/* * Copyright © 2016 Mozilla Foundation * * This program is made available under an ISC-style license. See the * accompanying file LICENSE for details. */ #ifndef NOMINMAX #define NOMINMAX #endif // NOMINMAX #include "gtest/gtest.h" #include "common.h" #include "cubeb_resampler_internal.h" #include <stdio.h> #include <algorithm> #include <iostream> /* Windows cmath USE_MATH_DEFINE thing... */ const float PI = 3.14159265359f; /* Testing all sample rates is very long, so if THOROUGH_TESTING is not defined, * only part of the test suite is ran. */ #ifdef THOROUGH_TESTING /* Some standard sample rates we're testing with. */ const uint32_t sample_rates[] = { 8000, 16000, 32000, 44100, 48000, 88200, 96000, 192000 }; /* The maximum number of channels we're resampling. */ const uint32_t max_channels = 2; /* The minimum an maximum number of milliseconds we're resampling for. This is * used to simulate the fact that the audio stream is resampled in chunks, * because audio is delivered using callbacks. */ const uint32_t min_chunks = 10; /* ms */ const uint32_t max_chunks = 30; /* ms */ const uint32_t chunk_increment = 1; #else const uint32_t sample_rates[] = { 8000, 44100, 48000, }; const uint32_t max_channels = 2; const uint32_t min_chunks = 10; /* ms */ const uint32_t max_chunks = 30; /* ms */ const uint32_t chunk_increment = 10; #endif #define DUMP_ARRAYS #ifdef DUMP_ARRAYS /** * Files produced by dump(...) can be converted to .wave files using: * * sox -c <channel_count> -r <rate> -e float -b 32 file.raw file.wav * * for floating-point audio, or: * * sox -c <channel_count> -r <rate> -e unsigned -b 16 file.raw file.wav * * for 16bit integer audio. */ /* Use the correct implementation of fopen, depending on the platform. */ void fopen_portable(FILE ** f, const char * name, const char * mode) { #ifdef WIN32 fopen_s(f, name, mode); #else *f = fopen(name, mode); #endif } template<typename T> void dump(const char * name, T * frames, size_t count) { FILE * file; fopen_portable(&file, name, "wb"); if (!file) { fprintf(stderr, "error opening %s\n", name); return; } if (count != fwrite(frames, sizeof(T), count, file)) { fprintf(stderr, "error writing to %s\n", name); } fclose(file); } #else template<typename T> void dump(const char * name, T * frames, size_t count) { } #endif // The more the ratio is far from 1, the more we accept a big error. float epsilon_tweak_ratio(float ratio) { return ratio >= 1 ? ratio : 1 / ratio; } // Epsilon values for comparing resampled data to expected data. // The bigger the resampling ratio is, the more lax we are about errors. template<typename T> T epsilon(float ratio); template<> float epsilon(float ratio) { return 0.08f * epsilon_tweak_ratio(ratio); } template<> int16_t epsilon(float ratio) { return static_cast<int16_t>(10 * epsilon_tweak_ratio(ratio)); } void test_delay_lines(uint32_t delay_frames, uint32_t channels, uint32_t chunk_ms) { const size_t length_s = 2; const size_t rate = 44100; const size_t length_frames = rate * length_s; delay_line<float> delay(delay_frames, channels, rate); auto_array<float> input; auto_array<float> output; uint32_t chunk_length = channels * chunk_ms * rate / 1000; uint32_t output_offset = 0; uint32_t channel = 0; /** Generate diracs every 100 frames, and check they are delayed. */ input.push_silence(length_frames * channels); for (uint32_t i = 0; i < input.length() - 1; i+=100) { input.data()[i + channel] = 0.5; channel = (channel + 1) % channels; } dump("input.raw", input.data(), input.length()); while(input.length()) { uint32_t to_pop = std::min<uint32_t>(input.length(), chunk_length * channels); float * in = delay.input_buffer(to_pop / channels); input.pop(in, to_pop); delay.written(to_pop / channels); output.push_silence(to_pop); delay.output(output.data() + output_offset, to_pop / channels); output_offset += to_pop; } // Check the diracs have been shifted by `delay_frames` frames. for (uint32_t i = 0; i < output.length() - delay_frames * channels + 1; i+=100) { ASSERT_EQ(output.data()[i + channel + delay_frames * channels], 0.5); channel = (channel + 1) % channels; } dump("output.raw", output.data(), output.length()); } /** * This takes sine waves with a certain `channels` count, `source_rate`, and * resample them, by chunk of `chunk_duration` milliseconds, to `target_rate`. * Then a sample-wise comparison is performed against a sine wave generated at * the correct rate. */ template<typename T> void test_resampler_one_way(uint32_t channels, uint32_t source_rate, uint32_t target_rate, float chunk_duration) { size_t chunk_duration_in_source_frames = static_cast<uint32_t>(ceil(chunk_duration * source_rate / 1000.)); float resampling_ratio = static_cast<float>(source_rate) / target_rate; cubeb_resampler_speex_one_way<T> resampler(channels, source_rate, target_rate, 3); auto_array<T> source(channels * source_rate * 10); auto_array<T> destination(channels * target_rate * 10); auto_array<T> expected(channels * target_rate * 10); uint32_t phase_index = 0; uint32_t offset = 0; const uint32_t buf_len = 2; /* seconds */ // generate a sine wave in each channel, at the source sample rate source.push_silence(channels * source_rate * buf_len); while(offset != source.length()) { float p = phase_index++ / static_cast<float>(source_rate); for (uint32_t j = 0; j < channels; j++) { source.data()[offset++] = 0.5 * sin(440. * 2 * PI * p); } } dump("input.raw", source.data(), source.length()); expected.push_silence(channels * target_rate * buf_len); // generate a sine wave in each channel, at the target sample rate. // Insert silent samples at the beginning to account for the resampler latency. offset = resampler.latency() * channels; for (uint32_t i = 0; i < offset; i++) { expected.data()[i] = 0.0f; } phase_index = 0; while (offset != expected.length()) { float p = phase_index++ / static_cast<float>(target_rate); for (uint32_t j = 0; j < channels; j++) { expected.data()[offset++] = 0.5 * sin(440. * 2 * PI * p); } } dump("expected.raw", expected.data(), expected.length()); // resample by chunk uint32_t write_offset = 0; destination.push_silence(channels * target_rate * buf_len); while (write_offset < destination.length()) { size_t output_frames = static_cast<uint32_t>(floor(chunk_duration_in_source_frames / resampling_ratio)); uint32_t input_frames = resampler.input_needed_for_output(output_frames); resampler.input(source.data(), input_frames); source.pop(nullptr, input_frames * channels); resampler.output(destination.data() + write_offset, std::min(output_frames, (destination.length() - write_offset) / channels)); write_offset += output_frames * channels; } dump("output.raw", destination.data(), expected.length()); // compare, taking the latency into account bool fuzzy_equal = true; for (uint32_t i = resampler.latency() + 1; i < expected.length(); i++) { float diff = fabs(expected.data()[i] - destination.data()[i]); if (diff > epsilon<T>(resampling_ratio)) { fprintf(stderr, "divergence at %d: %f %f (delta %f)\n", i, expected.data()[i], destination.data()[i], diff); fuzzy_equal = false; } } ASSERT_TRUE(fuzzy_equal); } template<typename T> cubeb_sample_format cubeb_format(); template<> cubeb_sample_format cubeb_format<float>() { return CUBEB_SAMPLE_FLOAT32NE; } template<> cubeb_sample_format cubeb_format<short>() { return CUBEB_SAMPLE_S16NE; } struct osc_state { osc_state() : input_phase_index(0) , output_phase_index(0) , output_offset(0) , input_channels(0) , output_channels(0) {} uint32_t input_phase_index; uint32_t max_output_phase_index; uint32_t output_phase_index; uint32_t output_offset; uint32_t input_channels; uint32_t output_channels; uint32_t output_rate; uint32_t target_rate; auto_array<float> input; auto_array<float> output; }; uint32_t fill_with_sine(float * buf, uint32_t rate, uint32_t channels, uint32_t frames, uint32_t initial_phase) { uint32_t offset = 0; for (uint32_t i = 0; i < frames; i++) { float p = initial_phase++ / static_cast<float>(rate); for (uint32_t j = 0; j < channels; j++) { buf[offset++] = 0.5 * sin(440. * 2 * PI * p); } } return initial_phase; } long data_cb_resampler(cubeb_stream * /*stm*/, void * user_ptr, const void * input_buffer, void * output_buffer, long frame_count) { osc_state * state = reinterpret_cast<osc_state*>(user_ptr); const float * in = reinterpret_cast<const float*>(input_buffer); float * out = reinterpret_cast<float*>(output_buffer); state->input.push(in, frame_count * state->input_channels); /* Check how much output frames we need to write */ uint32_t remaining = state->max_output_phase_index - state->output_phase_index; uint32_t to_write = std::min<uint32_t>(remaining, frame_count); state->output_phase_index = fill_with_sine(out, state->target_rate, state->output_channels, to_write, state->output_phase_index); return to_write; } template<typename T> bool array_fuzzy_equal(const auto_array<T>& lhs, const auto_array<T>& rhs, T epsi) { uint32_t len = std::min(lhs.length(), rhs.length()); for (uint32_t i = 0; i < len; i++) { if (fabs(lhs.at(i) - rhs.at(i)) > epsi) { std::cout << "not fuzzy equal at index: " << i << " lhs: " << lhs.at(i) << " rhs: " << rhs.at(i) << " delta: " << fabs(lhs.at(i) - rhs.at(i)) << " epsilon: "<< epsi << std::endl; return false; } } return true; } template<typename T> void test_resampler_duplex(uint32_t input_channels, uint32_t output_channels, uint32_t input_rate, uint32_t output_rate, uint32_t target_rate, float chunk_duration) { cubeb_stream_params input_params; cubeb_stream_params output_params; osc_state state; input_params.format = output_params.format = cubeb_format<T>(); state.input_channels = input_params.channels = input_channels; state.output_channels = output_params.channels = output_channels; input_params.rate = input_rate; state.output_rate = output_params.rate = output_rate; state.target_rate = target_rate; input_params.prefs = output_params.prefs = CUBEB_STREAM_PREF_NONE; long got; cubeb_resampler * resampler = cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params, target_rate, data_cb_resampler, (void*)&state, CUBEB_RESAMPLER_QUALITY_VOIP); long latency = cubeb_resampler_latency(resampler); const uint32_t duration_s = 2; int32_t duration_frames = duration_s * target_rate; uint32_t input_array_frame_count = ceil(chunk_duration * input_rate / 1000) + ceilf(static_cast<float>(input_rate) / target_rate) * 2; uint32_t output_array_frame_count = chunk_duration * output_rate / 1000; auto_array<float> input_buffer(input_channels * input_array_frame_count); auto_array<float> output_buffer(output_channels * output_array_frame_count); auto_array<float> expected_resampled_input(input_channels * duration_frames); auto_array<float> expected_resampled_output(output_channels * output_rate * duration_s); state.max_output_phase_index = duration_s * target_rate; expected_resampled_input.push_silence(input_channels * duration_frames); expected_resampled_output.push_silence(output_channels * output_rate * duration_s); /* expected output is a 440Hz sine wave at 16kHz */ fill_with_sine(expected_resampled_input.data() + latency, target_rate, input_channels, duration_frames - latency, 0); /* expected output is a 440Hz sine wave at 32kHz */ fill_with_sine(expected_resampled_output.data() + latency, output_rate, output_channels, output_rate * duration_s - latency, 0); while (state.output_phase_index != state.max_output_phase_index) { uint32_t leftover_samples = input_buffer.length() * input_channels; input_buffer.reserve(input_array_frame_count); state.input_phase_index = fill_with_sine(input_buffer.data() + leftover_samples, input_rate, input_channels, input_array_frame_count - leftover_samples, state.input_phase_index); long input_consumed = input_array_frame_count; input_buffer.set_length(input_array_frame_count); got = cubeb_resampler_fill(resampler, input_buffer.data(), &input_consumed, output_buffer.data(), output_array_frame_count); /* handle leftover input */ if (input_array_frame_count != static_cast<uint32_t>(input_consumed)) { input_buffer.pop(nullptr, input_consumed * input_channels); } else { input_buffer.clear(); } state.output.push(output_buffer.data(), got * state.output_channels); } dump("input_expected.raw", expected_resampled_input.data(), expected_resampled_input.length()); dump("output_expected.raw", expected_resampled_output.data(), expected_resampled_output.length()); dump("input.raw", state.input.data(), state.input.length()); dump("output.raw", state.output.data(), state.output.length()); // This is disabled because the latency estimation in the resampler code is // slightly off so we can generate expected vectors. // See https://github.com/kinetiknz/cubeb/issues/93 // ASSERT_TRUE(array_fuzzy_equal(state.input, expected_resampled_input, epsilon<T>(input_rate/target_rate))); // ASSERT_TRUE(array_fuzzy_equal(state.output, expected_resampled_output, epsilon<T>(output_rate/target_rate))); cubeb_resampler_destroy(resampler); } #define array_size(x) (sizeof(x) / sizeof(x[0])) TEST(cubeb, resampler_one_way) { /* Test one way resamplers */ for (uint32_t channels = 1; channels <= max_channels; channels++) { for (uint32_t source_rate = 0; source_rate < array_size(sample_rates); source_rate++) { for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) { for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) { fprintf(stderr, "one_way: channels: %d, source_rate: %d, dest_rate: %d, chunk_duration: %d\n", channels, sample_rates[source_rate], sample_rates[dest_rate], chunk_duration); test_resampler_one_way<float>(channels, sample_rates[source_rate], sample_rates[dest_rate], chunk_duration); } } } } } TEST(cubeb, DISABLED_resampler_duplex) { for (uint32_t input_channels = 1; input_channels <= max_channels; input_channels++) { for (uint32_t output_channels = 1; output_channels <= max_channels; output_channels++) { for (uint32_t source_rate_input = 0; source_rate_input < array_size(sample_rates); source_rate_input++) { for (uint32_t source_rate_output = 0; source_rate_output < array_size(sample_rates); source_rate_output++) { for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) { for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) { fprintf(stderr, "input channels:%d output_channels:%d input_rate:%d " "output_rate:%d target_rate:%d chunk_ms:%d\n", input_channels, output_channels, sample_rates[source_rate_input], sample_rates[source_rate_output], sample_rates[dest_rate], chunk_duration); test_resampler_duplex<float>(input_channels, output_channels, sample_rates[source_rate_input], sample_rates[source_rate_output], sample_rates[dest_rate], chunk_duration); } } } } } } } TEST(cubeb, resampler_delay_line) { for (uint32_t channel = 1; channel <= 2; channel++) { for (uint32_t delay_frames = 4; delay_frames <= 40; delay_frames+=chunk_increment) { for (uint32_t chunk_size = 10; chunk_size <= 30; chunk_size++) { fprintf(stderr, "channel: %d, delay_frames: %d, chunk_size: %d\n", channel, delay_frames, chunk_size); test_delay_lines(delay_frames, channel, chunk_size); } } } } long test_output_only_noop_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/, const void * input_buffer, void * output_buffer, long frame_count) { EXPECT_TRUE(output_buffer); EXPECT_TRUE(!input_buffer); return frame_count; } TEST(cubeb, resampler_output_only_noop) { cubeb_stream_params output_params; int target_rate; output_params.rate = 44100; output_params.channels = 1; output_params.format = CUBEB_SAMPLE_FLOAT32NE; target_rate = output_params.rate; cubeb_resampler * resampler = cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate, test_output_only_noop_data_cb, nullptr, CUBEB_RESAMPLER_QUALITY_VOIP); const long out_frames = 128; float out_buffer[out_frames]; long got; got = cubeb_resampler_fill(resampler, nullptr, nullptr, out_buffer, out_frames); ASSERT_EQ(got, out_frames); cubeb_resampler_destroy(resampler); } long test_drain_data_cb(cubeb_stream * /*stm*/, void * user_ptr, const void * input_buffer, void * output_buffer, long frame_count) { EXPECT_TRUE(output_buffer); EXPECT_TRUE(!input_buffer); auto cb_count = static_cast<int *>(user_ptr); (*cb_count)++; return frame_count - 1; } TEST(cubeb, resampler_drain) { cubeb_stream_params output_params; int target_rate; output_params.rate = 44100; output_params.channels = 1; output_params.format = CUBEB_SAMPLE_FLOAT32NE; target_rate = 48000; int cb_count = 0; cubeb_resampler * resampler = cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate, test_drain_data_cb, &cb_count, CUBEB_RESAMPLER_QUALITY_VOIP); const long out_frames = 128; float out_buffer[out_frames]; long got; do { got = cubeb_resampler_fill(resampler, nullptr, nullptr, out_buffer, out_frames); } while (got == out_frames); /* The callback should be called once but not again after returning < * frame_count. */ ASSERT_EQ(cb_count, 1); cubeb_resampler_destroy(resampler); } // gtest does not support using ASSERT_EQ and friend in a function that returns // a value. void check_output(const void * input_buffer, void * output_buffer, long frame_count) { ASSERT_EQ(input_buffer, nullptr); ASSERT_EQ(frame_count, 256); ASSERT_TRUE(!!output_buffer); } long cb_passthrough_resampler_output(cubeb_stream * /*stm*/, void * /*user_ptr*/, const void * input_buffer, void * output_buffer, long frame_count) { check_output(input_buffer, output_buffer, frame_count); return frame_count; } TEST(cubeb, resampler_passthrough_output_only) { // Test that the passthrough resampler works when there is only an output stream. cubeb_stream_params output_params; const size_t output_channels = 2; output_params.channels = output_channels; output_params.rate = 44100; output_params.format = CUBEB_SAMPLE_FLOAT32NE; int target_rate = output_params.rate; cubeb_resampler * resampler = cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate, cb_passthrough_resampler_output, nullptr, CUBEB_RESAMPLER_QUALITY_VOIP); float output_buffer[output_channels * 256]; long got; for (uint32_t i = 0; i < 30; i++) { got = cubeb_resampler_fill(resampler, nullptr, nullptr, output_buffer, 256); ASSERT_EQ(got, 256); } cubeb_resampler_destroy(resampler); } // gtest does not support using ASSERT_EQ and friend in a function that returns // a value. void check_input(const void * input_buffer, void * output_buffer, long frame_count) { ASSERT_EQ(output_buffer, nullptr); ASSERT_EQ(frame_count, 256); ASSERT_TRUE(!!input_buffer); } long cb_passthrough_resampler_input(cubeb_stream * /*stm*/, void * /*user_ptr*/, const void * input_buffer, void * output_buffer, long frame_count) { check_input(input_buffer, output_buffer, frame_count); return frame_count; } TEST(cubeb, resampler_passthrough_input_only) { // Test that the passthrough resampler works when there is only an output stream. cubeb_stream_params input_params; const size_t input_channels = 2; input_params.channels = input_channels; input_params.rate = 44100; input_params.format = CUBEB_SAMPLE_FLOAT32NE; int target_rate = input_params.rate; cubeb_resampler * resampler = cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, nullptr, target_rate, cb_passthrough_resampler_input, nullptr, CUBEB_RESAMPLER_QUALITY_VOIP); float input_buffer[input_channels * 256]; long got; for (uint32_t i = 0; i < 30; i++) { long int frames = 256; got = cubeb_resampler_fill(resampler, input_buffer, &frames, nullptr, 0); ASSERT_EQ(got, 256); } cubeb_resampler_destroy(resampler); } template<typename T> long seq(T* array, int stride, long start, long count) { uint32_t output_idx = 0; for(int i = 0; i < count; i++) { for (int j = 0; j < stride; j++) { array[output_idx + j] = static_cast<T>(start + i); } output_idx += stride; } return start + count; } template<typename T> void is_seq(T * array, int stride, long count, long expected_start) { uint32_t output_index = 0; for (long i = 0; i < count; i++) { for (int j = 0; j < stride; j++) { ASSERT_EQ(array[output_index + j], expected_start + i); } output_index += stride; } } template<typename T> void is_not_seq(T * array, int stride, long count, long expected_start) { uint32_t output_index = 0; for (long i = 0; i < count; i++) { for (int j = 0; j < stride; j++) { ASSERT_NE(array[output_index + j], expected_start + i); } output_index += stride; } } struct closure { int input_channel_count; }; // gtest does not support using ASSERT_EQ and friend in a function that returns // a value. template<typename T> void check_duplex(const T * input_buffer, T * output_buffer, long frame_count, int input_channel_count) { ASSERT_EQ(frame_count, 256); // Silence scan-build warning. ASSERT_TRUE(!!output_buffer); assert(output_buffer); ASSERT_TRUE(!!input_buffer); assert(input_buffer); int output_index = 0; int input_index = 0; for (int i = 0; i < frame_count; i++) { // output is two channels, input one or two channels. if (input_channel_count == 1) { output_buffer[output_index] = output_buffer[output_index + 1] = input_buffer[i]; } else if (input_channel_count == 2) { output_buffer[output_index] = input_buffer[input_index]; output_buffer[output_index + 1] = input_buffer[input_index + 1]; } output_index += 2; input_index += input_channel_count; } } long cb_passthrough_resampler_duplex(cubeb_stream * /*stm*/, void * user_ptr, const void * input_buffer, void * output_buffer, long frame_count) { closure * c = reinterpret_cast<closure*>(user_ptr); check_duplex<float>(static_cast<const float*>(input_buffer), static_cast<float*>(output_buffer), frame_count, c->input_channel_count); return frame_count; } TEST(cubeb, resampler_passthrough_duplex_callback_reordering) { // Test that when pre-buffering on resampler creation, we can survive an input // callback being delayed. cubeb_stream_params input_params; cubeb_stream_params output_params; const int input_channels = 1; const int output_channels = 2; input_params.channels = input_channels; input_params.rate = 44100; input_params.format = CUBEB_SAMPLE_FLOAT32NE; output_params.channels = output_channels; output_params.rate = input_params.rate; output_params.format = CUBEB_SAMPLE_FLOAT32NE; int target_rate = input_params.rate; closure c; c.input_channel_count = input_channels; cubeb_resampler * resampler = cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params, target_rate, cb_passthrough_resampler_duplex, &c, CUBEB_RESAMPLER_QUALITY_VOIP); const long BUF_BASE_SIZE = 256; float input_buffer_prebuffer[input_channels * BUF_BASE_SIZE * 2]; float input_buffer_glitch[input_channels * BUF_BASE_SIZE * 2]; float input_buffer_normal[input_channels * BUF_BASE_SIZE]; float output_buffer[output_channels * BUF_BASE_SIZE]; long seq_idx = 0; long output_seq_idx = 0; long prebuffer_frames = ARRAY_LENGTH(input_buffer_prebuffer) / input_params.channels; seq_idx = seq(input_buffer_prebuffer, input_channels, seq_idx, prebuffer_frames); long got = cubeb_resampler_fill(resampler, input_buffer_prebuffer, &prebuffer_frames, output_buffer, BUF_BASE_SIZE); output_seq_idx += BUF_BASE_SIZE; // prebuffer_frames will hold the frames used by the resampler. ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE); ASSERT_EQ(got, BUF_BASE_SIZE); for (uint32_t i = 0; i < 300; i++) { long int frames = BUF_BASE_SIZE; // Simulate that sometimes, we don't have the input callback on time if (i != 0 && (i % 100) == 0) { long zero = 0; got = cubeb_resampler_fill(resampler, input_buffer_normal /* unused here */, &zero, output_buffer, BUF_BASE_SIZE); is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx); output_seq_idx += BUF_BASE_SIZE; } else if (i != 0 && (i % 100) == 1) { // if this is the case, the on the next iteration, we'll have twice the // amount of input frames seq_idx = seq(input_buffer_glitch, input_channels, seq_idx, BUF_BASE_SIZE * 2); frames = 2 * BUF_BASE_SIZE; got = cubeb_resampler_fill(resampler, input_buffer_glitch, &frames, output_buffer, BUF_BASE_SIZE); is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx); output_seq_idx += BUF_BASE_SIZE; } else { // normal case seq_idx = seq(input_buffer_normal, input_channels, seq_idx, BUF_BASE_SIZE); long normal_input_frame_count = 256; got = cubeb_resampler_fill(resampler, input_buffer_normal, &normal_input_frame_count, output_buffer, BUF_BASE_SIZE); is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx); output_seq_idx += BUF_BASE_SIZE; } ASSERT_EQ(got, BUF_BASE_SIZE); } cubeb_resampler_destroy(resampler); } // Artificially simulate output thread underruns, // by building up artificial delay in the input. // Check that the frame drop logic kicks in. TEST(cubeb, resampler_drift_drop_data) { for (uint32_t input_channels = 1; input_channels < 3; input_channels++) { cubeb_stream_params input_params; cubeb_stream_params output_params; const int output_channels = 2; const int sample_rate = 44100; input_params.channels = input_channels; input_params.rate = sample_rate; input_params.format = CUBEB_SAMPLE_FLOAT32NE; output_params.channels = output_channels; output_params.rate = sample_rate; output_params.format = CUBEB_SAMPLE_FLOAT32NE; int target_rate = input_params.rate; closure c; c.input_channel_count = input_channels; cubeb_resampler * resampler = cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params, target_rate, cb_passthrough_resampler_duplex, &c, CUBEB_RESAMPLER_QUALITY_VOIP); const long BUF_BASE_SIZE = 256; // The factor by which the deadline is missed. This is intentionally // kind of large to trigger the frame drop quickly. In real life, multiple // smaller under-runs would accumulate. const long UNDERRUN_FACTOR = 10; // Number buffer used for pre-buffering, that some backends do. const long PREBUFFER_FACTOR = 2; std::vector<float> input_buffer_prebuffer(input_channels * BUF_BASE_SIZE * PREBUFFER_FACTOR); std::vector<float> input_buffer_glitch(input_channels * BUF_BASE_SIZE * UNDERRUN_FACTOR); std::vector<float> input_buffer_normal(input_channels * BUF_BASE_SIZE); std::vector<float> output_buffer(output_channels * BUF_BASE_SIZE); long seq_idx = 0; long output_seq_idx = 0; long prebuffer_frames = input_buffer_prebuffer.size() / input_params.channels; seq_idx = seq(input_buffer_prebuffer.data(), input_channels, seq_idx, prebuffer_frames); long got = cubeb_resampler_fill(resampler, input_buffer_prebuffer.data(), &prebuffer_frames, output_buffer.data(), BUF_BASE_SIZE); output_seq_idx += BUF_BASE_SIZE; // prebuffer_frames will hold the frames used by the resampler. ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE); ASSERT_EQ(got, BUF_BASE_SIZE); for (uint32_t i = 0; i < 300; i++) { long int frames = BUF_BASE_SIZE; if (i != 0 && (i % 100) == 1) { // Once in a while, the output thread misses its deadline. // The input thread still produces data, so it ends up accumulating. Simulate this by providing a // much bigger input buffer. Check that the sequence is now unaligned, meaning we've dropped data // to keep everything in sync. seq_idx = seq(input_buffer_glitch.data(), input_channels, seq_idx, BUF_BASE_SIZE * UNDERRUN_FACTOR); frames = BUF_BASE_SIZE * UNDERRUN_FACTOR; got = cubeb_resampler_fill(resampler, input_buffer_glitch.data(), &frames, output_buffer.data(), BUF_BASE_SIZE); is_seq(output_buffer.data(), 2, BUF_BASE_SIZE, output_seq_idx); output_seq_idx += BUF_BASE_SIZE; } else if (i != 0 && (i % 100) == 2) { // On the next iteration, the sequence should be broken seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx, BUF_BASE_SIZE); long normal_input_frame_count = 256; got = cubeb_resampler_fill(resampler, input_buffer_normal.data(), &normal_input_frame_count, output_buffer.data(), BUF_BASE_SIZE); is_not_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE, output_seq_idx); // Reclock so that we can use is_seq again. output_seq_idx = output_buffer[BUF_BASE_SIZE * output_channels - 1] + 1; } else { // normal case seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx, BUF_BASE_SIZE); long normal_input_frame_count = 256; got = cubeb_resampler_fill(resampler, input_buffer_normal.data(), &normal_input_frame_count, output_buffer.data(), BUF_BASE_SIZE); is_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE, output_seq_idx); output_seq_idx += BUF_BASE_SIZE; } ASSERT_EQ(got, BUF_BASE_SIZE); } cubeb_resampler_destroy(resampler); } } static long passthrough_resampler_fill_eq_input(cubeb_stream * stream, void * user_ptr, void const * input_buffer, void * output_buffer, long nframes) { // gtest does not support using ASSERT_EQ and friends in a // function that returns a value. [nframes, input_buffer]() { ASSERT_EQ(nframes, 32); const float* input = static_cast<const float*>(input_buffer); for (int i = 0; i < 64; ++i) { ASSERT_FLOAT_EQ(input[i], 0.01 * i); } }(); return nframes; } TEST(cubeb, passthrough_resampler_fill_eq_input) { uint32_t channels = 2; uint32_t sample_rate = 44100; passthrough_resampler<float> resampler = passthrough_resampler<float>(nullptr, passthrough_resampler_fill_eq_input, nullptr, channels, sample_rate); long input_frame_count = 32; long output_frame_count = 32; float input[64] = {}; float output[64] = {}; for (uint32_t i = 0; i < input_frame_count * channels; ++i) { input[i] = 0.01 * i; } long got = resampler.fill(input, &input_frame_count, output, output_frame_count); ASSERT_EQ(got, output_frame_count); // Input frames used must be equal to output frames. ASSERT_EQ(input_frame_count, output_frame_count); } static long passthrough_resampler_fill_short_input(cubeb_stream * stream, void * user_ptr, void const * input_buffer, void * output_buffer, long nframes) { // gtest does not support using ASSERT_EQ and friends in a // function that returns a value. [nframes, input_buffer]() { ASSERT_EQ(nframes, 32); const float* input = static_cast<const float*>(input_buffer); // First part contains the input for (int i = 0; i < 32; ++i) { ASSERT_FLOAT_EQ(input[i], 0.01 * i); } // missing part contains silence for (int i = 32; i < 64; ++i) { ASSERT_FLOAT_EQ(input[i], 0.0); } }(); return nframes; } TEST(cubeb, passthrough_resampler_fill_short_input) { uint32_t channels = 2; uint32_t sample_rate = 44100; passthrough_resampler<float> resampler = passthrough_resampler<float>(nullptr, passthrough_resampler_fill_short_input, nullptr, channels, sample_rate); long input_frame_count = 16; long output_frame_count = 32; float input[64] = {}; float output[64] = {}; for (uint32_t i = 0; i < input_frame_count * channels; ++i) { input[i] = 0.01 * i; } long got = resampler.fill(input, &input_frame_count, output, output_frame_count); ASSERT_EQ(got, output_frame_count); // Input frames used are less than the output frames due to glitch. ASSERT_EQ(input_frame_count, output_frame_count - 16); } static long passthrough_resampler_fill_input_left(cubeb_stream * stream, void * user_ptr, void const * input_buffer, void * output_buffer, long nframes) { // gtest does not support using ASSERT_EQ and friends in a // function that returns a value. int iteration = *static_cast<int*>(user_ptr); if (iteration == 1) { [nframes, input_buffer]() { ASSERT_EQ(nframes, 32); const float* input = static_cast<const float*>(input_buffer); for (int i = 0; i < 64; ++i) { ASSERT_FLOAT_EQ(input[i], 0.01 * i); } }(); } else if (iteration == 2) { [nframes, input_buffer]() { ASSERT_EQ(nframes, 32); const float* input = static_cast<const float*>(input_buffer); for (int i = 0; i < 32; ++i) { // First part contains the reamaining input samples from previous // iteration (since they were more). ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 64)); // next part contains the new buffer ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i); } }(); } else if (iteration == 3) { [nframes, input_buffer]() { ASSERT_EQ(nframes, 32); const float* input = static_cast<const float*>(input_buffer); for (int i = 0; i < 32; ++i) { // First part (16 frames) contains the reamaining input samples // from previous iteration (since they were more). ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 32)); } for (int i = 0; i < 16; ++i) { // next part (8 frames) contains the new input buffer. ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i); // last part (8 frames) contains silence. ASSERT_FLOAT_EQ(input[i + 32 + 16], 0.0); } }(); } return nframes; } TEST(cubeb, passthrough_resampler_fill_input_left) { const uint32_t channels = 2; const uint32_t sample_rate = 44100; int iteration = 0; passthrough_resampler<float> resampler = passthrough_resampler<float>(nullptr, passthrough_resampler_fill_input_left, &iteration, channels, sample_rate); long input_frame_count = 48; // 32 + 16 const long output_frame_count = 32; float input[96] = {}; float output[64] = {}; for (uint32_t i = 0; i < input_frame_count * channels; ++i) { input[i] = 0.01 * i; } // 1st iteration, add the extra input. iteration = 1; long got = resampler.fill(input, &input_frame_count, output, output_frame_count); ASSERT_EQ(got, output_frame_count); // Input frames used must be equal to output frames. ASSERT_EQ(input_frame_count, output_frame_count); // 2st iteration, use the extra input from previous iteration, // 16 frames are remaining in the input buffer. input_frame_count = 32; // we need 16 input frames but we get more; iteration = 2; got = resampler.fill(input, &input_frame_count, output, output_frame_count); ASSERT_EQ(got, output_frame_count); // Input frames used must be equal to output frames. ASSERT_EQ(input_frame_count, output_frame_count); // 3rd iteration, use the extra input from previous iteration. // 16 frames are remaining in the input buffer. input_frame_count = 16 - 8; // We need 16 more input frames but we only get 8. iteration = 3; got = resampler.fill(input, &input_frame_count, output, output_frame_count); ASSERT_EQ(got, output_frame_count); // Input frames used are less than the output frames due to glitch. ASSERT_EQ(input_frame_count, output_frame_count - 8); } TEST(cubeb, individual_methods) { const uint32_t channels = 2; const uint32_t sample_rate = 44100; const uint32_t frames = 256; delay_line<float> dl(10, channels, sample_rate); uint32_t frames_needed1 = dl.input_needed_for_output(0); ASSERT_EQ(frames_needed1, 0u); cubeb_resampler_speex_one_way<float> one_way(channels, sample_rate, sample_rate, CUBEB_RESAMPLER_QUALITY_DEFAULT); float buffer[channels * frames] = {0.0}; // Add all frames in the resampler's internal buffer. one_way.input(buffer, frames); // Ask for less than the existing frames, this would create a uint overlflow without the fix. uint32_t frames_needed2 = one_way.input_needed_for_output(0); ASSERT_EQ(frames_needed2, 0u); }