/* * Copyright (C) 2016 Open Broadcast Systems Ltd. * Author 2016 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/pixdesc.h" #include "libavutil/opt.h" #include "dirac.h" #include "put_bits.h" #include "internal.h" #include "version.h" #include "vc2enc_dwt.h" #include "diractab.h" /* The limited size resolution of each slice forces us to do this */ #define SSIZE_ROUND(b) (FFALIGN((b), s->size_scaler) + 4 + s->prefix_bytes) /* Decides the cutoff point in # of slices to distribute the leftover bytes */ #define SLICE_REDIST_TOTAL 150 typedef struct VC2BaseVideoFormat { enum AVPixelFormat pix_fmt; AVRational time_base; int width, height, interlaced, level; const char *name; } VC2BaseVideoFormat; static const VC2BaseVideoFormat base_video_fmts[] = { { 0 }, /* Custom format, here just to make indexing equal to base_vf */ { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 176, 120, 0, 1, "QSIF525" }, { AV_PIX_FMT_YUV420P, { 2, 25 }, 176, 144, 0, 1, "QCIF" }, { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 352, 240, 0, 1, "SIF525" }, { AV_PIX_FMT_YUV420P, { 2, 25 }, 352, 288, 0, 1, "CIF" }, { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 704, 480, 0, 1, "4SIF525" }, { AV_PIX_FMT_YUV420P, { 2, 25 }, 704, 576, 0, 1, "4CIF" }, { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 480, 1, 2, "SD480I-60" }, { AV_PIX_FMT_YUV422P10, { 1, 25 }, 720, 576, 1, 2, "SD576I-50" }, { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1280, 720, 0, 3, "HD720P-60" }, { AV_PIX_FMT_YUV422P10, { 1, 50 }, 1280, 720, 0, 3, "HD720P-50" }, { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 1920, 1080, 1, 3, "HD1080I-60" }, { AV_PIX_FMT_YUV422P10, { 1, 25 }, 1920, 1080, 1, 3, "HD1080I-50" }, { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1920, 1080, 0, 3, "HD1080P-60" }, { AV_PIX_FMT_YUV422P10, { 1, 50 }, 1920, 1080, 0, 3, "HD1080P-50" }, { AV_PIX_FMT_YUV444P12, { 1, 24 }, 2048, 1080, 0, 4, "DC2K" }, { AV_PIX_FMT_YUV444P12, { 1, 24 }, 4096, 2160, 0, 5, "DC4K" }, { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 3840, 2160, 0, 6, "UHDTV 4K-60" }, { AV_PIX_FMT_YUV422P10, { 1, 50 }, 3840, 2160, 0, 6, "UHDTV 4K-50" }, { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 7680, 4320, 0, 7, "UHDTV 8K-60" }, { AV_PIX_FMT_YUV422P10, { 1, 50 }, 7680, 4320, 0, 7, "UHDTV 8K-50" }, { AV_PIX_FMT_YUV422P10, { 1001, 24000 }, 1920, 1080, 0, 3, "HD1080P-24" }, { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 486, 1, 2, "SD Pro486" }, }; static const int base_video_fmts_len = FF_ARRAY_ELEMS(base_video_fmts); enum VC2_QM { VC2_QM_DEF = 0, VC2_QM_COL, VC2_QM_FLAT, VC2_QM_NB }; typedef struct SubBand { dwtcoef *buf; ptrdiff_t stride; int width; int height; } SubBand; typedef struct Plane { SubBand band[MAX_DWT_LEVELS][4]; dwtcoef *coef_buf; int width; int height; int dwt_width; int dwt_height; ptrdiff_t coef_stride; } Plane; typedef struct SliceArgs { PutBitContext pb; int cache[DIRAC_MAX_QUANT_INDEX]; void *ctx; int x; int y; int quant_idx; int bits_ceil; int bits_floor; int bytes; } SliceArgs; typedef struct TransformArgs { void *ctx; Plane *plane; void *idata; ptrdiff_t istride; int field; VC2TransformContext t; } TransformArgs; typedef struct VC2EncContext { AVClass *av_class; PutBitContext pb; Plane plane[3]; AVCodecContext *avctx; DiracVersionInfo ver; SliceArgs *slice_args; TransformArgs transform_args[3]; /* For conversion from unsigned pixel values to signed */ int diff_offset; int bpp; int bpp_idx; /* Picture number */ uint32_t picture_number; /* Base video format */ int base_vf; int level; int profile; /* Quantization matrix */ uint8_t quant[MAX_DWT_LEVELS][4]; int custom_quant_matrix; /* Division LUT */ uint32_t qmagic_lut[116][2]; int num_x; /* #slices horizontally */ int num_y; /* #slices vertically */ int prefix_bytes; int size_scaler; int chroma_x_shift; int chroma_y_shift; /* Rate control stuff */ int frame_max_bytes; int slice_max_bytes; int slice_min_bytes; int q_ceil; int q_avg; /* Options */ double tolerance; int wavelet_idx; int wavelet_depth; int strict_compliance; int slice_height; int slice_width; int interlaced; enum VC2_QM quant_matrix; /* Parse code state */ uint32_t next_parse_offset; enum DiracParseCodes last_parse_code; } VC2EncContext; static av_always_inline void put_vc2_ue_uint(PutBitContext *pb, uint32_t val) { int i; int pbits = 0, bits = 0, topbit = 1, maxval = 1; if (!val++) { put_bits(pb, 1, 1); return; } while (val > maxval) { topbit <<= 1; maxval <<= 1; maxval |= 1; } bits = ff_log2(topbit); for (i = 0; i < bits; i++) { topbit >>= 1; pbits <<= 2; if (val & topbit) pbits |= 0x1; } put_bits(pb, bits*2 + 1, (pbits << 1) | 1); } static av_always_inline int count_vc2_ue_uint(uint32_t val) { int topbit = 1, maxval = 1; if (!val++) return 1; while (val > maxval) { topbit <<= 1; maxval <<= 1; maxval |= 1; } return ff_log2(topbit)*2 + 1; } /* VC-2 10.4 - parse_info() */ static void encode_parse_info(VC2EncContext *s, enum DiracParseCodes pcode) { uint32_t cur_pos, dist; avpriv_align_put_bits(&s->pb); cur_pos = put_bits_count(&s->pb) >> 3; /* Magic string */ avpriv_put_string(&s->pb, "BBCD", 0); /* Parse code */ put_bits(&s->pb, 8, pcode); /* Next parse offset */ dist = cur_pos - s->next_parse_offset; AV_WB32(s->pb.buf + s->next_parse_offset + 5, dist); s->next_parse_offset = cur_pos; put_bits32(&s->pb, pcode == DIRAC_PCODE_END_SEQ ? 13 : 0); /* Last parse offset */ put_bits32(&s->pb, s->last_parse_code == DIRAC_PCODE_END_SEQ ? 13 : dist); s->last_parse_code = pcode; } /* VC-2 11.1 - parse_parameters() * The level dictates what the decoder should expect in terms of resolution * and allows it to quickly reject whatever it can't support. Remember, * this codec kinda targets cheapo FPGAs without much memory. Unfortunately * it also limits us greatly in our choice of formats, hence the flag to disable * strict_compliance */ static void encode_parse_params(VC2EncContext *s) { put_vc2_ue_uint(&s->pb, s->ver.major); /* VC-2 demands this to be 2 */ put_vc2_ue_uint(&s->pb, s->ver.minor); /* ^^ and this to be 0 */ put_vc2_ue_uint(&s->pb, s->profile); /* 3 to signal HQ profile */ put_vc2_ue_uint(&s->pb, s->level); /* 3 - 1080/720, 6 - 4K */ } /* VC-2 11.3 - frame_size() */ static void encode_frame_size(VC2EncContext *s) { put_bits(&s->pb, 1, !s->strict_compliance); if (!s->strict_compliance) { AVCodecContext *avctx = s->avctx; put_vc2_ue_uint(&s->pb, avctx->width); put_vc2_ue_uint(&s->pb, avctx->height); } } /* VC-2 11.3.3 - color_diff_sampling_format() */ static void encode_sample_fmt(VC2EncContext *s) { put_bits(&s->pb, 1, !s->strict_compliance); if (!s->strict_compliance) { int idx; if (s->chroma_x_shift == 1 && s->chroma_y_shift == 0) idx = 1; /* 422 */ else if (s->chroma_x_shift == 1 && s->chroma_y_shift == 1) idx = 2; /* 420 */ else idx = 0; /* 444 */ put_vc2_ue_uint(&s->pb, idx); } } /* VC-2 11.3.4 - scan_format() */ static void encode_scan_format(VC2EncContext *s) { put_bits(&s->pb, 1, !s->strict_compliance); if (!s->strict_compliance) put_vc2_ue_uint(&s->pb, s->interlaced); } /* VC-2 11.3.5 - frame_rate() */ static void encode_frame_rate(VC2EncContext *s) { put_bits(&s->pb, 1, !s->strict_compliance); if (!s->strict_compliance) { AVCodecContext *avctx = s->avctx; put_vc2_ue_uint(&s->pb, 0); put_vc2_ue_uint(&s->pb, avctx->time_base.den); put_vc2_ue_uint(&s->pb, avctx->time_base.num); } } /* VC-2 11.3.6 - aspect_ratio() */ static void encode_aspect_ratio(VC2EncContext *s) { put_bits(&s->pb, 1, !s->strict_compliance); if (!s->strict_compliance) { AVCodecContext *avctx = s->avctx; put_vc2_ue_uint(&s->pb, 0); put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.num); put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.den); } } /* VC-2 11.3.7 - clean_area() */ static void encode_clean_area(VC2EncContext *s) { put_bits(&s->pb, 1, 0); } /* VC-2 11.3.8 - signal_range() */ static void encode_signal_range(VC2EncContext *s) { put_bits(&s->pb, 1, !s->strict_compliance); if (!s->strict_compliance) put_vc2_ue_uint(&s->pb, s->bpp_idx); } /* VC-2 11.3.9 - color_spec() */ static void encode_color_spec(VC2EncContext *s) { AVCodecContext *avctx = s->avctx; put_bits(&s->pb, 1, !s->strict_compliance); if (!s->strict_compliance) { int val; put_vc2_ue_uint(&s->pb, 0); /* primaries */ put_bits(&s->pb, 1, 1); if (avctx->color_primaries == AVCOL_PRI_BT470BG) val = 2; else if (avctx->color_primaries == AVCOL_PRI_SMPTE170M) val = 1; else if (avctx->color_primaries == AVCOL_PRI_SMPTE240M) val = 1; else val = 0; put_vc2_ue_uint(&s->pb, val); /* color matrix */ put_bits(&s->pb, 1, 1); if (avctx->colorspace == AVCOL_SPC_RGB) val = 3; else if (avctx->colorspace == AVCOL_SPC_YCOCG) val = 2; else if (avctx->colorspace == AVCOL_SPC_BT470BG) val = 1; else val = 0; put_vc2_ue_uint(&s->pb, val); /* transfer function */ put_bits(&s->pb, 1, 1); if (avctx->color_trc == AVCOL_TRC_LINEAR) val = 2; else if (avctx->color_trc == AVCOL_TRC_BT1361_ECG) val = 1; else val = 0; put_vc2_ue_uint(&s->pb, val); } } /* VC-2 11.3 - source_parameters() */ static void encode_source_params(VC2EncContext *s) { encode_frame_size(s); encode_sample_fmt(s); encode_scan_format(s); encode_frame_rate(s); encode_aspect_ratio(s); encode_clean_area(s); encode_signal_range(s); encode_color_spec(s); } /* VC-2 11 - sequence_header() */ static void encode_seq_header(VC2EncContext *s) { avpriv_align_put_bits(&s->pb); encode_parse_params(s); put_vc2_ue_uint(&s->pb, s->base_vf); encode_source_params(s); put_vc2_ue_uint(&s->pb, s->interlaced); /* Frames or fields coding */ } /* VC-2 12.1 - picture_header() */ static void encode_picture_header(VC2EncContext *s) { avpriv_align_put_bits(&s->pb); put_bits32(&s->pb, s->picture_number++); } /* VC-2 12.3.4.1 - slice_parameters() */ static void encode_slice_params(VC2EncContext *s) { put_vc2_ue_uint(&s->pb, s->num_x); put_vc2_ue_uint(&s->pb, s->num_y); put_vc2_ue_uint(&s->pb, s->prefix_bytes); put_vc2_ue_uint(&s->pb, s->size_scaler); } /* 1st idx = LL, second - vertical, third - horizontal, fourth - total */ const uint8_t vc2_qm_col_tab[][4] = { {20, 9, 15, 4}, { 0, 6, 6, 4}, { 0, 3, 3, 5}, { 0, 3, 5, 1}, { 0, 11, 10, 11} }; const uint8_t vc2_qm_flat_tab[][4] = { { 0, 0, 0, 0}, { 0, 0, 0, 0}, { 0, 0, 0, 0}, { 0, 0, 0, 0}, { 0, 0, 0, 0} }; static void init_quant_matrix(VC2EncContext *s) { int level, orientation; if (s->wavelet_depth <= 4 && s->quant_matrix == VC2_QM_DEF) { s->custom_quant_matrix = 0; for (level = 0; level < s->wavelet_depth; level++) { s->quant[level][0] = ff_dirac_default_qmat[s->wavelet_idx][level][0]; s->quant[level][1] = ff_dirac_default_qmat[s->wavelet_idx][level][1]; s->quant[level][2] = ff_dirac_default_qmat[s->wavelet_idx][level][2]; s->quant[level][3] = ff_dirac_default_qmat[s->wavelet_idx][level][3]; } return; } s->custom_quant_matrix = 1; if (s->quant_matrix == VC2_QM_DEF) { for (level = 0; level < s->wavelet_depth; level++) { for (orientation = 0; orientation < 4; orientation++) { if (level <= 3) s->quant[level][orientation] = ff_dirac_default_qmat[s->wavelet_idx][level][orientation]; else s->quant[level][orientation] = vc2_qm_col_tab[level][orientation]; } } } else if (s->quant_matrix == VC2_QM_COL) { for (level = 0; level < s->wavelet_depth; level++) { for (orientation = 0; orientation < 4; orientation++) { s->quant[level][orientation] = vc2_qm_col_tab[level][orientation]; } } } else { for (level = 0; level < s->wavelet_depth; level++) { for (orientation = 0; orientation < 4; orientation++) { s->quant[level][orientation] = vc2_qm_flat_tab[level][orientation]; } } } } /* VC-2 12.3.4.2 - quant_matrix() */ static void encode_quant_matrix(VC2EncContext *s) { int level; put_bits(&s->pb, 1, s->custom_quant_matrix); if (s->custom_quant_matrix) { put_vc2_ue_uint(&s->pb, s->quant[0][0]); for (level = 0; level < s->wavelet_depth; level++) { put_vc2_ue_uint(&s->pb, s->quant[level][1]); put_vc2_ue_uint(&s->pb, s->quant[level][2]); put_vc2_ue_uint(&s->pb, s->quant[level][3]); } } } /* VC-2 12.3 - transform_parameters() */ static void encode_transform_params(VC2EncContext *s) { put_vc2_ue_uint(&s->pb, s->wavelet_idx); put_vc2_ue_uint(&s->pb, s->wavelet_depth); encode_slice_params(s); encode_quant_matrix(s); } /* VC-2 12.2 - wavelet_transform() */ static void encode_wavelet_transform(VC2EncContext *s) { encode_transform_params(s); avpriv_align_put_bits(&s->pb); } /* VC-2 12 - picture_parse() */ static void encode_picture_start(VC2EncContext *s) { avpriv_align_put_bits(&s->pb); encode_picture_header(s); avpriv_align_put_bits(&s->pb); encode_wavelet_transform(s); } #define QUANT(c, mul, add, shift) (((mul) * (c) + (add)) >> (shift)) /* VC-2 13.5.5.2 - slice_band() */ static void encode_subband(VC2EncContext *s, PutBitContext *pb, int sx, int sy, SubBand *b, int quant) { int x, y; const int left = b->width * (sx+0) / s->num_x; const int right = b->width * (sx+1) / s->num_x; const int top = b->height * (sy+0) / s->num_y; const int bottom = b->height * (sy+1) / s->num_y; dwtcoef *coeff = b->buf + top * b->stride; const uint64_t q_m = ((uint64_t)(s->qmagic_lut[quant][0])) << 2; const uint64_t q_a = s->qmagic_lut[quant][1]; const int q_s = av_log2(ff_dirac_qscale_tab[quant]) + 32; for (y = top; y < bottom; y++) { for (x = left; x < right; x++) { uint32_t c_abs = QUANT(FFABS(coeff[x]), q_m, q_a, q_s); put_vc2_ue_uint(pb, c_abs); if (c_abs) put_bits(pb, 1, coeff[x] < 0); } coeff += b->stride; } } static int count_hq_slice(SliceArgs *slice, int quant_idx) { int x, y; uint8_t quants[MAX_DWT_LEVELS][4]; int bits = 0, p, level, orientation; VC2EncContext *s = slice->ctx; if (slice->cache[quant_idx]) return slice->cache[quant_idx]; bits += 8*s->prefix_bytes; bits += 8; /* quant_idx */ for (level = 0; level < s->wavelet_depth; level++) for (orientation = !!level; orientation < 4; orientation++) quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0); for (p = 0; p < 3; p++) { int bytes_start, bytes_len, pad_s, pad_c; bytes_start = bits >> 3; bits += 8; for (level = 0; level < s->wavelet_depth; level++) { for (orientation = !!level; orientation < 4; orientation++) { SubBand *b = &s->plane[p].band[level][orientation]; const int q_idx = quants[level][orientation]; const uint64_t q_m = ((uint64_t)s->qmagic_lut[q_idx][0]) << 2; const uint64_t q_a = s->qmagic_lut[q_idx][1]; const int q_s = av_log2(ff_dirac_qscale_tab[q_idx]) + 32; const int left = b->width * slice->x / s->num_x; const int right = b->width *(slice->x+1) / s->num_x; const int top = b->height * slice->y / s->num_y; const int bottom = b->height *(slice->y+1) / s->num_y; dwtcoef *buf = b->buf + top * b->stride; for (y = top; y < bottom; y++) { for (x = left; x < right; x++) { uint32_t c_abs = QUANT(FFABS(buf[x]), q_m, q_a, q_s); bits += count_vc2_ue_uint(c_abs); bits += !!c_abs; } buf += b->stride; } } } bits += FFALIGN(bits, 8) - bits; bytes_len = (bits >> 3) - bytes_start - 1; pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler; pad_c = (pad_s*s->size_scaler) - bytes_len; bits += pad_c*8; } slice->cache[quant_idx] = bits; return bits; } /* Approaches the best possible quantizer asymptotically, its kinda exaustive * but we have a LUT to get the coefficient size in bits. Guaranteed to never * overshoot, which is apparently very important when streaming */ static int rate_control(AVCodecContext *avctx, void *arg) { SliceArgs *slice_dat = arg; VC2EncContext *s = slice_dat->ctx; const int top = slice_dat->bits_ceil; const int bottom = slice_dat->bits_floor; int quant_buf[2] = {-1, -1}; int quant = slice_dat->quant_idx, step = 1; int bits_last, bits = count_hq_slice(slice_dat, quant); while ((bits > top) || (bits < bottom)) { const int signed_step = bits > top ? +step : -step; quant = av_clip(quant + signed_step, 0, s->q_ceil-1); bits = count_hq_slice(slice_dat, quant); if (quant_buf[1] == quant) { quant = FFMAX(quant_buf[0], quant); bits = quant == quant_buf[0] ? bits_last : bits; break; } step = av_clip(step/2, 1, (s->q_ceil-1)/2); quant_buf[1] = quant_buf[0]; quant_buf[0] = quant; bits_last = bits; } slice_dat->quant_idx = av_clip(quant, 0, s->q_ceil-1); slice_dat->bytes = SSIZE_ROUND(bits >> 3); return 0; } static int calc_slice_sizes(VC2EncContext *s) { int i, j, slice_x, slice_y, bytes_left = 0; int bytes_top[SLICE_REDIST_TOTAL] = {0}; int64_t total_bytes_needed = 0; int slice_redist_range = FFMIN(SLICE_REDIST_TOTAL, s->num_x*s->num_y); SliceArgs *enc_args = s->slice_args; SliceArgs *top_loc[SLICE_REDIST_TOTAL] = {NULL}; init_quant_matrix(s); for (slice_y = 0; slice_y < s->num_y; slice_y++) { for (slice_x = 0; slice_x < s->num_x; slice_x++) { SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x]; args->ctx = s; args->x = slice_x; args->y = slice_y; args->bits_ceil = s->slice_max_bytes << 3; args->bits_floor = s->slice_min_bytes << 3; memset(args->cache, 0, s->q_ceil*sizeof(*args->cache)); } } /* First pass - determine baseline slice sizes w.r.t. max_slice_size */ s->avctx->execute(s->avctx, rate_control, enc_args, NULL, s->num_x*s->num_y, sizeof(SliceArgs)); for (i = 0; i < s->num_x*s->num_y; i++) { SliceArgs *args = &enc_args[i]; bytes_left += args->bytes; for (j = 0; j < slice_redist_range; j++) { if (args->bytes > bytes_top[j]) { bytes_top[j] = args->bytes; top_loc[j] = args; break; } } } bytes_left = s->frame_max_bytes - bytes_left; /* Second pass - distribute leftover bytes */ while (bytes_left > 0) { int distributed = 0; for (i = 0; i < slice_redist_range; i++) { SliceArgs *args; int bits, bytes, diff, prev_bytes, new_idx; if (bytes_left <= 0) break; if (!top_loc[i] || !top_loc[i]->quant_idx) break; args = top_loc[i]; prev_bytes = args->bytes; new_idx = FFMAX(args->quant_idx - 1, 0); bits = count_hq_slice(args, new_idx); bytes = SSIZE_ROUND(bits >> 3); diff = bytes - prev_bytes; if ((bytes_left - diff) > 0) { args->quant_idx = new_idx; args->bytes = bytes; bytes_left -= diff; distributed++; } } if (!distributed) break; } for (i = 0; i < s->num_x*s->num_y; i++) { SliceArgs *args = &enc_args[i]; total_bytes_needed += args->bytes; s->q_avg = (s->q_avg + args->quant_idx)/2; } return total_bytes_needed; } /* VC-2 13.5.3 - hq_slice */ static int encode_hq_slice(AVCodecContext *avctx, void *arg) { SliceArgs *slice_dat = arg; VC2EncContext *s = slice_dat->ctx; PutBitContext *pb = &slice_dat->pb; const int slice_x = slice_dat->x; const int slice_y = slice_dat->y; const int quant_idx = slice_dat->quant_idx; const int slice_bytes_max = slice_dat->bytes; uint8_t quants[MAX_DWT_LEVELS][4]; int p, level, orientation; /* The reference decoder ignores it, and its typical length is 0 */ memset(put_bits_ptr(pb), 0, s->prefix_bytes); skip_put_bytes(pb, s->prefix_bytes); put_bits(pb, 8, quant_idx); /* Slice quantization (slice_quantizers() in the specs) */ for (level = 0; level < s->wavelet_depth; level++) for (orientation = !!level; orientation < 4; orientation++) quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0); /* Luma + 2 Chroma planes */ for (p = 0; p < 3; p++) { int bytes_start, bytes_len, pad_s, pad_c; bytes_start = put_bits_count(pb) >> 3; put_bits(pb, 8, 0); for (level = 0; level < s->wavelet_depth; level++) { for (orientation = !!level; orientation < 4; orientation++) { encode_subband(s, pb, slice_x, slice_y, &s->plane[p].band[level][orientation], quants[level][orientation]); } } avpriv_align_put_bits(pb); bytes_len = (put_bits_count(pb) >> 3) - bytes_start - 1; if (p == 2) { int len_diff = slice_bytes_max - (put_bits_count(pb) >> 3); pad_s = FFALIGN((bytes_len + len_diff), s->size_scaler)/s->size_scaler; pad_c = (pad_s*s->size_scaler) - bytes_len; } else { pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler; pad_c = (pad_s*s->size_scaler) - bytes_len; } pb->buf[bytes_start] = pad_s; flush_put_bits(pb); /* vc2-reference uses that padding that decodes to '0' coeffs */ memset(put_bits_ptr(pb), 0xFF, pad_c); skip_put_bytes(pb, pad_c); } return 0; } /* VC-2 13.5.1 - low_delay_transform_data() */ static int encode_slices(VC2EncContext *s) { uint8_t *buf; int slice_x, slice_y, skip = 0; SliceArgs *enc_args = s->slice_args; avpriv_align_put_bits(&s->pb); flush_put_bits(&s->pb); buf = put_bits_ptr(&s->pb); for (slice_y = 0; slice_y < s->num_y; slice_y++) { for (slice_x = 0; slice_x < s->num_x; slice_x++) { SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x]; init_put_bits(&args->pb, buf + skip, args->bytes+s->prefix_bytes); skip += args->bytes; } } s->avctx->execute(s->avctx, encode_hq_slice, enc_args, NULL, s->num_x*s->num_y, sizeof(SliceArgs)); skip_put_bytes(&s->pb, skip); return 0; } /* * Transform basics for a 3 level transform * |---------------------------------------------------------------------| * | LL-0 | HL-0 | | | * |--------|-------| HL-1 | | * | LH-0 | HH-0 | | | * |----------------|-----------------| HL-2 | * | | | | * | LH-1 | HH-1 | | * | | | | * |----------------------------------|----------------------------------| * | | | * | | | * | | | * | LH-2 | HH-2 | * | | | * | | | * | | | * |---------------------------------------------------------------------| * * DWT transforms are generally applied by splitting the image in two vertically * and applying a low pass transform on the left part and a corresponding high * pass transform on the right hand side. This is known as the horizontal filter * stage. * After that, the same operation is performed except the image is divided * horizontally, with the high pass on the lower and the low pass on the higher * side. * Therefore, you're left with 4 subdivisions - known as low-low, low-high, * high-low and high-high. They're referred to as orientations in the decoder * and encoder. * * The LL (low-low) area contains the original image downsampled by the amount * of levels. The rest of the areas can be thought as the details needed * to restore the image perfectly to its original size. */ static int dwt_plane(AVCodecContext *avctx, void *arg) { TransformArgs *transform_dat = arg; VC2EncContext *s = transform_dat->ctx; const void *frame_data = transform_dat->idata; const ptrdiff_t linesize = transform_dat->istride; const int field = transform_dat->field; const Plane *p = transform_dat->plane; VC2TransformContext *t = &transform_dat->t; dwtcoef *buf = p->coef_buf; const int idx = s->wavelet_idx; const int skip = 1 + s->interlaced; int x, y, level, offset; ptrdiff_t pix_stride = linesize >> (s->bpp - 1); if (field == 1) { offset = 0; pix_stride <<= 1; } else if (field == 2) { offset = pix_stride; pix_stride <<= 1; } else { offset = 0; } if (s->bpp == 1) { const uint8_t *pix = (const uint8_t *)frame_data + offset; for (y = 0; y < p->height*skip; y+=skip) { for (x = 0; x < p->width; x++) { buf[x] = pix[x] - s->diff_offset; } memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef)); buf += p->coef_stride; pix += pix_stride; } } else { const uint16_t *pix = (const uint16_t *)frame_data + offset; for (y = 0; y < p->height*skip; y+=skip) { for (x = 0; x < p->width; x++) { buf[x] = pix[x] - s->diff_offset; } memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef)); buf += p->coef_stride; pix += pix_stride; } } memset(buf, 0, p->coef_stride * (p->dwt_height - p->height) * sizeof(dwtcoef)); for (level = s->wavelet_depth-1; level >= 0; level--) { const SubBand *b = &p->band[level][0]; t->vc2_subband_dwt[idx](t, p->coef_buf, p->coef_stride, b->width, b->height); } return 0; } static int encode_frame(VC2EncContext *s, AVPacket *avpkt, const AVFrame *frame, const char *aux_data, const int header_size, int field) { int i, ret; int64_t max_frame_bytes; /* Threaded DWT transform */ for (i = 0; i < 3; i++) { s->transform_args[i].ctx = s; s->transform_args[i].field = field; s->transform_args[i].plane = &s->plane[i]; s->transform_args[i].idata = frame->data[i]; s->transform_args[i].istride = frame->linesize[i]; } s->avctx->execute(s->avctx, dwt_plane, s->transform_args, NULL, 3, sizeof(TransformArgs)); /* Calculate per-slice quantizers and sizes */ max_frame_bytes = header_size + calc_slice_sizes(s); if (field < 2) { ret = ff_alloc_packet2(s->avctx, avpkt, max_frame_bytes << s->interlaced, max_frame_bytes << s->interlaced); if (ret) { av_log(s->avctx, AV_LOG_ERROR, "Error getting output packet.\n"); return ret; } init_put_bits(&s->pb, avpkt->data, avpkt->size); } /* Sequence header */ encode_parse_info(s, DIRAC_PCODE_SEQ_HEADER); encode_seq_header(s); /* Encoder version */ if (aux_data) { encode_parse_info(s, DIRAC_PCODE_AUX); avpriv_put_string(&s->pb, aux_data, 1); } /* Picture header */ encode_parse_info(s, DIRAC_PCODE_PICTURE_HQ); encode_picture_start(s); /* Encode slices */ encode_slices(s); /* End sequence */ encode_parse_info(s, DIRAC_PCODE_END_SEQ); return 0; } static av_cold int vc2_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet) { int ret = 0; int slice_ceil, sig_size = 256; VC2EncContext *s = avctx->priv_data; const int bitexact = avctx->flags & AV_CODEC_FLAG_BITEXACT; const char *aux_data = bitexact ? "Lavc" : LIBAVCODEC_IDENT; const int aux_data_size = bitexact ? sizeof("Lavc") : sizeof(LIBAVCODEC_IDENT); const int header_size = 100 + aux_data_size; int64_t r_bitrate = avctx->bit_rate >> (s->interlaced); s->avctx = avctx; s->size_scaler = 2; s->prefix_bytes = 0; s->last_parse_code = 0; s->next_parse_offset = 0; /* Rate control */ s->frame_max_bytes = (av_rescale(r_bitrate, s->avctx->time_base.num, s->avctx->time_base.den) >> 3) - header_size; s->slice_max_bytes = slice_ceil = av_rescale(s->frame_max_bytes, 1, s->num_x*s->num_y); /* Find an appropriate size scaler */ while (sig_size > 255) { int r_size = SSIZE_ROUND(s->slice_max_bytes); if (r_size > slice_ceil) { s->slice_max_bytes -= r_size - slice_ceil; r_size = SSIZE_ROUND(s->slice_max_bytes); } sig_size = r_size/s->size_scaler; /* Signalled slize size */ s->size_scaler <<= 1; } s->slice_min_bytes = s->slice_max_bytes - s->slice_max_bytes*(s->tolerance/100.0f); ret = encode_frame(s, avpkt, frame, aux_data, header_size, s->interlaced); if (ret) return ret; if (s->interlaced) { ret = encode_frame(s, avpkt, frame, aux_data, header_size, 2); if (ret) return ret; } flush_put_bits(&s->pb); avpkt->size = put_bits_count(&s->pb) >> 3; *got_packet = 1; return 0; } static av_cold int vc2_encode_end(AVCodecContext *avctx) { int i; VC2EncContext *s = avctx->priv_data; av_log(avctx, AV_LOG_INFO, "Qavg: %i\n", s->q_avg); for (i = 0; i < 3; i++) { ff_vc2enc_free_transforms(&s->transform_args[i].t); av_freep(&s->plane[i].coef_buf); } av_freep(&s->slice_args); return 0; } static av_cold int vc2_encode_init(AVCodecContext *avctx) { Plane *p; SubBand *b; int i, level, o, shift, ret; const AVPixFmtDescriptor *fmt = av_pix_fmt_desc_get(avctx->pix_fmt); const int depth = fmt->comp[0].depth; VC2EncContext *s = avctx->priv_data; s->picture_number = 0; /* Total allowed quantization range */ s->q_ceil = DIRAC_MAX_QUANT_INDEX; s->ver.major = 2; s->ver.minor = 0; s->profile = 3; s->level = 3; s->base_vf = -1; s->strict_compliance = 1; s->q_avg = 0; s->slice_max_bytes = 0; s->slice_min_bytes = 0; /* Mark unknown as progressive */ s->interlaced = !((avctx->field_order == AV_FIELD_UNKNOWN) || (avctx->field_order == AV_FIELD_PROGRESSIVE)); for (i = 0; i < base_video_fmts_len; i++) { const VC2BaseVideoFormat *fmt = &base_video_fmts[i]; if (avctx->pix_fmt != fmt->pix_fmt) continue; if (avctx->time_base.num != fmt->time_base.num) continue; if (avctx->time_base.den != fmt->time_base.den) continue; if (avctx->width != fmt->width) continue; if (avctx->height != fmt->height) continue; if (s->interlaced != fmt->interlaced) continue; s->base_vf = i; s->level = base_video_fmts[i].level; break; } if (s->interlaced) av_log(avctx, AV_LOG_WARNING, "Interlacing enabled!\n"); if ((s->slice_width & (s->slice_width - 1)) || (s->slice_height & (s->slice_height - 1))) { av_log(avctx, AV_LOG_ERROR, "Slice size is not a power of two!\n"); return AVERROR_UNKNOWN; } if ((s->slice_width > avctx->width) || (s->slice_height > avctx->height)) { av_log(avctx, AV_LOG_ERROR, "Slice size is bigger than the image!\n"); return AVERROR_UNKNOWN; } if (s->base_vf <= 0) { if (avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) { s->strict_compliance = s->base_vf = 0; av_log(avctx, AV_LOG_WARNING, "Format does not strictly comply with VC2 specs\n"); } else { av_log(avctx, AV_LOG_WARNING, "Given format does not strictly comply with " "the specifications, decrease strictness to use it.\n"); return AVERROR_UNKNOWN; } } else { av_log(avctx, AV_LOG_INFO, "Selected base video format = %i (%s)\n", s->base_vf, base_video_fmts[s->base_vf].name); } /* Chroma subsampling */ ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); if (ret) return ret; /* Bit depth and color range index */ if (depth == 8 && avctx->color_range == AVCOL_RANGE_JPEG) { s->bpp = 1; s->bpp_idx = 1; s->diff_offset = 128; } else if (depth == 8 && (avctx->color_range == AVCOL_RANGE_MPEG || avctx->color_range == AVCOL_RANGE_UNSPECIFIED)) { s->bpp = 1; s->bpp_idx = 2; s->diff_offset = 128; } else if (depth == 10) { s->bpp = 2; s->bpp_idx = 3; s->diff_offset = 512; } else { s->bpp = 2; s->bpp_idx = 4; s->diff_offset = 2048; } /* Planes initialization */ for (i = 0; i < 3; i++) { int w, h; p = &s->plane[i]; p->width = avctx->width >> (i ? s->chroma_x_shift : 0); p->height = avctx->height >> (i ? s->chroma_y_shift : 0); if (s->interlaced) p->height >>= 1; p->dwt_width = w = FFALIGN(p->width, (1 << s->wavelet_depth)); p->dwt_height = h = FFALIGN(p->height, (1 << s->wavelet_depth)); p->coef_stride = FFALIGN(p->dwt_width, 32); p->coef_buf = av_mallocz(p->coef_stride*p->dwt_height*sizeof(dwtcoef)); if (!p->coef_buf) goto alloc_fail; for (level = s->wavelet_depth-1; level >= 0; level--) { w = w >> 1; h = h >> 1; for (o = 0; o < 4; o++) { b = &p->band[level][o]; b->width = w; b->height = h; b->stride = p->coef_stride; shift = (o > 1)*b->height*b->stride + (o & 1)*b->width; b->buf = p->coef_buf + shift; } } /* DWT init */ if (ff_vc2enc_init_transforms(&s->transform_args[i].t, s->plane[i].coef_stride, s->plane[i].dwt_height, s->slice_width, s->slice_height)) goto alloc_fail; } /* Slices */ s->num_x = s->plane[0].dwt_width/s->slice_width; s->num_y = s->plane[0].dwt_height/s->slice_height; s->slice_args = av_calloc(s->num_x*s->num_y, sizeof(SliceArgs)); if (!s->slice_args) goto alloc_fail; for (i = 0; i < 116; i++) { const uint64_t qf = ff_dirac_qscale_tab[i]; const uint32_t m = av_log2(qf); const uint32_t t = (1ULL << (m + 32)) / qf; const uint32_t r = (t*qf + qf) & UINT32_MAX; if (!(qf & (qf - 1))) { s->qmagic_lut[i][0] = 0xFFFFFFFF; s->qmagic_lut[i][1] = 0xFFFFFFFF; } else if (r <= 1 << m) { s->qmagic_lut[i][0] = t + 1; s->qmagic_lut[i][1] = 0; } else { s->qmagic_lut[i][0] = t; s->qmagic_lut[i][1] = t; } } return 0; alloc_fail: vc2_encode_end(avctx); av_log(avctx, AV_LOG_ERROR, "Unable to allocate memory!\n"); return AVERROR(ENOMEM); } #define VC2ENC_FLAGS (AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM) static const AVOption vc2enc_options[] = { {"tolerance", "Max undershoot in percent", offsetof(VC2EncContext, tolerance), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0f}, 0.0f, 45.0f, VC2ENC_FLAGS, "tolerance"}, {"slice_width", "Slice width", offsetof(VC2EncContext, slice_width), AV_OPT_TYPE_INT, {.i64 = 32}, 32, 1024, VC2ENC_FLAGS, "slice_width"}, {"slice_height", "Slice height", offsetof(VC2EncContext, slice_height), AV_OPT_TYPE_INT, {.i64 = 16}, 8, 1024, VC2ENC_FLAGS, "slice_height"}, {"wavelet_depth", "Transform depth", offsetof(VC2EncContext, wavelet_depth), AV_OPT_TYPE_INT, {.i64 = 4}, 1, 5, VC2ENC_FLAGS, "wavelet_depth"}, {"wavelet_type", "Transform type", offsetof(VC2EncContext, wavelet_idx), AV_OPT_TYPE_INT, {.i64 = VC2_TRANSFORM_9_7}, 0, VC2_TRANSFORMS_NB, VC2ENC_FLAGS, "wavelet_idx"}, {"9_7", "Deslauriers-Dubuc (9,7)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_9_7}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"}, {"5_3", "LeGall (5,3)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_5_3}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"}, {"haar", "Haar (with shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR_S}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"}, {"haar_noshift", "Haar (without shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"}, {"qm", "Custom quantization matrix", offsetof(VC2EncContext, quant_matrix), AV_OPT_TYPE_INT, {.i64 = VC2_QM_DEF}, 0, VC2_QM_NB, VC2ENC_FLAGS, "quant_matrix"}, {"default", "Default from the specifications", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_DEF}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"}, {"color", "Prevents low bitrate discoloration", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_COL}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"}, {"flat", "Optimize for PSNR", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_FLAT}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"}, {NULL} }; static const AVClass vc2enc_class = { .class_name = "SMPTE VC-2 encoder", .category = AV_CLASS_CATEGORY_ENCODER, .option = vc2enc_options, .item_name = av_default_item_name, .version = LIBAVUTIL_VERSION_INT }; static const AVCodecDefault vc2enc_defaults[] = { { "b", "600000000" }, { NULL }, }; static const enum AVPixelFormat allowed_pix_fmts[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_NONE }; AVCodec ff_vc2_encoder = { .name = "vc2", .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-2"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_DIRAC, .priv_data_size = sizeof(VC2EncContext), .init = vc2_encode_init, .close = vc2_encode_end, .capabilities = AV_CODEC_CAP_SLICE_THREADS, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, .encode2 = vc2_encode_frame, .priv_class = &vc2enc_class, .defaults = vc2enc_defaults, .pix_fmts = allowed_pix_fmts };