// Copyright 2020 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. // This file references various implementation details from Atmosphere, an open-source firmware for // the Nintendo Switch. Copyright 2018-2020 Atmosphere-NX. #include #include "common/assert.h" #include "common/bit_util.h" #include "common/fiber.h" #include "common/logging/log.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/core_timing.h" #include "core/cpu_manager.h" #include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h" #include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/physical_core.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/time_manager.h" namespace Kernel { static void IncrementScheduledCount(Kernel::KThread* thread) { if (auto process = thread->GetOwnerProcess(); process) { process->IncrementScheduledCount(); } } void KScheduler::RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule) { auto scheduler = kernel.CurrentScheduler(); u32 current_core{0xF}; bool must_context_switch{}; if (scheduler) { current_core = scheduler->core_id; // TODO(bunnei): Should be set to true when we deprecate single core must_context_switch = !kernel.IsPhantomModeForSingleCore(); } while (cores_pending_reschedule != 0) { const auto core = static_cast(std::countr_zero(cores_pending_reschedule)); ASSERT(core < Core::Hardware::NUM_CPU_CORES); if (!must_context_switch || core != current_core) { auto& phys_core = kernel.PhysicalCore(core); phys_core.Interrupt(); } else { must_context_switch = true; } cores_pending_reschedule &= ~(1ULL << core); } if (must_context_switch) { auto core_scheduler = kernel.CurrentScheduler(); kernel.ExitSVCProfile(); core_scheduler->RescheduleCurrentCore(); kernel.EnterSVCProfile(); } } u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) { std::scoped_lock lock{guard}; if (KThread* prev_highest_thread = state.highest_priority_thread; prev_highest_thread != highest_thread) { if (prev_highest_thread != nullptr) { IncrementScheduledCount(prev_highest_thread); prev_highest_thread->SetLastScheduledTick(system.CoreTiming().GetCPUTicks()); } if (state.should_count_idle) { if (highest_thread != nullptr) { if (Process* process = highest_thread->GetOwnerProcess(); process != nullptr) { process->SetRunningThread(core_id, highest_thread, state.idle_count); } } else { state.idle_count++; } } state.highest_priority_thread = highest_thread; state.needs_scheduling.store(true); return (1ULL << core_id); } else { return 0; } } u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) { ASSERT(kernel.GlobalSchedulerContext().IsLocked()); // Clear that we need to update. ClearSchedulerUpdateNeeded(kernel); u64 cores_needing_scheduling = 0, idle_cores = 0; KThread* top_threads[Core::Hardware::NUM_CPU_CORES]; auto& priority_queue = GetPriorityQueue(kernel); /// We want to go over all cores, finding the highest priority thread and determining if /// scheduling is needed for that core. for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) { KThread* top_thread = priority_queue.GetScheduledFront(static_cast(core_id)); if (top_thread != nullptr) { // If the thread has no waiters, we need to check if the process has a thread pinned. if (top_thread->GetNumKernelWaiters() == 0) { if (Process* parent = top_thread->GetOwnerProcess(); parent != nullptr) { if (KThread* pinned = parent->GetPinnedThread(static_cast(core_id)); pinned != nullptr && pinned != top_thread) { // We prefer our parent's pinned thread if possible. However, we also don't // want to schedule un-runnable threads. if (pinned->GetRawState() == ThreadState::Runnable) { top_thread = pinned; } else { top_thread = nullptr; } } } } } else { idle_cores |= (1ULL << core_id); } top_threads[core_id] = top_thread; cores_needing_scheduling |= kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]); } // Idle cores are bad. We're going to try to migrate threads to each idle core in turn. while (idle_cores != 0) { const auto core_id = static_cast(std::countr_zero(idle_cores)); if (KThread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) { s32 migration_candidates[Core::Hardware::NUM_CPU_CORES]; size_t num_candidates = 0; // While we have a suggested thread, try to migrate it! while (suggested != nullptr) { // Check if the suggested thread is the top thread on its core. const s32 suggested_core = suggested->GetActiveCore(); if (KThread* top_thread = (suggested_core >= 0) ? top_threads[suggested_core] : nullptr; top_thread != suggested) { // Make sure we're not dealing with threads too high priority for migration. if (top_thread != nullptr && top_thread->GetPriority() < HighestCoreMigrationAllowedPriority) { break; } // The suggested thread isn't bound to its core, so we can migrate it! suggested->SetActiveCore(core_id); priority_queue.ChangeCore(suggested_core, suggested); top_threads[core_id] = suggested; cores_needing_scheduling |= kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]); break; } // Note this core as a candidate for migration. ASSERT(num_candidates < Core::Hardware::NUM_CPU_CORES); migration_candidates[num_candidates++] = suggested_core; suggested = priority_queue.GetSuggestedNext(core_id, suggested); } // If suggested is nullptr, we failed to migrate a specific thread. So let's try all our // candidate cores' top threads. if (suggested == nullptr) { for (size_t i = 0; i < num_candidates; i++) { // Check if there's some other thread that can run on the candidate core. const s32 candidate_core = migration_candidates[i]; suggested = top_threads[candidate_core]; if (KThread* next_on_candidate_core = priority_queue.GetScheduledNext(candidate_core, suggested); next_on_candidate_core != nullptr) { // The candidate core can run some other thread! We'll migrate its current // top thread to us. top_threads[candidate_core] = next_on_candidate_core; cores_needing_scheduling |= kernel.Scheduler(candidate_core) .UpdateHighestPriorityThread(top_threads[candidate_core]); // Perform the migration. suggested->SetActiveCore(core_id); priority_queue.ChangeCore(candidate_core, suggested); top_threads[core_id] = suggested; cores_needing_scheduling |= kernel.Scheduler(core_id).UpdateHighestPriorityThread( top_threads[core_id]); break; } } } } idle_cores &= ~(1ULL << core_id); } return cores_needing_scheduling; } void KScheduler::ClearPreviousThread(KernelCore& kernel, KThread* thread) { ASSERT(kernel.GlobalSchedulerContext().IsLocked()); for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; ++i) { // Get an atomic reference to the core scheduler's previous thread. std::atomic_ref prev_thread(kernel.Scheduler(static_cast(i)).prev_thread); static_assert(std::atomic_ref::is_always_lock_free); // Atomically clear the previous thread if it's our target. KThread* compare = thread; prev_thread.compare_exchange_strong(compare, nullptr); } } void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state) { ASSERT(kernel.GlobalSchedulerContext().IsLocked()); // Check if the state has changed, because if it hasn't there's nothing to do. const auto cur_state = thread->GetRawState(); if (cur_state == old_state) { return; } // Update the priority queues. if (old_state == ThreadState::Runnable) { // If we were previously runnable, then we're not runnable now, and we should remove. GetPriorityQueue(kernel).Remove(thread); IncrementScheduledCount(thread); SetSchedulerUpdateNeeded(kernel); } else if (cur_state == ThreadState::Runnable) { // If we're now runnable, then we weren't previously, and we should add. GetPriorityQueue(kernel).PushBack(thread); IncrementScheduledCount(thread); SetSchedulerUpdateNeeded(kernel); } } void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority) { ASSERT(kernel.GlobalSchedulerContext().IsLocked()); // If the thread is runnable, we want to change its priority in the queue. if (thread->GetRawState() == ThreadState::Runnable) { GetPriorityQueue(kernel).ChangePriority( old_priority, thread == kernel.CurrentScheduler()->GetCurrentThread(), thread); IncrementScheduledCount(thread); SetSchedulerUpdateNeeded(kernel); } } void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread, const KAffinityMask& old_affinity, s32 old_core) { ASSERT(kernel.GlobalSchedulerContext().IsLocked()); // If the thread is runnable, we want to change its affinity in the queue. if (thread->GetRawState() == ThreadState::Runnable) { GetPriorityQueue(kernel).ChangeAffinityMask(old_core, old_affinity, thread); IncrementScheduledCount(thread); SetSchedulerUpdateNeeded(kernel); } } void KScheduler::RotateScheduledQueue(s32 core_id, s32 priority) { ASSERT(system.GlobalSchedulerContext().IsLocked()); // Get a reference to the priority queue. auto& kernel = system.Kernel(); auto& priority_queue = GetPriorityQueue(kernel); // Rotate the front of the queue to the end. KThread* top_thread = priority_queue.GetScheduledFront(core_id, priority); KThread* next_thread = nullptr; if (top_thread != nullptr) { next_thread = priority_queue.MoveToScheduledBack(top_thread); if (next_thread != top_thread) { IncrementScheduledCount(top_thread); IncrementScheduledCount(next_thread); } } // While we have a suggested thread, try to migrate it! { KThread* suggested = priority_queue.GetSuggestedFront(core_id, priority); while (suggested != nullptr) { // Check if the suggested thread is the top thread on its core. const s32 suggested_core = suggested->GetActiveCore(); if (KThread* top_on_suggested_core = (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core) : nullptr; top_on_suggested_core != suggested) { // If the next thread is a new thread that has been waiting longer than our // suggestion, we prefer it to our suggestion. if (top_thread != next_thread && next_thread != nullptr && next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick()) { suggested = nullptr; break; } // If we're allowed to do a migration, do one. // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the suggestion // to the front of the queue. if (top_on_suggested_core == nullptr || top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) { suggested->SetActiveCore(core_id); priority_queue.ChangeCore(suggested_core, suggested, true); IncrementScheduledCount(suggested); break; } } // Get the next suggestion. suggested = priority_queue.GetSamePriorityNext(core_id, suggested); } } // Now that we might have migrated a thread with the same priority, check if we can do better. { KThread* best_thread = priority_queue.GetScheduledFront(core_id); if (best_thread == GetCurrentThread()) { best_thread = priority_queue.GetScheduledNext(core_id, best_thread); } // If the best thread we can choose has a priority the same or worse than ours, try to // migrate a higher priority thread. if (best_thread != nullptr && best_thread->GetPriority() >= priority) { KThread* suggested = priority_queue.GetSuggestedFront(core_id); while (suggested != nullptr) { // If the suggestion's priority is the same as ours, don't bother. if (suggested->GetPriority() >= best_thread->GetPriority()) { break; } // Check if the suggested thread is the top thread on its core. const s32 suggested_core = suggested->GetActiveCore(); if (KThread* top_on_suggested_core = (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core) : nullptr; top_on_suggested_core != suggested) { // If we're allowed to do a migration, do one. // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the // suggestion to the front of the queue. if (top_on_suggested_core == nullptr || top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) { suggested->SetActiveCore(core_id); priority_queue.ChangeCore(suggested_core, suggested, true); IncrementScheduledCount(suggested); break; } } // Get the next suggestion. suggested = priority_queue.GetSuggestedNext(core_id, suggested); } } } // After a rotation, we need a scheduler update. SetSchedulerUpdateNeeded(kernel); } bool KScheduler::CanSchedule(KernelCore& kernel) { return kernel.CurrentScheduler()->GetCurrentThread()->GetDisableDispatchCount() <= 1; } bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) { return kernel.GlobalSchedulerContext().scheduler_update_needed.load(std::memory_order_acquire); } void KScheduler::SetSchedulerUpdateNeeded(KernelCore& kernel) { kernel.GlobalSchedulerContext().scheduler_update_needed.store(true, std::memory_order_release); } void KScheduler::ClearSchedulerUpdateNeeded(KernelCore& kernel) { kernel.GlobalSchedulerContext().scheduler_update_needed.store(false, std::memory_order_release); } void KScheduler::DisableScheduling(KernelCore& kernel) { if (auto* scheduler = kernel.CurrentScheduler(); scheduler) { ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 0); scheduler->GetCurrentThread()->DisableDispatch(); } } void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) { if (auto* scheduler = kernel.CurrentScheduler(); scheduler) { ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1); if (scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1) { scheduler->GetCurrentThread()->EnableDispatch(); } } RescheduleCores(kernel, cores_needing_scheduling); } u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) { if (IsSchedulerUpdateNeeded(kernel)) { return UpdateHighestPriorityThreadsImpl(kernel); } else { return 0; } } KSchedulerPriorityQueue& KScheduler::GetPriorityQueue(KernelCore& kernel) { return kernel.GlobalSchedulerContext().priority_queue; } void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) { // Validate preconditions. ASSERT(CanSchedule(kernel)); ASSERT(kernel.CurrentProcess() != nullptr); // Get the current thread and process. KThread& cur_thread = Kernel::GetCurrentThread(kernel); Process& cur_process = *kernel.CurrentProcess(); // If the thread's yield count matches, there's nothing for us to do. if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) { return; } // Get a reference to the priority queue. auto& priority_queue = GetPriorityQueue(kernel); // Perform the yield. { KScopedSchedulerLock lock(kernel); const auto cur_state = cur_thread.GetRawState(); if (cur_state == ThreadState::Runnable) { // Put the current thread at the back of the queue. KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread)); IncrementScheduledCount(std::addressof(cur_thread)); // If the next thread is different, we have an update to perform. if (next_thread != std::addressof(cur_thread)) { SetSchedulerUpdateNeeded(kernel); } else { // Otherwise, set the thread's yield count so that we won't waste work until the // process is scheduled again. cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount()); } } } } void KScheduler::YieldWithCoreMigration(KernelCore& kernel) { // Validate preconditions. ASSERT(CanSchedule(kernel)); ASSERT(kernel.CurrentProcess() != nullptr); // Get the current thread and process. KThread& cur_thread = Kernel::GetCurrentThread(kernel); Process& cur_process = *kernel.CurrentProcess(); // If the thread's yield count matches, there's nothing for us to do. if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) { return; } // Get a reference to the priority queue. auto& priority_queue = GetPriorityQueue(kernel); // Perform the yield. { KScopedSchedulerLock lock(kernel); const auto cur_state = cur_thread.GetRawState(); if (cur_state == ThreadState::Runnable) { // Get the current active core. const s32 core_id = cur_thread.GetActiveCore(); // Put the current thread at the back of the queue. KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread)); IncrementScheduledCount(std::addressof(cur_thread)); // While we have a suggested thread, try to migrate it! bool recheck = false; KThread* suggested = priority_queue.GetSuggestedFront(core_id); while (suggested != nullptr) { // Check if the suggested thread is the thread running on its core. const s32 suggested_core = suggested->GetActiveCore(); if (KThread* running_on_suggested_core = (suggested_core >= 0) ? kernel.Scheduler(suggested_core).state.highest_priority_thread : nullptr; running_on_suggested_core != suggested) { // If the current thread's priority is higher than our suggestion's we prefer // the next thread to the suggestion. We also prefer the next thread when the // current thread's priority is equal to the suggestions, but the next thread // has been waiting longer. if ((suggested->GetPriority() > cur_thread.GetPriority()) || (suggested->GetPriority() == cur_thread.GetPriority() && next_thread != std::addressof(cur_thread) && next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick())) { suggested = nullptr; break; } // If we're allowed to do a migration, do one. // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the // suggestion to the front of the queue. if (running_on_suggested_core == nullptr || running_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) { suggested->SetActiveCore(core_id); priority_queue.ChangeCore(suggested_core, suggested, true); IncrementScheduledCount(suggested); break; } else { // We couldn't perform a migration, but we should check again on a future // yield. recheck = true; } } // Get the next suggestion. suggested = priority_queue.GetSuggestedNext(core_id, suggested); } // If we still have a suggestion or the next thread is different, we have an update to // perform. if (suggested != nullptr || next_thread != std::addressof(cur_thread)) { SetSchedulerUpdateNeeded(kernel); } else if (!recheck) { // Otherwise if we don't need to re-check, set the thread's yield count so that we // won't waste work until the process is scheduled again. cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount()); } } } } void KScheduler::YieldToAnyThread(KernelCore& kernel) { // Validate preconditions. ASSERT(CanSchedule(kernel)); ASSERT(kernel.CurrentProcess() != nullptr); // Get the current thread and process. KThread& cur_thread = Kernel::GetCurrentThread(kernel); Process& cur_process = *kernel.CurrentProcess(); // If the thread's yield count matches, there's nothing for us to do. if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) { return; } // Get a reference to the priority queue. auto& priority_queue = GetPriorityQueue(kernel); // Perform the yield. { KScopedSchedulerLock lock(kernel); const auto cur_state = cur_thread.GetRawState(); if (cur_state == ThreadState::Runnable) { // Get the current active core. const s32 core_id = cur_thread.GetActiveCore(); // Migrate the current thread to core -1. cur_thread.SetActiveCore(-1); priority_queue.ChangeCore(core_id, std::addressof(cur_thread)); IncrementScheduledCount(std::addressof(cur_thread)); // If there's nothing scheduled, we can try to perform a migration. if (priority_queue.GetScheduledFront(core_id) == nullptr) { // While we have a suggested thread, try to migrate it! KThread* suggested = priority_queue.GetSuggestedFront(core_id); while (suggested != nullptr) { // Check if the suggested thread is the top thread on its core. const s32 suggested_core = suggested->GetActiveCore(); if (KThread* top_on_suggested_core = (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core) : nullptr; top_on_suggested_core != suggested) { // If we're allowed to do a migration, do one. if (top_on_suggested_core == nullptr || top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) { suggested->SetActiveCore(core_id); priority_queue.ChangeCore(suggested_core, suggested); IncrementScheduledCount(suggested); } // Regardless of whether we migrated, we had a candidate, so we're done. break; } // Get the next suggestion. suggested = priority_queue.GetSuggestedNext(core_id, suggested); } // If the suggestion is different from the current thread, we need to perform an // update. if (suggested != std::addressof(cur_thread)) { SetSchedulerUpdateNeeded(kernel); } else { // Otherwise, set the thread's yield count so that we won't waste work until the // process is scheduled again. cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount()); } } else { // Otherwise, we have an update to perform. SetSchedulerUpdateNeeded(kernel); } } } } KScheduler::KScheduler(Core::System& system, s32 core_id) : system(system), core_id(core_id) { switch_fiber = std::make_unique(OnSwitch, this); state.needs_scheduling.store(true); state.interrupt_task_thread_runnable = false; state.should_count_idle = false; state.idle_count = 0; state.idle_thread_stack = nullptr; state.highest_priority_thread = nullptr; } KScheduler::~KScheduler() = default; KThread* KScheduler::GetCurrentThread() const { if (auto result = current_thread.load(); result) { return result; } return idle_thread; } u64 KScheduler::GetLastContextSwitchTicks() const { return last_context_switch_time; } void KScheduler::RescheduleCurrentCore() { ASSERT(GetCurrentThread()->GetDisableDispatchCount() == 1); auto& phys_core = system.Kernel().PhysicalCore(core_id); if (phys_core.IsInterrupted()) { phys_core.ClearInterrupt(); } guard.lock(); if (state.needs_scheduling.load()) { Schedule(); } else { guard.unlock(); } } void KScheduler::OnThreadStart() { SwitchContextStep2(); } void KScheduler::Unload(KThread* thread) { LOG_TRACE(Kernel, "core {}, unload thread {}", core_id, thread ? thread->GetName() : "nullptr"); if (thread) { if (thread->IsCallingSvc()) { system.ArmInterface(core_id).ExceptionalExit(); thread->ClearIsCallingSvc(); } if (!thread->IsTerminationRequested()) { prev_thread = thread; Core::ARM_Interface& cpu_core = system.ArmInterface(core_id); cpu_core.SaveContext(thread->GetContext32()); cpu_core.SaveContext(thread->GetContext64()); // Save the TPIDR_EL0 system register in case it was modified. thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0()); cpu_core.ClearExclusiveState(); } else { prev_thread = nullptr; } thread->context_guard.unlock(); } } void KScheduler::Reload(KThread* thread) { LOG_TRACE(Kernel, "core {}, reload thread {}", core_id, thread ? thread->GetName() : "nullptr"); if (thread) { ASSERT_MSG(thread->GetState() == ThreadState::Runnable, "Thread must be runnable."); auto* const thread_owner_process = thread->GetOwnerProcess(); if (thread_owner_process != nullptr) { system.Kernel().MakeCurrentProcess(thread_owner_process); } Core::ARM_Interface& cpu_core = system.ArmInterface(core_id); cpu_core.LoadContext(thread->GetContext32()); cpu_core.LoadContext(thread->GetContext64()); cpu_core.SetTlsAddress(thread->GetTLSAddress()); cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0()); cpu_core.ClearExclusiveState(); } } void KScheduler::SwitchContextStep2() { // Load context of new thread Reload(current_thread.load()); RescheduleCurrentCore(); } void KScheduler::ScheduleImpl() { KThread* previous_thread = current_thread.load(); KThread* next_thread = state.highest_priority_thread; state.needs_scheduling = false; // We never want to schedule a null thread, so use the idle thread if we don't have a next. if (next_thread == nullptr) { next_thread = idle_thread; } // If we're not actually switching thread, there's nothing to do. if (next_thread == current_thread.load()) { guard.unlock(); return; } current_thread.store(next_thread); Process* const previous_process = system.Kernel().CurrentProcess(); UpdateLastContextSwitchTime(previous_thread, previous_process); // Save context for previous thread Unload(previous_thread); Common::Fiber* old_context; if (previous_thread != nullptr) { old_context = previous_thread->GetHostContext(); } else { old_context = idle_thread->GetHostContext(); } guard.unlock(); Common::Fiber::YieldTo(old_context, switch_fiber.get()); /// When a thread wakes up, the scheduler may have changed to other in another core. auto& next_scheduler = *system.Kernel().CurrentScheduler(); next_scheduler.SwitchContextStep2(); } void KScheduler::OnSwitch(void* this_scheduler) { KScheduler* sched = static_cast(this_scheduler); sched->SwitchToCurrent(); } void KScheduler::SwitchToCurrent() { while (true) { { std::scoped_lock lock{guard}; current_thread.store(state.highest_priority_thread); state.needs_scheduling.store(false); } const auto is_switch_pending = [this] { std::scoped_lock lock{guard}; return state.needs_scheduling.load(); }; do { auto next_thread = current_thread.load(); if (next_thread != nullptr) { next_thread->context_guard.lock(); if (next_thread->GetRawState() != ThreadState::Runnable) { next_thread->context_guard.unlock(); break; } if (next_thread->GetActiveCore() != core_id) { next_thread->context_guard.unlock(); break; } } Common::Fiber* next_context; if (next_thread != nullptr) { next_context = next_thread->GetHostContext(); } else { next_context = idle_thread->GetHostContext(); } Common::Fiber::YieldTo(switch_fiber.get(), next_context); } while (!is_switch_pending()); } } void KScheduler::UpdateLastContextSwitchTime(KThread* thread, Process* process) { const u64 prev_switch_ticks = last_context_switch_time; const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks(); const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks; if (thread != nullptr) { thread->AddCpuTime(core_id, update_ticks); } if (process != nullptr) { process->UpdateCPUTimeTicks(update_ticks); } last_context_switch_time = most_recent_switch_ticks; } void KScheduler::Initialize() { std::string name = "Idle Thread Id:" + std::to_string(core_id); std::function init_func = Core::CpuManager::GetIdleThreadStartFunc(); void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater(); auto thread_res = KThread::CreateThread( system, ThreadType::Main, name, 0, KThread::IdleThreadPriority, 0, static_cast(core_id), 0, nullptr, std::move(init_func), init_func_parameter); idle_thread = thread_res.Unwrap().get(); } KScopedSchedulerLock::KScopedSchedulerLock(KernelCore& kernel) : KScopedLock(kernel.GlobalSchedulerContext().SchedulerLock()) {} KScopedSchedulerLock::~KScopedSchedulerLock() = default; } // namespace Kernel