits of 1/2^i = 5^i. // 5^23 is not an exact 64-bit floating point number, // so have to use bc for the math. /* seq 27 | sed 's/^/5^/' | bc | awk 'BEGIN{ print "\tleftCheat{ 0, \"\" }," } { log2 = log(2)/log(10) printf("\tleftCheat{ %d, \"%s\" },\t// * %d\n", int(log2*NR+1), $0, 2**NR) }' */ {0, ""}, {1, "5"}, // * 2 {1, "25"}, // * 4 {1, "125"}, // * 8 {2, "625"}, // * 16 {2, "3125"}, // * 32 {2, "15625"}, // * 64 {3, "78125"}, // * 128 {3, "390625"}, // * 256 {3, "1953125"}, // * 512 {4, "9765625"}, // * 1024 {4, "48828125"}, // * 2048 {4, "244140625"}, // * 4096 {4, "1220703125"}, // * 8192 {5, "6103515625"}, // * 16384 {5, "30517578125"}, // * 32768 {5, "152587890625"}, // * 65536 {6, "762939453125"}, // * 131072 {6, "3814697265625"}, // * 262144 {6, "19073486328125"}, // * 524288 {7, "95367431640625"}, // * 1048576 {7, "476837158203125"}, // * 2097152 {7, "2384185791015625"}, // * 4194304 {7, "11920928955078125"}, // * 8388608 {8, "59604644775390625"}, // * 16777216 {8, "298023223876953125"}, // * 33554432 {8, "1490116119384765625"}, // * 67108864 {9, "7450580596923828125"}, // * 134217728 } // Is the leading prefix of b lexicographically less than s? func prefixIsLessThan(b []byte, s string) bool { for i := 0; i < len(s); i++ { if i >= len(b) { return true } if b[i] != s[i] { return b[i] < s[i] } } return false } // Binary shift left (/ 2) by k bits. k <= maxShift to avoid overflow. func leftShift(a *decimal, k uint) { delta := leftcheats[k].delta if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) { delta-- } r := a.nd // read index w := a.nd + delta // write index n := 0 // Pick up a digit, put down a digit. for r--; r >= 0; r-- { n += (int(a.d[r]) - '0') << k quo := n / 10 rem := n - 10*quo w-- if w < len(a.d) { a.d[w] = byte(rem + '0') } else if rem != 0 { a.trunc = true } n = quo } // Put down extra digits. for n > 0 { quo := n / 10 rem := n - 10*quo w-- if w < len(a.d) { a.d[w] = byte(rem + '0') } else if rem != 0 { a.trunc = true } n = quo } a.nd += delta if a.nd >= len(a.d) { a.nd = len(a.d) } a.dp += delta trim(a) } // Binary shift left (k > 0) or right (k < 0). func (a *decimal) Shift(k int) { switch { case a.nd == 0: // nothing to do: a == 0 case k > 0: for k > maxShift { leftShift(a, maxShift) k -= maxShift } leftShift(a, uint(k)) case k < 0: for k < -maxShift { rightShift(a, maxShift) k += maxShift } rightShift(a, uint(-k)) } } // If we chop a at nd digits, should we round up? func shouldRoundUp(a *decimal, nd int) bool { if nd < 0 || nd >= a.nd { return false } if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even // if we truncated, a little higher than what's recorded - always round up if a.trunc { return true } return nd > 0 && (a.d[nd-1]-'0')%2 != 0 } // not halfway - digit tells all return a.d[nd] >= '5' } // Round a to nd digits (or fewer). // If nd is zero, it means we're rounding // just to the left of the digits, as in // 0.09 -> 0.1. func (a *decimal) Round(nd int) { if nd < 0 || nd >= a.nd { return } if shouldRoundUp(a, nd) { a.RoundUp(nd) } else { a.RoundDown(nd) } } // Round a down to nd digits (or fewer). func (a *decimal) RoundDown(nd int) { if nd < 0 || nd >= a.nd { return } a.nd = nd trim(a) } // Round a up to nd digits (or fewer). func (a *decimal) RoundUp(nd int) { if nd < 0 || nd >= a.nd { return } // round up for i := nd - 1; i >= 0; i-- { c := a.d[i] if c < '9' { // can stop after this digit a.d[i]++ a.nd = i + 1 return } } // Number is all 9s. // Change to single 1 with adjusted decimal point. a.d[0] = '1' a.nd = 1 a.dp++ } // Extract integer part, rounded appropriately. // No guarantees about overflow. func (a *decimal) RoundedInteger() uint64 { if a.dp > 20 { return 0xFFFFFFFFFFFFFFFF } var i int n := uint64(0) for i = 0; i < a.dp && i < a.nd; i++ { n = n*10 + uint64(a.d[i]-'0') } for ; i < a.dp; i++ { n *= 10 } if shouldRoundUp(a, a.dp) { n++ } return n }