////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Benedek Thaler 2015-2016 // (C) Copyright Ion Gaztanaga 2019-2020. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_DEVECTOR_HPP #define BOOST_CONTAINER_DEVECTOR_HPP #include #include //#include #include // memcpy #include #include #include #include //new_allocator #include //allocator_traits #include //equal() #include #include #include #include #include #include #include #include #include // move #if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #include #endif #include #include #include #include #include #include #include #include #include //std #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) #include //for std::initializer_list #endif namespace boost { namespace container { #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) struct growth_factor_60; template struct get_devector_opt { typedef devector_opt< typename default_if_void::type , typename default_if_void::type > type; }; template struct get_devector_opt { typedef vector_opt type; }; #endif //#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) struct reserve_only_tag_t {}; //struct unsafe_uninitialized_tag_t {}; /** * A vector-like sequence container providing front and back operations * (e.g: `push_front`/`pop_front`/`push_back`/`pop_back`) with amortized constant complexity * and unsafe methods geared towards additional performance. * * Models the [SequenceContainer], [ReversibleContainer], and [AllocatorAwareContainer] concepts. * * **Requires**: * - `T` shall be [MoveInsertable] into the devector. * - `T` shall be [Erasable] from any `devector`. * - `GrowthFactor`, and `Allocator` must model the concepts with the same names or be void. * * **Definition**: `T` is `NothrowConstructible` if it's either nothrow move constructible or * nothrow copy constructible. * * **Definition**: `T` is `NothrowAssignable` if it's either nothrow move assignable or * nothrow copy assignable. * * **Exceptions**: The exception specifications assume `T` is nothrow [Destructible]. * * Most methods providing the strong exception guarantee assume `T` either has a move * constructor marked noexcept or is [CopyInsertable] into the devector. If it isn't true, * and the move constructor throws, the guarantee is waived and the effects are unspecified. * * In addition to the exceptions specified in the **Throws** clause, the following operations * of `T` can throw when any of the specified concept is required: * - [DefaultInsertable][]: Default constructor * - [MoveInsertable][]: Move constructor * - [CopyInsertable][]: Copy constructor * - [DefaultConstructible][]: Default constructor * - [EmplaceConstructible][]: Constructor selected by the given arguments * - [MoveAssignable][]: Move assignment operator * - [CopyAssignable][]: Copy assignment operator * * Furthermore, not `noexcept` methods throws whatever the allocator throws * if memory allocation fails. Such methods also throw `length_error` if the capacity * exceeds `max_size()`. * * **Remark**: If a method invalidates some iterators, it also invalidates references * and pointers to the elements pointed by the invalidated iterators. * * **Policies**: * * @ref devector_growth_policy models the `GrowthFactor` concept. * * [SequenceContainer]: http://en.cppreference.com/w/cpp/concept/SequenceContainer * [ReversibleContainer]: http://en.cppreference.com/w/cpp/concept/ReversibleContainer * [AllocatorAwareContainer]: http://en.cppreference.com/w/cpp/concept/AllocatorAwareContainer * [DefaultInsertable]: http://en.cppreference.com/w/cpp/concept/DefaultInsertable * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * [Erasable]: http://en.cppreference.com/w/cpp/concept/Erasable * [DefaultConstructible]: http://en.cppreference.com/w/cpp/concept/DefaultConstructible * [Destructible]: http://en.cppreference.com/w/cpp/concept/Destructible * [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible * [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable * [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable */ template < typename T, class A BOOST_CONTAINER_DOCONLY(= void), class Options BOOST_CONTAINER_DOCONLY(= void)> class devector { #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED typedef boost::container::allocator_traits ::type> allocator_traits_type; typedef typename allocator_traits_type::size_type alloc_size_type; typedef typename get_devector_opt::type options_type; typedef typename options_type::growth_factor_type growth_factor_type; typedef typename options_type::stored_size_type stored_size_type; #endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED public: // Standard Interface Types: typedef T value_type; typedef BOOST_CONTAINER_IMPDEF (typename real_allocator::type) allocator_type; typedef allocator_type stored_allocator_type; typedef typename allocator_traits::pointer pointer; typedef typename allocator_traits::const_pointer const_pointer; typedef typename allocator_traits::reference reference; typedef typename allocator_traits::const_reference const_reference; typedef typename allocator_traits::size_type size_type; typedef typename allocator_traits::difference_type difference_type; typedef pointer iterator; typedef const_pointer const_iterator; typedef BOOST_CONTAINER_IMPDEF (boost::container::reverse_iterator) reverse_iterator; typedef BOOST_CONTAINER_IMPDEF (boost::container::reverse_iterator) const_reverse_iterator; #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED private: BOOST_COPYABLE_AND_MOVABLE(devector) // Guard to deallocate buffer on exception typedef typename detail::allocation_guard allocation_guard; // Random access pseudo iterator always yielding to the same result typedef constant_iterator cvalue_iterator; #endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED // Standard Interface public: // construct/copy/destroy /** * **Effects**: Constructs an empty devector. * * **Postcondition**: `empty() && front_free_capacity() == 0 * && back_free_capacity() == 0`. * * **Complexity**: Constant. */ devector() BOOST_NOEXCEPT : m_() {} /** * **Effects**: Constructs an empty devector, using the specified allocator. * * **Postcondition**: `empty() && front_free_capacity() == 0 * && back_free_capacity() == 0`. * * **Complexity**: Constant. */ explicit devector(const allocator_type& allocator) BOOST_NOEXCEPT : m_(allocator) {} /** * **Effects**: Constructs an empty devector, using the specified allocator * and reserves `n` slots as if `reserve(n)` was called. * * **Postcondition**: `empty() && front_free_capacity() == 0 * && back_free_capacity() >= n`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Constant. */ devector(size_type n, reserve_only_tag_t, const allocator_type& allocator = allocator_type()) : m_(allocator, 0u, 0u, n) {} /** * **Effects**: Constructs an empty devector, using the specified allocator * and reserves `front_cap + back_cap` slots as if `reserve_front(front_cap)` and * `reserve_back(back_cap)` was called. * * **Postcondition**: `empty() && front_free_capacity() == front_cap * && back_free_capacity() >= back_cap`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Constant. */ devector(size_type front_cap, size_type back_cap, reserve_only_tag_t, const allocator_type& allocator = allocator_type()) : m_( allocator, front_cap, back_cap, front_cap + back_cap) {} /** * [DefaultInsertable]: http://en.cppreference.com/w/cpp/concept/DefaultInsertable * * **Effects**: Constructs a devector with `n` default-inserted elements using the specified allocator. * * **Requires**: `T` shall be [DefaultInsertable] into `*this`. * * **Postcondition**: `size() == n && front_free_capacity() == 0`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in `n`. */ explicit devector(size_type n, const allocator_type& allocator = allocator_type()) : m_(allocator, 0u, n, n) { // Cannot use construct_from_range/constant_iterator and copy_range, // because we are not allowed to default construct T allocation_guard buffer_guard(m_.buffer, m_.capacity, get_allocator_ref()); detail::construction_guard copy_guard(m_.buffer, get_allocator_ref()); for (size_type i = 0; i < n; ++i) { this->alloc_construct(m_.buffer + i); copy_guard.extend(); } copy_guard.release(); buffer_guard.release(); BOOST_ASSERT(invariants_ok()); } /** * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * * **Effects**: Constructs a devector with `n` copies of `value`, using the specified allocator. * * **Requires**: `T` shall be [CopyInsertable] into `*this`. * * **Postcondition**: `size() == n && front_free_capacity() == 0`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in `n`. */ devector(size_type n, const T& value, const allocator_type& allocator = allocator_type()) : m_(allocator, n ? allocate(n): pointer(), 0u, n, n) { construct_from_range(cvalue_iterator(value, n), cvalue_iterator()); BOOST_ASSERT(invariants_ok()); } /** * **Effects**: Constructs a devector equal to the range `[first,last)`, using the specified allocator. * * **Requires**: `T` shall be [EmplaceConstructible] into `*this` from `*first`. If the specified * iterator does not meet the forward iterator requirements, `T` shall also be [MoveInsertable] * into `*this`. * * **Postcondition**: `size() == boost::container::iterator_distance(first, last) * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Makes only `N` calls to the copy constructor of `T` (where `N` is the distance between `first` * and `last`), at most one allocation and no reallocations if iterators first and last are of forward, * bidirectional, or random access categories. It makes `O(N)` calls to the copy constructor of `T` * and `O(log(N)) reallocations if they are just input iterators. * * **Remarks**: Each iterator in the range `[first,last)` shall be dereferenced exactly once, * unless an exception is thrown. * * [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable */ template devector(InputIterator first, InputIterator last, const allocator_type& allocator = allocator_type() //Input iterators BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or < void BOOST_MOVE_I dtl::is_convertible BOOST_MOVE_I dtl::is_not_input_iterator >::type * = 0) ) : m_(allocator, pointer(), 0u, 0u, 0u) { while (first != last) { this->emplace_back(*first++); } BOOST_ASSERT(invariants_ok()); } #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED template devector(ForwardIterator first, ForwardIterator last, const allocator_type& allocator = allocator_type() //Other iterators BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or < void BOOST_MOVE_I dtl::is_convertible BOOST_MOVE_I dtl::is_input_iterator >::type * = 0) ) : m_(allocator) { const size_type n = boost::container::iterator_udistance(first, last); m_.buffer = n ? allocate(n) : pointer(); m_.front_idx = 0u; //this->allocate(n) will take care of overflows m_.set_back_idx(n); m_.set_capacity(n); //construct_from_range releases memory on failure this->construct_from_range(first, last); BOOST_ASSERT(invariants_ok()); } #endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED /** * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * * **Effects**: Copy constructs a devector. * * **Requires**: `T` shall be [CopyInsertable] into `*this`. * * **Postcondition**: `this->size() == x.size() && front_free_capacity() == 0`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in the size of `x`. */ devector(const devector& x) : m_( allocator_traits_type::select_on_container_copy_construction(x.get_allocator_ref())) { const size_type n = x.size(); m_.buffer = n ? allocate(n) : pointer(); m_.front_idx = 0u; //this->allocate(n) will take care of overflows m_.set_back_idx(n); m_.set_capacity(n); this->construct_from_range(x.begin(), x.end()); BOOST_ASSERT(invariants_ok()); } /** * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * * **Effects**: Copy constructs a devector, using the specified allocator. * * **Requires**: `T` shall be [CopyInsertable] into `*this`. * * **Postcondition**: `this->size() == x.size() && front_free_capacity() == 0`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in the size of `x`. */ devector(const devector& x, const allocator_type& allocator) : m_(allocator, pointer(), 0u, 0u, 0u) { const size_type n = x.size(); m_.buffer = n ? this->allocate(n) : pointer(); m_.front_idx = 0u; //this->allocate(n) will take care of overflows m_.set_back_idx(n); m_.set_capacity(n); this->construct_from_range(x.begin(), x.end()); BOOST_ASSERT(invariants_ok()); } /** * **Effects**: Moves `rhs`'s resources to `*this`. * * **Throws**: Nothing. * * **Postcondition**: `rhs` is left in an unspecified but valid state. * * **Exceptions**: Strong exception guarantee if not `noexcept`. * * **Complexity**: Constant. */ devector(BOOST_RV_REF(devector) rhs) BOOST_NOEXCEPT_OR_NOTHROW : m_(::boost::move(rhs.get_allocator_ref()), rhs.m_.buffer, rhs.m_.front_idx, rhs.m_.back_idx, rhs.capacity()) { // buffer is already acquired, reset rhs rhs.m_.capacity = 0u; rhs.m_.buffer = pointer(); rhs.m_.front_idx = 0; rhs.m_.back_idx = 0; BOOST_ASSERT( invariants_ok()); BOOST_ASSERT(rhs.invariants_ok()); } /** * **Effects**: Moves `rhs`'s resources to `*this`, using the specified allocator. * * **Throws**: If allocation or T's move constructor throws. * * **Postcondition**: `rhs` is left in an unspecified but valid state. * * **Exceptions**: Strong exception guarantee if not `noexcept`. * * **Complexity**: Linear if allocator != rhs.get_allocator(), otherwise constant. */ devector(BOOST_RV_REF(devector) rhs, const allocator_type& allocator) : m_(allocator, rhs.m_.buffer, rhs.m_.front_idx, rhs.m_.back_idx, rhs.capacity()) { // TODO should move elems-by-elems if the two allocators differ // buffer is already acquired, reset rhs rhs.m_.capacity = 0u; rhs.m_.buffer = pointer(); rhs.m_.front_idx = 0; rhs.m_.back_idx = 0; BOOST_ASSERT( invariants_ok()); BOOST_ASSERT(rhs.invariants_ok()); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) /** * **Equivalent to**: `devector(il.begin(), il.end())` or `devector(il.begin(), il.end(), allocator)`. */ devector(const std::initializer_list& il, const allocator_type& allocator = allocator_type()) : m_(allocator) { const size_type n = il.size(); m_.buffer = n ? allocate(n) : pointer(); m_.front_idx = 0u; //this->allocate(n) will take care of overflows m_.set_back_idx(n); m_.set_capacity(n); //construct_from_range releases memory on failure this->construct_from_range(il.begin(), il.end()); BOOST_ASSERT(invariants_ok()); } #endif /** * **Effects**: Destroys the devector. All stored values are destroyed and * used memory, if any, deallocated. * * **Complexity**: Linear in the size of `*this`. */ ~devector() BOOST_NOEXCEPT { destroy_elements(m_.buffer + m_.front_idx, m_.buffer + m_.back_idx); deallocate_buffer(); } /** * **Effects**: Copies elements of `x` to `*this`. Previously * held elements get copy assigned to or destroyed. * * **Requires**: `T` shall be [CopyInsertable] into `*this`. * * **Postcondition**: `this->size() == x.size()`, the elements of * `*this` are copies of elements in `x` in the same order. * * **Returns**: `*this`. * * **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible` * and the allocator is allowed to be propagated * ([propagate_on_container_copy_assignment] is true), * Basic exception guarantee otherwise. * * **Complexity**: Linear in the size of `x` and `*this`. * * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * [propagate_on_container_copy_assignment]: http://en.cppreference.com/w/cpp/memory/allocator_traits */ BOOST_CONTAINER_FORCEINLINE devector& operator=(BOOST_COPY_ASSIGN_REF(devector) rhs) { const devector &x = rhs; if (this == &x) { return *this; } // skip self BOOST_IF_CONSTEXPR(allocator_traits_type::propagate_on_container_copy_assignment::value) { allocator_type &this_alloc = this->get_allocator_ref(); const allocator_type &other_alloc = x.get_allocator_ref(); if (this_alloc != other_alloc) { // new allocator cannot free existing storage this->clear(); this->deallocate_buffer(); m_.capacity = 0u; m_.buffer = pointer(); } this_alloc = other_alloc; } size_type n = x.size(); if (capacity() >= n) { this->overwrite_buffer(x.begin(), x.end()); } else { this->allocate_and_copy_range(x.begin(), x.end()); } BOOST_ASSERT(invariants_ok()); return *this; } /** * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * * **Effects**: Moves elements of `x` to `*this`. Previously * held elements get move/copy assigned to or destroyed. * * **Requires**: `T` shall be [MoveInsertable] into `*this`. * * **Postcondition**: `x` is left in an unspecified but valid state. * * **Returns**: `*this`. * * **Exceptions**: Basic exception guarantee if not `noexcept`. * * **Complexity**: Constant if allocator_traits_type:: * propagate_on_container_move_assignment is true or * this->get>allocator() == x.get_allocator(). Linear otherwise. */ devector& operator=(BOOST_RV_REF(devector) x) BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value || allocator_traits_type::is_always_equal::value) { BOOST_CONSTEXPR_OR_CONST bool copy_alloc = allocator_traits_type::propagate_on_container_move_assignment::value; BOOST_IF_CONSTEXPR (copy_alloc || get_allocator_ref() == x.get_allocator_ref()) { this->clear(); this->deallocate_buffer(); if (copy_alloc) { this->get_allocator_ref() = boost::move(x.get_allocator_ref()); } m_.capacity = x.m_.capacity; m_.buffer = x.m_.buffer; m_.front_idx = x.m_.front_idx; m_.back_idx = x.m_.back_idx; // leave x in valid state x.m_.capacity = 0u; x.m_.buffer = pointer(); x.m_.back_idx = x.m_.front_idx = 0; } else { // if the allocator shouldn't be copied and they do not compare equal // we can't steal memory. move_iterator xbegin = boost::make_move_iterator(x.begin()); move_iterator xend = boost::make_move_iterator(x.end()); if (copy_alloc) { get_allocator_ref() = boost::move(x.get_allocator_ref()); } if (capacity() >= x.size()) { overwrite_buffer(xbegin, xend); } else { allocate_and_copy_range(xbegin, xend); } } BOOST_ASSERT(invariants_ok()); return *this; } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) /** * **Effects**: Copies elements of `il` to `*this`. Previously * held elements get copy assigned to or destroyed. * * **Requires**: `T` shall be [CopyInsertable] into `*this` and [CopyAssignable]. * * **Postcondition**: `this->size() == il.size()`, the elements of * `*this` are copies of elements in `il` in the same order. * * **Exceptions**: Strong exception guarantee if `T` is nothrow copy assignable * from `T` and `NothrowConstructible`, Basic exception guarantee otherwise. * * **Returns**: `*this`. * * **Complexity**: Linear in the size of `il` and `*this`. * * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable */ devector& operator=(std::initializer_list il) { assign(il.begin(), il.end()); return *this; } #endif /** * **Effects**: Replaces elements of `*this` with a copy of `[first,last)`. * Previously held elements get copy assigned to or destroyed. * * **Requires**: `T` shall be [EmplaceConstructible] from `*first`. If the specified iterator * does not meet the forward iterator requirements, `T` shall be also [MoveInsertable] into `*this`. * * **Precondition**: `first` and `last` are not iterators into `*this`. * * **Postcondition**: `size() == N`, where `N` is the distance between `first` and `last`. * * **Exceptions**: Strong exception guarantee if `T` is nothrow copy assignable * from `*first` and `NothrowConstructible`, Basic exception guarantee otherwise. * * **Complexity**: Linear in the distance between `first` and `last`. * Makes a single reallocation at most if the iterators `first` and `last` * are of forward, bidirectional, or random access categories. It makes * `O(log(N))` reallocations if they are just input iterators. * * **Remarks**: Each iterator in the range `[first,last)` shall be dereferenced exactly once, * unless an exception is thrown. * * [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable */ template void assign(InputIterator first, InputIterator last //Input iterators BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or < void BOOST_MOVE_I dtl::is_convertible BOOST_MOVE_I dtl::is_not_input_iterator >::type * = 0) ) { first = overwrite_buffer_impl(first, last, dtl::false_()); while (first != last) { this->emplace_back(*first++); } } #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED template void assign(ForwardIterator first, ForwardIterator last //Other iterators BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or < void BOOST_MOVE_I dtl::is_convertible BOOST_MOVE_I dtl::is_input_iterator >::type * = 0) ) { const size_type n = boost::container::iterator_udistance(first, last); if (capacity() >= n) { overwrite_buffer(first, last); } else { allocate_and_copy_range(first, last); } BOOST_ASSERT(invariants_ok()); } #endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED /** * **Effects**: Replaces elements of `*this` with `n` copies of `u`. * Previously held elements get copy assigned to or destroyed. * * **Requires**: `T` shall be [CopyInsertable] into `*this` and * [CopyAssignable]. * * **Precondition**: `u` is not a reference into `*this`. * * **Postcondition**: `size() == n` and the elements of * `*this` are copies of `u`. * * **Exceptions**: Strong exception guarantee if `T` is nothrow copy assignable * from `u` and `NothrowConstructible`, Basic exception guarantee otherwise. * * **Complexity**: Linear in `n` and the size of `*this`. * * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable */ void assign(size_type n, const T& u) { cvalue_iterator first(u, n); cvalue_iterator last; assign(first, last); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) /** **Equivalent to**: `assign(il.begin(), il.end())`. */ void assign(std::initializer_list il) { assign(il.begin(), il.end()); } #endif /** * **Returns**: A copy of the allocator associated with the container. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE allocator_type get_allocator() const BOOST_NOEXCEPT { return static_cast(m_); } BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const allocator_type &get_stored_allocator() const BOOST_NOEXCEPT { return static_cast(m_); } BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE allocator_type &get_stored_allocator() BOOST_NOEXCEPT { return static_cast(m_); } // iterators /** * **Returns**: A iterator pointing to the first element in the devector, * or the past the end iterator if the devector is empty. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE iterator begin() BOOST_NOEXCEPT { return m_.buffer + m_.front_idx; } /** * **Returns**: A constant iterator pointing to the first element in the devector, * or the past the end iterator if the devector is empty. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_iterator begin() const BOOST_NOEXCEPT { return m_.buffer + m_.front_idx; } /** * **Returns**: An iterator pointing past the last element of the container. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE iterator end() BOOST_NOEXCEPT { return m_.buffer + m_.back_idx; } /** * **Returns**: A constant iterator pointing past the last element of the container. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_iterator end() const BOOST_NOEXCEPT { return m_.buffer + m_.back_idx; } /** * **Returns**: A reverse iterator pointing to the first element in the reversed devector, * or the reverse past the end iterator if the devector is empty. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE reverse_iterator rbegin() BOOST_NOEXCEPT { return reverse_iterator(m_.buffer + m_.back_idx); } /** * **Returns**: A constant reverse iterator * pointing to the first element in the reversed devector, * or the reverse past the end iterator if the devector is empty. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rbegin() const BOOST_NOEXCEPT { return const_reverse_iterator(m_.buffer + m_.back_idx); } /** * **Returns**: A reverse iterator pointing past the last element in the * reversed container, or to the beginning of the reversed container if it's empty. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE reverse_iterator rend() BOOST_NOEXCEPT { return reverse_iterator(m_.buffer + m_.front_idx); } /** * **Returns**: A constant reverse iterator pointing past the last element in the * reversed container, or to the beginning of the reversed container if it's empty. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rend() const BOOST_NOEXCEPT { return const_reverse_iterator(m_.buffer + m_.front_idx); } /** * **Returns**: A constant iterator pointing to the first element in the devector, * or the past the end iterator if the devector is empty. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_iterator cbegin() const BOOST_NOEXCEPT { return m_.buffer + m_.front_idx; } /** * **Returns**: A constant iterator pointing past the last element of the container. * * **Complexity**: Constant. */ const_iterator cend() const BOOST_NOEXCEPT { return m_.buffer + m_.back_idx; } /** * **Returns**: A constant reverse iterator * pointing to the first element in the reversed devector, * or the reverse past the end iterator if the devector is empty. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crbegin() const BOOST_NOEXCEPT { return const_reverse_iterator(m_.buffer + m_.back_idx); } /** * **Returns**: A constant reverse iterator pointing past the last element in the * reversed container, or to the beginning of the reversed container if it's empty. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crend() const BOOST_NOEXCEPT { return const_reverse_iterator(m_.buffer + m_.front_idx); } // capacity /** * **Returns**: True, if `size() == 0`, false otherwise. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE bool empty() const BOOST_NOEXCEPT { return m_.front_idx == m_.back_idx; } /** * **Returns**: The number of elements the devector contains. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE size_type size() const BOOST_NOEXCEPT { return size_type(m_.back_idx - m_.front_idx); } /** * **Returns**: The maximum number of elements the devector could possibly hold. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE size_type max_size() const BOOST_NOEXCEPT { size_type alloc_max = allocator_traits_type::max_size(get_allocator_ref()); size_type size_type_max = (size_type)-1; return (alloc_max <= size_type_max) ? size_type(alloc_max) : size_type_max; } /** * **Returns**: The total number of elements that the devector can hold without requiring reallocation. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT { return m_.capacity; } /** * **Returns**: The total number of elements that can be pushed to the front of the * devector without requiring reallocation. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE size_type front_free_capacity() const BOOST_NOEXCEPT { return m_.front_idx; } /** * **Returns**: The total number of elements that can be pushed to the back of the * devector without requiring reallocation. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE size_type back_free_capacity() const BOOST_NOEXCEPT { return size_type(m_.capacity - m_.back_idx); } /** **Equivalent to**: `resize_back(sz)` */ void resize(size_type sz) { resize_back(sz); } /** **Equivalent to**: `resize_back(sz, c)` */ void resize(size_type sz, const T& c) { resize_back(sz, c); } /** * **Effects**: If `sz` is greater than the size of `*this`, * additional value-initialized elements are inserted * to the front. Invalidates iterators if reallocation is needed. * If `sz` is smaller than than the size of `*this`, * elements are popped from the front. * * **Requires**: T shall be [MoveInsertable] into *this and [DefaultConstructible]. * * **Postcondition**: `sz == size()`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in the size of `*this` and `sz`. * * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * [DefaultConstructible]: http://en.cppreference.com/w/cpp/concept/DefaultConstructible */ void resize_front(size_type sz) { resize_front_impl(sz); BOOST_ASSERT(invariants_ok()); } /** * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * * **Effects**: If `sz` is greater than the size of `*this`, * copies of `c` are inserted to the front. * Invalidates iterators if reallocation is needed. * If `sz` is smaller than than the size of `*this`, * elements are popped from the front. * * **Postcondition**: `sz == size()`. * * **Requires**: `T` shall be [CopyInsertable] into `*this`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in the size of `*this` and `sz`. */ void resize_front(size_type sz, const T& c) { resize_front_impl(sz, c); BOOST_ASSERT(invariants_ok()); } /** * **Effects**: If `sz` is greater than the size of `*this`, * additional value-initialized elements are inserted * to the back. Invalidates iterators if reallocation is needed. * If `sz` is smaller than than the size of `*this`, * elements are popped from the back. * * **Requires**: T shall be [MoveInsertable] into *this and [DefaultConstructible]. * * **Postcondition**: `sz == size()`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in the size of `*this` and `sz`. * * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * [DefaultConstructible]: http://en.cppreference.com/w/cpp/concept/DefaultConstructible */ void resize_back(size_type sz) { resize_back_impl(sz); BOOST_ASSERT(invariants_ok()); } /** * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * * **Effects**: If `sz` is greater than the size of `*this`, * copies of `c` are inserted to the back. * If `sz` is smaller than than the size of `*this`, * elements are popped from the back. * * **Postcondition**: `sz == size()`. * * **Requires**: `T` shall be [CopyInsertable] into `*this`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in the size of `*this` and `sz`. */ void resize_back(size_type sz, const T& c) { resize_back_impl(sz, c); BOOST_ASSERT(invariants_ok()); } // unsafe uninitialized resize methods /** * **Unsafe method**, use with care. * * **Effects**: Changes the size of the devector without properly * initializing the extra or destroying the superfluous elements. * If `n < size()`, elements are removed from the front without * getting destroyed; if `n > size()`, uninitialized elements are added * before the first element at the front. * Invalidates iterators if reallocation is needed. * * **Postcondition**: `size() == n`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in `size()` if `capacity() < n`, constant otherwise. * * **Remarks**: The devector does not keep track of initialization of the elements: * Elements without a trivial destructor must be manually destroyed before shrinking, * elements without a trivial constructor must be initialized after growing. */ /* void unsafe_uninitialized_resize_front(size_type n) { if (n > size()) { unsafe_uninitialized_grow_front(n); } else { unsafe_uninitialized_shrink_front(n); } } */ /** * **Unsafe method**, use with care. * * **Effects**: Changes the size of the devector without properly * initializing the extra or destroying the superfluous elements. * If `n < size()`, elements are removed from the back without * getting destroyed; if `n > size()`, uninitialized elements are added * after the last element at the back. * Invalidates iterators if reallocation is needed. * * **Postcondition**: `size() == n`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in `size()` if `capacity() < n`, constant otherwise. * * **Remarks**: The devector does not keep track of initialization of the elements: * Elements without a trivial destructor must be manually destroyed before shrinking, * elements without a trivial constructor must be initialized after growing. */ /* void unsafe_uninitialized_resize_back(size_type n) { if (n > size()) { unsafe_uninitialized_grow_back(n); } else { unsafe_uninitialized_shrink_back(n); } } */ // reserve promise: // after reserve_[front,back](n), n - size() push_[front,back] will not allocate /** **Equivalent to**: `reserve_back(new_capacity)` */ void reserve(size_type new_capacity) { reserve_back(new_capacity); } /** * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * * **Effects**: Ensures that `n` elements can be pushed to the front * without requiring reallocation, where `n` is `new_capacity - size()`, * if `n` is positive. Otherwise, there are no effects. * Invalidates iterators if reallocation is needed. * * **Requires**: `T` shall be [MoveInsertable] into `*this`. * * **Complexity**: Linear in the size of *this. * * **Exceptions**: Strong exception guarantee. * * **Throws**: `length_error` if `new_capacity > max_size()`. */ void reserve_front(size_type new_capacity) { if (front_capacity() >= new_capacity) { return; } reallocate_at(new_capacity + back_free_capacity(), new_capacity - size()); BOOST_ASSERT(invariants_ok()); } /** * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * * **Effects**: Ensures that `n` elements can be pushed to the back * without requiring reallocation, where `n` is `new_capacity - size()`, * if `n` is positive. Otherwise, there are no effects. * Invalidates iterators if reallocation is needed. * * **Requires**: `T` shall be [MoveInsertable] into `*this`. * * **Complexity**: Linear in the size of *this. * * **Exceptions**: Strong exception guarantee. * * **Throws**: length_error if `new_capacity > max_size()`. */ void reserve_back(size_type new_capacity) { if (back_capacity() >= new_capacity) { return; } reallocate_at(new_capacity + front_free_capacity(), m_.front_idx); BOOST_ASSERT(invariants_ok()); } /** * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * * **Effects**: Reduces `capacity()` to `size()`. Invalidates iterators. * * **Requires**: `T` shall be [MoveInsertable] into `*this`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Linear in the size of *this. */ void shrink_to_fit() { if(this->front_capacity() || this->back_capacity()) this->reallocate_at(size(), 0); } // element access: /** * **Returns**: A reference to the `n`th element in the devector. * * **Precondition**: `n < size()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE reference operator[](size_type n) BOOST_NOEXCEPT { BOOST_ASSERT(n < size()); return *(begin() + n); } /** * **Returns**: A constant reference to the `n`th element in the devector. * * **Precondition**: `n < size()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_reference operator[](size_type n) const BOOST_NOEXCEPT { BOOST_ASSERT(n < size()); return *(begin() + n); } /** * **Returns**: A reference to the `n`th element in the devector. * * **Throws**: `out_of_range`, if `n >= size()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE reference at(size_type n) { if (size() <= n) throw_out_of_range("devector::at out of range"); return (*this)[n]; } /** * **Returns**: A constant reference to the `n`th element in the devector. * * **Throws**: `out_of_range`, if `n >= size()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_reference at(size_type n) const { if (size() <= n) throw_out_of_range("devector::at out of range"); return (*this)[n]; } /** * **Returns**: A reference to the first element in the devector. * * **Precondition**: `!empty()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE reference front() BOOST_NOEXCEPT { BOOST_ASSERT(!empty()); return *(m_.buffer + m_.front_idx); } /** * **Returns**: A constant reference to the first element in the devector. * * **Precondition**: `!empty()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_reference front() const BOOST_NOEXCEPT { BOOST_ASSERT(!empty()); return *(m_.buffer + m_.front_idx); } /** * **Returns**: A reference to the last element in the devector. * * **Precondition**: `!empty()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE reference back() BOOST_NOEXCEPT { BOOST_ASSERT(!empty()); return *(m_.buffer + m_.back_idx -1); } /** * **Returns**: A constant reference to the last element in the devector. * * **Precondition**: `!empty()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const_reference back() const BOOST_NOEXCEPT { BOOST_ASSERT(!empty()); return *(m_.buffer + m_.back_idx -1); } /** * **Returns**: A pointer to the underlying array serving as element storage. * The range `[data(); data() + size())` is always valid. For a non-empty devector, * `data() == &front()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE T* data() BOOST_NOEXCEPT { return boost::movelib::to_raw_pointer(m_.buffer) + m_.front_idx; } /** * **Returns**: A constant pointer to the underlying array serving as element storage. * The range `[data(); data() + size())` is always valid. For a non-empty devector, * `data() == &front()`. * * **Complexity**: Constant. */ BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE const T* data() const BOOST_NOEXCEPT { return boost::movelib::to_raw_pointer(m_.buffer) + m_.front_idx; } // modifiers: /** * **Effects**: Pushes a new element to the front of the devector. * The element is constructed in-place, using the perfect forwarded `args` * as constructor arguments. Invalidates iterators if reallocation is needed. * (`front_free_capacity() == 0`) * * **Requires**: `T` shall be [EmplaceConstructible] from `args` and [MoveInsertable] into `*this`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Amortized constant in the size of `*this`. * (Constant, if `front_free_capacity() > 0`) * * [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable */ #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template void emplace_front(Args&&... args) { if (front_free_capacity()) // fast path { this->alloc_construct(m_.buffer + m_.front_idx - 1, boost::forward(args)...); --m_.front_idx; } else { this->emplace_reallocating_slow_path(true, 0, boost::forward(args)...); } BOOST_ASSERT(invariants_ok()); } #else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) #define BOOST_CONTAINER_DEVECTOR_EMPLACE_FRONT(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ BOOST_CONTAINER_FORCEINLINE void emplace_front(BOOST_MOVE_UREF##N)\ {\ if (front_free_capacity())\ {\ this->alloc_construct(m_.buffer + m_.front_idx - 1 BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ --m_.front_idx;\ }\ else\ {\ this->emplace_reallocating_slow_path(true, 0 BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ }\ \ BOOST_ASSERT(invariants_ok());\ }\ // BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_EMPLACE_FRONT) #undef BOOST_CONTAINER_DEVECTOR_EMPLACE_FRONT #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) /** * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * * **Effects**: Pushes the copy of `x` to the front of the devector. * Invalidates iterators if reallocation is needed. * (`front_free_capacity() == 0`) * * **Requires**: `T` shall be [CopyInsertable] into `*this`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Amortized constant in the size of `*this`. * (Constant, if `front_free_capacity() > 0`) */ void push_front(const T& x); /** * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * * **Effects**: Move constructs a new element at the front of the devector using `x`. * Invalidates iterators if reallocation is needed. * (`front_free_capacity() == 0`) * * **Requires**: `T` shall be [MoveInsertable] into `*this`. * * **Exceptions**: Strong exception guarantee, not regarding the state of `x`. * * **Complexity**: Amortized constant in the size of `*this`. * (Constant, if `front_free_capacity() > 0`) */ void push_front(T&& x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_front, T, void, priv_push_front) #endif /** * **Effects**: Removes the first element of `*this`. * * **Precondition**: `!empty()`. * * **Postcondition**: `front_free_capacity()` is incremented by 1. * * **Complexity**: Constant. */ void pop_front() BOOST_NOEXCEPT { BOOST_ASSERT(! empty()); allocator_traits_type::destroy(get_allocator_ref(), m_.buffer + m_.front_idx); ++m_.front_idx; BOOST_ASSERT(invariants_ok()); } /** * **Effects**: Pushes a new element to the back of the devector. * The element is constructed in-place, using the perfect forwarded `args` * as constructor arguments. Invalidates iterators if reallocation is needed. * (`back_free_capacity() == 0`) * * **Requires**: `T` shall be [EmplaceConstructible] from `args` and [MoveInsertable] into `*this`, * and [MoveAssignable]. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Amortized constant in the size of `*this`. * (Constant, if `back_free_capacity() > 0`) * * [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable */ #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template BOOST_CONTAINER_FORCEINLINE void emplace_back(Args&&... args) { if (this->back_free_capacity()){ this->alloc_construct(m_.buffer + m_.back_idx, boost::forward(args)...); ++m_.back_idx; } else { this->emplace_reallocating_slow_path(false, size(), boost::forward(args)...); } BOOST_ASSERT(invariants_ok()); } #else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) #define BOOST_CONTAINER_DEVECTOR_EMPLACE_BACK(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ BOOST_CONTAINER_FORCEINLINE void emplace_back(BOOST_MOVE_UREF##N)\ {\ if (this->back_free_capacity()){\ this->alloc_construct(m_.buffer + m_.back_idx BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ ++m_.back_idx;\ }\ else {\ this->emplace_reallocating_slow_path(false, size() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ }\ BOOST_ASSERT(invariants_ok());\ }\ // BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_EMPLACE_BACK) #undef BOOST_CONTAINER_DEVECTOR_EMPLACE_BACK #endif //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) /** * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * * **Effects**: Pushes the copy of `x` to the back of the devector. * Invalidates iterators if reallocation is needed. * (`back_free_capacity() == 0`) * * **Requires**: `T` shall be [CopyInsertable] into `*this`. * * **Exceptions**: Strong exception guarantee. * * **Complexity**: Amortized constant in the size of `*this`. * (Constant, if `back_free_capacity() > 0`) */ void push_back(const T& x); /** * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * * **Effects**: Move constructs a new element at the back of the devector using `x`. * Invalidates iterators if reallocation is needed. * (`back_free_capacity() == 0`) * * **Requires**: `T` shall be [MoveInsertable] into `*this`. * * **Exceptions**: Strong exception guarantee, not regarding the state of `x`. * * **Complexity**: Amortized constant in the size of `*this`. * (Constant, if `back_free_capacity() > 0`) */ void push_back(T&& x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back) #endif /** * **Effects**: Removes the last element of `*this`. * * **Precondition**: `!empty()`. * * **Postcondition**: `back_free_capacity()` is incremented by 1. * * **Complexity**: Constant. */ void pop_back() BOOST_NOEXCEPT { BOOST_ASSERT(! empty()); --m_.back_idx; allocator_traits_type::destroy(get_allocator_ref(), m_.buffer + m_.back_idx); BOOST_ASSERT(invariants_ok()); } /** * **Effects**: Constructs a new element before the element pointed by `position`. * The element is constructed in-place, using the perfect forwarded `args` * as constructor arguments. Invalidates iterators if reallocation is needed. * * **Requires**: `T` shall be [EmplaceConstructible], and [MoveInsertable] into `*this`, * and [MoveAssignable]. * * **Returns**: Iterator pointing to the newly constructed element. * * **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible` * and `NothrowAssignable`, Basic exception guarantee otherwise. * * **Complexity**: Linear in the size of `*this`. * * [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable */ #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template iterator emplace(const_iterator position, Args&&... args) { BOOST_ASSERT(position >= begin()); BOOST_ASSERT(position <= end()); if (position == end() && back_free_capacity()) // fast path { this->alloc_construct(m_.buffer + m_.back_idx, boost::forward(args)...); ++m_.back_idx; return end() - 1; } else if (position == begin() && front_free_capacity()) // secondary fast path { this->alloc_construct(m_.buffer + (m_.front_idx - 1), boost::forward(args)...); --m_.front_idx; return begin(); } else { size_type new_elem_index = size_type(position - begin()); return this->emplace_slow_path(new_elem_index, boost::forward(args)...); } } #else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) #define BOOST_CONTAINER_DEVECTOR_EMPLACE(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace(const_iterator position BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ BOOST_ASSERT(position >= begin());\ BOOST_ASSERT(position <= end());\ \ if (position == end() && back_free_capacity()){\ this->alloc_construct(m_.buffer + m_.back_idx BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ ++m_.back_idx;\ return end() - 1;\ }\ else if (position == begin() && front_free_capacity()){\ this->alloc_construct(m_.buffer + m_.front_idx - 1 BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ --m_.front_idx;\ return begin();\ }\ else{\ size_type new_elem_index = size_type(position - begin());\ return this->emplace_slow_path(new_elem_index BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ }\ }\ // BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_EMPLACE) #undef BOOST_CONTAINER_DEVECTOR_EMPLACE #endif //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) /** * **Effects**: Copy constructs a new element before the element pointed by `position`, * using `x` as constructor argument. Invalidates iterators if reallocation is needed. * * **Requires**: `T` shall be [CopyInsertable] into `*this` and and [CopyAssignable]. * * **Returns**: Iterator pointing to the newly constructed element. * * **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible` * and `NothrowAssignable`, Basic exception guarantee otherwise. * * **Complexity**: Linear in the size of `*this`. * * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable */ iterator insert(const_iterator position, const T &x); /** * **Effects**: Move constructs a new element before the element pointed by `position`, * using `x` as constructor argument. Invalidates iterators if reallocation is needed. * * **Requires**: `T` shall be [MoveInsertable] into `*this` and and [CopyAssignable]. * * **Returns**: Iterator pointing to the newly constructed element. * * **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible` * and `NothrowAssignable` (not regarding the state of `x`), * Basic exception guarantee otherwise. * * **Complexity**: Linear in the size of `*this`. * * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable */ iterator insert(const_iterator position, T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator) #endif /** * **Effects**: Copy constructs `n` elements before the element pointed by `position`, * using `x` as constructor argument. Invalidates iterators if reallocation is needed. * * **Requires**: `T` shall be [CopyInsertable] into `*this` and and [CopyAssignable]. * * **Returns**: Iterator pointing to the first inserted element, or `position`, if `n` is zero. * * **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible` * and `NothrowAssignable`, Basic exception guarantee otherwise. * * **Complexity**: Linear in the size of `*this` and `n`. * * [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable * [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable */ iterator insert(const_iterator position, size_type n, const T& x) { cvalue_iterator first(x, n); cvalue_iterator last = first + n; return insert_range(position, first, last); } /** * **Effects**: Copy constructs elements before the element pointed by position * using each element in the rage pointed by `first` and `last` as constructor arguments. * Invalidates iterators if reallocation is needed. * * **Requires**: `T` shall be [EmplaceConstructible] into `*this` from `*first`. If the specified iterator * does not meet the forward iterator requirements, `T` shall also be [MoveInsertable] into `*this` * and [MoveAssignable]. * * **Precondition**: `first` and `last` are not iterators into `*this`. * * **Returns**: Iterator pointing to the first inserted element, or `position`, if `first == last`. * * **Complexity**: Linear in the size of `*this` and `N` (where `N` is the distance between `first` and `last`). * Makes only `N` calls to the constructor of `T` and no reallocations if iterators `first` and `last` * are of forward, bidirectional, or random access categories. It makes 2N calls to the copy constructor of `T` * and allocates memory twice at most if they are just input iterators. * * **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible` * and `NothrowAssignable`, Basic exception guarantee otherwise. * * **Remarks**: Each iterator in the range `[first,last)` shall be dereferenced exactly once, * unless an exception is thrown. * * [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable */ template iterator insert(const_iterator position, InputIterator first, InputIterator last //Input iterators BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or < void BOOST_MOVE_I dtl::is_convertible BOOST_MOVE_I dtl::is_not_input_iterator >::type * = 0) ) { if (position == end()) { size_type insert_index = size(); for (; first != last; ++first) { this->emplace_back(*first); } return begin() + insert_index; } else { const size_type insert_index = static_cast(position - this->cbegin()); const size_type old_size = static_cast(this->size()); for (; first != last; ++first) { this->emplace_back(*first); } iterator rit (this->begin() + insert_index); boost::movelib::rotate_gcd(rit, this->begin() + old_size, this->begin() + this->size()); return rit; } } #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED template iterator insert(const_iterator position, ForwardIterator first, ForwardIterator last //Other iterators BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or < void BOOST_MOVE_I dtl::is_convertible BOOST_MOVE_I dtl::is_input_iterator >::type * = 0) ) { return insert_range(position, first, last); } #endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) /** **Equivalent to**: `insert(position, il.begin(), il.end())` */ iterator insert(const_iterator position, std::initializer_list il) { return insert_range(position, il.begin(), il.end()); } #endif /** * [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable * * **Effects**: Destroys the element pointed by `position` and removes it from the devector. * Invalidates iterators. * * **Requires**: `T` shall be [MoveAssignable]. * * **Precondition**: `position` must be in the range of `[begin(), end())`. * * **Returns**: Iterator pointing to the element immediately following the erased element * prior to its erasure. If no such element exists, `end()` is returned. * * **Exceptions**: Strong exception guarantee if `T` is `NothrowAssignable`, * Basic exception guarantee otherwise. * * **Complexity**: Linear in half the size of `*this`. */ iterator erase(const_iterator position) { return erase(position, position + 1); } /** * [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable * * **Effects**: Destroys the range `[first,last)` and removes it from the devector. * Invalidates iterators. * * **Requires**: `T` shall be [MoveAssignable]. * * **Precondition**: `[first,last)` must be in the range of `[begin(), end())`. * * **Returns**: Iterator pointing to the element pointed to by `last` prior to any elements * being erased. If no such element exists, `end()` is returned. * * **Exceptions**: Strong exception guarantee if `T` is `NothrowAssignable`, * Basic exception guarantee otherwise. * * **Complexity**: Linear in half the size of `*this` * plus the distance between `first` and `last`. */ iterator erase(const_iterator first, const_iterator last) { iterator nc_first = begin() + (first - begin()); iterator nc_last = begin() + (last - begin()); return erase(nc_first, nc_last); } /** * [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable * * **Effects**: Destroys the range `[first,last)` and removes it from the devector. * Invalidates iterators. * * **Requires**: `T` shall be [MoveAssignable]. * * **Precondition**: `[first,last)` must be in the range of `[begin(), end())`. * * **Returns**: Iterator pointing to the element pointed to by `last` prior to any elements * being erased. If no such element exists, `end()` is returned. * * **Exceptions**: Strong exception guarantee if `T` is `NothrowAssignable`, * Basic exception guarantee otherwise. * * **Complexity**: Linear in half the size of `*this`. */ iterator erase(iterator first, iterator last) { size_type front_distance = size_type(last - begin()); size_type back_distance = size_type(end() - first); size_type n = boost::container::iterator_udistance(first, last); if (front_distance < back_distance) { // move n to the right boost::container::move_backward(begin(), first, last); for (iterator i = begin(); i != begin() + n; ++i) { allocator_traits_type::destroy(get_allocator_ref(), i); } //n is always less than max stored_size_type m_.set_front_idx(m_.front_idx + n); BOOST_ASSERT(invariants_ok()); return last; } else { // move n to the left boost::container::move(last, end(), first); for (iterator i = end() - n; i != end(); ++i) { allocator_traits_type::destroy(get_allocator_ref(), i); } //n is always less than max stored_size_type m_.set_back_idx(m_.back_idx - n); BOOST_ASSERT(invariants_ok()); return first; } } /** * [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable * * **Effects**: exchanges the contents of `*this` and `b`. * * **Requires**: instances of `T` must be swappable by unqualified call of `swap` * and `T` must be [MoveInsertable] into `*this`. * * **Precondition**: The allocators should allow propagation or should compare equal. * * **Exceptions**: Basic exceptions guarantee if not `noexcept`. * * **Complexity**: Constant. */ void swap(devector& b) BOOST_NOEXCEPT_IF( allocator_traits_type::propagate_on_container_swap::value || allocator_traits_type::is_always_equal::value) { BOOST_CONSTEXPR_OR_CONST bool propagate_alloc = allocator_traits_type::propagate_on_container_swap::value; BOOST_ASSERT(propagate_alloc || get_allocator_ref() == b.get_allocator_ref()); // else it's undefined behavior swap_big_big(*this, b); // swap indices boost::adl_move_swap(m_.front_idx, b.m_.front_idx); boost::adl_move_swap(m_.back_idx, b.m_.back_idx); //And now swap the allocator dtl::swap_alloc(this->get_allocator_ref(), b.get_allocator_ref(), dtl::bool_()); BOOST_ASSERT( invariants_ok()); BOOST_ASSERT(b.invariants_ok()); } /** * **Effects**: Destroys all elements in the devector. * Invalidates all references, pointers and iterators to the * elements of the devector. * * **Postcondition**: `empty() && front_free_capacity() == 0 * && back_free_capacity() == old capacity`. * * **Complexity**: Linear in the size of `*this`. * * **Remarks**: Does not free memory. */ void clear() BOOST_NOEXCEPT { destroy_elements(begin(), end()); m_.front_idx = m_.back_idx = 0; } BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE friend bool operator==(const devector& x, const devector& y) { return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); } BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE friend bool operator!=(const devector& x, const devector& y) { return !(x == y); } BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE friend bool operator< (const devector& x, const devector& y) { return boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE friend bool operator>(const devector& x, const devector& y) { return y < x; } BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE friend bool operator<=(const devector& x, const devector& y) { return !(y < x); } BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE friend bool operator>=(const devector& x, const devector& y) { return !(x < y); } BOOST_CONTAINER_FORCEINLINE friend void swap(devector& x, devector& y) BOOST_NOEXCEPT_IF( allocator_traits_type::propagate_on_container_swap::value || allocator_traits_type::is_always_equal::value) { x.swap(y); } private: #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED BOOST_CONTAINER_FORCEINLINE T* raw_begin() BOOST_NOEXCEPT { return boost::movelib::to_raw_pointer(m_.buffer) + m_.front_idx; } BOOST_CONTAINER_FORCEINLINE T* raw_end() BOOST_NOEXCEPT { return boost::movelib::to_raw_pointer(m_.buffer) + m_.back_idx; } template BOOST_CONTAINER_FORCEINLINE void priv_push_front(BOOST_FWD_REF(U) u) { this->emplace_front(boost::forward(u)); } template BOOST_CONTAINER_FORCEINLINE void priv_push_back(BOOST_FWD_REF(U) u) { this->emplace_back(boost::forward(u)); } template BOOST_CONTAINER_FORCEINLINE iterator priv_insert(const_iterator pos, BOOST_FWD_REF(U) u) { return this->emplace(pos, boost::forward(u)); } // allocator_type wrappers BOOST_CONTAINER_FORCEINLINE allocator_type& get_allocator_ref() BOOST_NOEXCEPT { return static_cast(m_); } BOOST_CONTAINER_FORCEINLINE const allocator_type& get_allocator_ref() const BOOST_NOEXCEPT { return static_cast(m_); } pointer allocate(size_type capacity) { pointer const p = impl::do_allocate(get_allocator_ref(), capacity); #ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS ++m_.capacity_alloc_count; #endif // BOOST_CONTAINER_DEVECTOR_ALLOC_STATS return p; } void destroy_elements(pointer begin, pointer end) { for (; begin != end; ++begin) { allocator_traits_type::destroy(get_allocator_ref(), begin); } } void deallocate_buffer() { if (m_.buffer) { allocator_traits_type::deallocate(get_allocator_ref(), m_.buffer, m_.capacity); } } #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template BOOST_CONTAINER_FORCEINLINE void alloc_construct(pointer dst, Args&&... args) { allocator_traits_type::construct( get_allocator_ref(), dst, boost::forward(args)... ); } template void construct_n(pointer buffer, size_type n, Args&&... args) { detail::construction_guard ctr_guard(buffer, get_allocator_ref()); guarded_construct_n(buffer, n, ctr_guard, boost::forward(args)...); ctr_guard.release(); } template void guarded_construct_n(pointer buffer, size_type n, detail::construction_guard& ctr_guard, Args&&... args) { for (size_type i = 0; i < n; ++i) { this->alloc_construct(buffer + i, boost::forward(args)...); ctr_guard.extend(); } } #else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) #define BOOST_CONTAINER_DEVECTOR_ALLOC_CONSTRUCT(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ BOOST_CONTAINER_FORCEINLINE void alloc_construct(pointer dst BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ allocator_traits_type::construct(\ get_allocator_ref(), dst BOOST_MOVE_I##N BOOST_MOVE_FWD##N );\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ void construct_n(pointer buffer, size_type n BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ detail::construction_guard ctr_guard(buffer, get_allocator_ref());\ guarded_construct_n(buffer, n, ctr_guard BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ ctr_guard.release();\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ void guarded_construct_n(pointer buffer, size_type n, detail::construction_guard& ctr_guard BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ for (size_type i = 0; i < n; ++i) {\ this->alloc_construct(buffer + i BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ ctr_guard.extend();\ }\ } // BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_ALLOC_CONSTRUCT) #undef BOOST_CONTAINER_DEVECTOR_ALLOC_CONSTRUCT #endif //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) BOOST_CONTAINER_FORCEINLINE size_type front_capacity() const { return m_.back_idx; } BOOST_CONTAINER_FORCEINLINE size_type back_capacity() const { return size_type(m_.capacity - m_.front_idx); } size_type calculate_new_capacity(size_type requested_capacity) { size_type max = allocator_traits_type::max_size(this->get_allocator_ref()); (clamp_by_stored_size_type)(max, stored_size_type()); const size_type remaining_additional_cap = max - size_type(m_.capacity); const size_type min_additional_cap = requested_capacity - size_type(m_.capacity); if ( remaining_additional_cap < min_additional_cap ) boost::container::throw_length_error("devector: get_next_capacity, max size exceeded"); return growth_factor_type()( size_type(m_.capacity), min_additional_cap, max); } void buffer_move_or_copy(pointer dst) { detail::construction_guard guard(dst, get_allocator_ref()); buffer_move_or_copy(dst, guard); guard.release(); } void buffer_move_or_copy(pointer dst, detail::construction_guard& guard) { opt_move_or_copy(begin(), end(), dst, guard); destroy_elements(data(), data() + size()); deallocate_buffer(); } void opt_move_or_copy(pointer begin, pointer end, pointer dst) { typedef typename dtl::if_c < boost::move_detail::is_nothrow_copy_constructible::value || boost::is_nothrow_move_constructible::value , detail::null_construction_guard , detail::construction_guard >::type guard_t; guard_t guard(dst, get_allocator_ref()); opt_move_or_copy(begin, end, dst, guard); guard.release(); } template void opt_move_or_copy(pointer begin, pointer end, pointer dst, Guard& guard) { // if trivial copy and default allocator, memcpy boost::container::uninitialized_move_alloc(get_allocator_ref(), begin, end, dst); guard.extend(); } template void opt_copy(Iterator begin, Iterator end, pointer dst) { typedef typename dtl::if_c < boost::move_detail::is_nothrow_copy_constructible::value , detail::null_construction_guard , detail::construction_guard >::type guard_t; guard_t guard(dst, get_allocator_ref()); opt_copy(begin, end, dst, guard); guard.release(); } template void opt_copy(Iterator begin, Iterator end, pointer dst, Guard& guard) { while (begin != end) { this->alloc_construct(dst++, *begin++); guard.extend(); } } template void opt_copy(const_pointer begin, const_pointer end, pointer dst, Guard& guard) { // if trivial copy and default allocator, memcpy boost::container::uninitialized_copy_alloc(get_allocator_ref(), begin, end, dst); guard.extend(); } #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template void resize_front_impl(size_type sz , Args&&... args) { if (sz > size()) { const size_type n = sz - size(); if (sz <= front_capacity()) { construct_n(m_.buffer + m_.front_idx - n, n, boost::forward(args)...); m_.set_front_idx(m_.front_idx - n); } else { resize_front_slow_path(sz, n, boost::forward(args)...); } } else { while (this->size() > sz) { this->pop_front(); } } } template void resize_front_slow_path(size_type sz, size_type n, Args&&... args) { const size_type new_capacity = calculate_new_capacity(sz + back_free_capacity()); pointer new_buffer = allocate(new_capacity); allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref()); const size_type new_old_elem_index = new_capacity - size(); const size_type new_elem_index = new_old_elem_index - n; detail::construction_guard guard(new_buffer + new_elem_index, get_allocator_ref()); guarded_construct_n(new_buffer + new_elem_index, n, guard, boost::forward(args)...); buffer_move_or_copy(new_buffer + new_old_elem_index, guard); guard.release(); new_buffer_guard.release(); m_.buffer = new_buffer; m_.set_capacity(new_capacity); m_.set_back_idx(new_old_elem_index + m_.back_idx - m_.front_idx); m_.set_front_idx(new_elem_index); } template void resize_back_impl(size_type sz, Args&&... args) { if (sz > size()) { const size_type n = sz - size(); if (sz <= back_capacity()) { construct_n(m_.buffer + m_.back_idx, n, boost::forward(args)...); m_.set_back_idx(m_.back_idx + n); } else { resize_back_slow_path(sz, n, boost::forward(args)...); } } else { while (size() > sz) { pop_back(); } } } template void resize_back_slow_path(size_type sz, size_type n, Args&&... args) { const size_type new_capacity = calculate_new_capacity(sz + front_free_capacity()); pointer new_buffer = allocate(new_capacity); allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref()); detail::construction_guard guard(new_buffer + m_.back_idx, get_allocator_ref()); guarded_construct_n(new_buffer + m_.back_idx, n, guard, boost::forward(args)...); buffer_move_or_copy(new_buffer + m_.front_idx); guard.release(); new_buffer_guard.release(); m_.buffer = new_buffer; m_.set_capacity(new_capacity); m_.set_back_idx(m_.back_idx + n); } template iterator emplace_slow_path(size_type new_elem_index, Args&&... args) { pointer position = begin() + new_elem_index; // prefer moving front to access memory forward if there are less elems to move bool prefer_move_front = new_elem_index <= size()/2; if (front_free_capacity() && (!back_free_capacity() || prefer_move_front)) { BOOST_ASSERT(size() >= 1); // move things closer to the front a bit // avoid invalidating any reference in args later T tmp(boost::forward(args)...); // construct at front - 1 from front (no guard) this->alloc_construct(begin() - 1, boost::move(*begin())); // move front half left boost::move(begin() + 1, position, begin()); --m_.front_idx; // move assign new elem before pos --position; *position = boost::move(tmp); return position; } else if (back_free_capacity()) { BOOST_ASSERT(size() >= 1); // move things closer to the end a bit // avoid invalidating any reference in args later T tmp(boost::forward(args)...); // construct at back + 1 from back (no guard) this->alloc_construct(end(), boost::move(back())); // move back half right boost::container::move_backward(position, end() - 1, end()); ++m_.back_idx; // move assign new elem to pos *position = boost::move(tmp); return position; } else { return emplace_reallocating_slow_path(prefer_move_front, new_elem_index, boost::forward(args)...); } } template pointer emplace_reallocating_slow_path(bool make_front_free, size_type new_elem_index, Args&&... args) { // reallocate size_type new_capacity = calculate_new_capacity(capacity() + 1); pointer new_buffer = allocate(new_capacity); // guard allocation allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref()); size_type new_front_index = (make_front_free) ? new_capacity - back_free_capacity() - size() - 1 : m_.front_idx; iterator new_begin = new_buffer + new_front_index; iterator new_position = new_begin + new_elem_index; iterator old_position = begin() + new_elem_index; // construct new element (and guard it) this->alloc_construct(new_position, boost::forward(args)...); detail::construction_guard second_half_guard(new_position, get_allocator_ref()); second_half_guard.extend(); // move front-pos (possibly guarded) detail::construction_guard first_half_guard(new_begin, get_allocator_ref()); opt_move_or_copy(begin(), old_position, new_begin, first_half_guard); // move pos+1-end (possibly guarded) opt_move_or_copy(old_position, end(), new_position + 1, second_half_guard); // cleanup destroy_elements(begin(), end()); deallocate_buffer(); // release alloc and other guards second_half_guard.release(); first_half_guard.release(); new_buffer_guard.release(); // rebind members m_.set_capacity(new_capacity); m_.buffer = new_buffer; m_.set_back_idx(new_front_index + size() + 1); m_.set_front_idx(new_front_index); return new_position; } #else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) #define BOOST_CONTAINER_DEVECTOR_SLOW_PATH(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ void resize_front_impl(size_type sz BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ if (sz > size())\ {\ const size_type n = sz - size();\ if (sz <= front_capacity()){\ construct_n(m_.buffer + m_.front_idx - n, n BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ m_.set_front_idx(m_.front_idx - n);\ }\ else\ {\ resize_front_slow_path(sz, n BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ }\ }\ else {\ while (this->size() > sz)\ {\ this->pop_front();\ }\ }\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ void resize_front_slow_path(size_type sz, size_type n BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ const size_type new_capacity = calculate_new_capacity(sz + back_free_capacity());\ pointer new_buffer = allocate(new_capacity);\ allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());\ \ const size_type new_old_elem_index = new_capacity - size();\ const size_type new_elem_index = new_old_elem_index - n;\ \ detail::construction_guard guard(new_buffer + new_elem_index, get_allocator_ref());\ guarded_construct_n(new_buffer + new_elem_index, n, guard BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ \ buffer_move_or_copy(new_buffer + new_old_elem_index, guard);\ \ guard.release();\ new_buffer_guard.release();\ m_.buffer = new_buffer;\ m_.set_capacity(new_capacity);\ m_.set_back_idx(new_old_elem_index + m_.back_idx - m_.front_idx);\ m_.set_front_idx(new_elem_index);\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ void resize_back_impl(size_type sz BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ if (sz > size())\ {\ const size_type n = sz - size();\ \ if (sz <= back_capacity())\ {\ construct_n(m_.buffer + m_.back_idx, n BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ m_.set_back_idx(m_.back_idx + n);\ }\ else\ {\ resize_back_slow_path(sz, n BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ }\ }\ else\ {\ while (size() > sz)\ {\ pop_back();\ }\ }\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ void resize_back_slow_path(size_type sz, size_type n BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ const size_type new_capacity = calculate_new_capacity(sz + front_free_capacity());\ pointer new_buffer = allocate(new_capacity);\ allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());\ \ detail::construction_guard guard(new_buffer + m_.back_idx, get_allocator_ref());\ guarded_construct_n(new_buffer + m_.back_idx, n, guard BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ \ buffer_move_or_copy(new_buffer + m_.front_idx);\ \ guard.release();\ new_buffer_guard.release();\ \ m_.buffer = new_buffer;\ m_.set_capacity(new_capacity);\ m_.set_back_idx(m_.back_idx + n);\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_slow_path(size_type new_elem_index BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ pointer position = begin() + new_elem_index;\ \ bool prefer_move_front = new_elem_index <= size()/2;\ \ if (front_free_capacity() && (!back_free_capacity() || prefer_move_front))\ {\ BOOST_ASSERT(size() >= 1);\ typename dtl::aligned_storage::value>::type v;\ T *vp = move_detail::force_ptr(v.data);\ allocator_traits_type::construct(get_stored_allocator(), vp BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ T &tmp = *vp;\ dtl::value_destructor on_exit(get_stored_allocator(), tmp); (void)on_exit;\ \ this->alloc_construct(begin() - 1, boost::move(*begin()));\ boost::move(begin() + 1, position, begin());\ --m_.front_idx;\ --position;\ *position = boost::move(tmp);\ return position;\ }\ else if (back_free_capacity()) {\ BOOST_ASSERT(size() >= 1);\ typename dtl::aligned_storage::value>::type v;\ T *vp = move_detail::force_ptr(v.data);\ allocator_traits_type::construct(get_stored_allocator(), vp BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ T &tmp = *vp;\ dtl::value_destructor on_exit(get_stored_allocator(), tmp); (void)on_exit;\ this->alloc_construct(end(), boost::move(back()));\ boost::container::move_backward(position, end() - 1, end());\ ++m_.back_idx;\ *position = boost::move(tmp);\ return position;\ }\ else {\ return emplace_reallocating_slow_path(prefer_move_front, new_elem_index BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ }\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ pointer emplace_reallocating_slow_path(bool make_front_free, size_type new_elem_index BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ size_type new_capacity = calculate_new_capacity(capacity() + 1);\ pointer new_buffer = allocate(new_capacity);\ allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());\ size_type new_front_index = (make_front_free)\ ? new_capacity - back_free_capacity() - size() - 1\ : m_.front_idx;\ iterator new_begin = new_buffer + new_front_index;\ iterator new_position = new_begin + new_elem_index;\ iterator old_position = begin() + new_elem_index;\ this->alloc_construct(new_position BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ detail::construction_guard second_half_guard(new_position, get_allocator_ref());\ second_half_guard.extend();\ detail::construction_guard first_half_guard(new_begin, get_allocator_ref());\ opt_move_or_copy(begin(), old_position, new_begin, first_half_guard);\ opt_move_or_copy(old_position, end(), new_position + 1, second_half_guard);\ destroy_elements(begin(), end());\ deallocate_buffer();\ second_half_guard.release();\ first_half_guard.release();\ new_buffer_guard.release();\ m_.set_capacity(new_capacity);\ m_.buffer = new_buffer;\ m_.set_back_idx(new_front_index + size() + 1);\ m_.set_front_idx(new_front_index);\ return new_position;\ }\ // BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_SLOW_PATH) #undef BOOST_CONTAINER_DEVECTOR_SLOW_PATH #endif //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) /* void unsafe_uninitialized_grow_front(size_type n) { BOOST_ASSERT(n >= size()); size_type need = n - size(); if (need > front_free_capacity()) { reallocate_at(n + back_free_capacity(), need); } m_.set_front_idx(m_.front_idx - need); } void unsafe_uninitialized_shrink_front(size_type n) { BOOST_ASSERT(n <= size()); size_type doesnt_need = size() - n; m_.set_front_idx(m_.front_idx + doesnt_need); } void unsafe_uninitialized_grow_back(size_type n) { BOOST_ASSERT(n >= size()); size_type need = n - size(); if (need > back_free_capacity()) { reallocate_at(n + front_free_capacity(), front_free_capacity()); } m_.set_back_idx(m_.back_idx + need); } void unsafe_uninitialized_shrink_back(size_type n) { BOOST_ASSERT(n <= size()); size_type doesnt_need = size() - n; m_.set_back_idx(m_.back_idx - doesnt_need); } */ void reallocate_at(size_type new_capacity, size_type buffer_offset) { pointer new_buffer = allocate(new_capacity); allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref()); buffer_move_or_copy(new_buffer + buffer_offset); new_buffer_guard.release(); m_.buffer = new_buffer; //Safe cast, allocate() will handle stored_size_type overflow m_.set_capacity(new_capacity); m_.set_back_idx(size_type(m_.back_idx - m_.front_idx) + buffer_offset); m_.set_front_idx(buffer_offset); BOOST_ASSERT(invariants_ok()); } template iterator insert_range(const_iterator position, ForwardIterator first, ForwardIterator last) { size_type n = boost::container::iterator_udistance(first, last); if (position == end() && back_free_capacity() >= n) {// fast path iterator r(this->end()); boost::container::uninitialized_copy_alloc(get_allocator_ref(), first, last, this->raw_end()); m_.set_back_idx(m_.back_idx + n); return r; } else if (position == begin() && front_free_capacity() >= n) { // secondary fast path boost::container::uninitialized_copy_alloc(get_allocator_ref(), first, last, this->raw_begin() - n); m_.set_front_idx(m_.front_idx - n); return begin(); } else { return insert_range_slow_path(position, first, last); } } template iterator insert_range_slow_path(const_iterator position, ForwardIterator first, ForwardIterator last) { size_type n = boost::container::iterator_udistance(first, last); size_type index = size_type(position - begin()); if (front_free_capacity() + back_free_capacity() >= n) { // if we move enough, it can be done without reallocation iterator middle = begin() + index; n -= insert_range_slow_path_near_front(middle, first, n); if (n) { insert_range_slow_path_near_back(middle, first, n); } BOOST_ASSERT(first == last); return begin() + index; } else { const bool prefer_move_front = 2 * index <= size(); return insert_range_reallocating_slow_path(prefer_move_front, index, first, n); } } template size_type insert_range_slow_path_near_front(iterator position, Iterator& first, size_type n) { size_type n_front = dtl::min_value(front_free_capacity(), n); iterator new_begin = begin() - n_front; iterator ctr_pos = new_begin; detail::construction_guard ctr_guard(ctr_pos, get_allocator_ref()); while (ctr_pos != begin()) { this->alloc_construct(ctr_pos++, *(first++)); ctr_guard.extend(); } boost::movelib::rotate_gcd(new_begin, ctr_pos, position); m_.set_front_idx(m_.front_idx - n_front); ctr_guard.release(); BOOST_ASSERT(invariants_ok()); return n_front; } template size_type insert_range_slow_path_near_back(iterator position, Iterator& first, size_type n) { const size_type n_back = dtl::min_value(back_free_capacity(), n); iterator ctr_pos = end(); detail::construction_guard ctr_guard(ctr_pos, get_allocator_ref()); for (size_type i = 0; i < n_back; ++i) { this->alloc_construct(ctr_pos++, *first++); ctr_guard.extend(); } boost::movelib::rotate_gcd(position, end(), ctr_pos); m_.set_back_idx(m_.back_idx + n_back); ctr_guard.release(); BOOST_ASSERT(invariants_ok()); return n_back; } template iterator insert_range_reallocating_slow_path (bool make_front_free, size_type new_elem_index, Iterator elems, size_type n) { // reallocate const size_type new_capacity = calculate_new_capacity(capacity() + n); pointer new_buffer = allocate(new_capacity); // guard allocation allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref()); const size_type new_front_index = (make_front_free) ? new_capacity - back_free_capacity() - size() - n : m_.front_idx; const iterator new_begin = new_buffer + new_front_index; const iterator new_position = new_begin + new_elem_index; const iterator old_position = begin() + new_elem_index; // construct new element (and guard it) iterator second_half_position = new_position; detail::construction_guard second_half_guard(second_half_position, get_allocator_ref()); for (size_type i = 0; i < n; ++i) { this->alloc_construct(second_half_position++, *(elems++)); second_half_guard.extend(); } // move front-pos (possibly guarded) detail::construction_guard first_half_guard(new_begin, get_allocator_ref()); opt_move_or_copy(begin(), old_position, new_begin, first_half_guard); // move pos+1-end (possibly guarded) opt_move_or_copy(old_position, end(), second_half_position, second_half_guard); // cleanup destroy_elements(begin(), end()); deallocate_buffer(); // release alloc and other guards second_half_guard.release(); first_half_guard.release(); new_buffer_guard.release(); // rebind members m_.set_capacity(new_capacity); m_.buffer = new_buffer; m_.set_back_idx(new_front_index + size() + n); m_.set_front_idx(new_front_index); return new_position; } template void construct_from_range(Iterator begin, Iterator end) { allocation_guard buffer_guard(m_.buffer, m_.capacity, get_allocator_ref()); opt_copy(begin, end, m_.buffer); buffer_guard.release(); } template void allocate_and_copy_range(ForwardIterator first, ForwardIterator last) { size_type n = boost::container::iterator_udistance(first, last); pointer new_buffer = n ? allocate(n) : pointer(); allocation_guard new_buffer_guard(new_buffer, n, get_allocator_ref()); opt_copy(first, last, new_buffer); destroy_elements(begin(), end()); deallocate_buffer(); m_.set_capacity(n); m_.buffer = new_buffer; m_.front_idx = 0; m_.set_back_idx(n); new_buffer_guard.release(); } static void swap_big_big(devector& a, devector& b) BOOST_NOEXCEPT { boost::adl_move_swap(a.m_.capacity, b.m_.capacity); boost::adl_move_swap(a.m_.buffer, b.m_.buffer); } template void overwrite_buffer_impl(ForwardIterator first, ForwardIterator last, dtl::true_) { const size_type n = boost::container::iterator_udistance(first, last); BOOST_ASSERT(capacity() >= n); boost::container::uninitialized_copy_alloc_n ( get_allocator_ref(), boost::movelib::iterator_to_raw_pointer(first) , n, boost::movelib::iterator_to_raw_pointer(m_.buffer)); m_.front_idx = 0; m_.set_back_idx(n); } template InputIterator overwrite_buffer_impl(InputIterator first, InputIterator last, dtl::false_) { pointer pos = m_.buffer; detail::construction_guard front_guard(pos, get_allocator_ref()); while (first != last && pos != begin()) { this->alloc_construct(pos++, *first++); front_guard.extend(); } while (first != last && pos != end()) { *pos++ = *first++; } detail::construction_guard back_guard(pos, get_allocator_ref()); iterator capacity_end = m_.buffer + capacity(); while (first != last && pos != capacity_end) { this->alloc_construct(pos++, *first++); back_guard.extend(); } pointer destroy_after = dtl::min_value(dtl::max_value(begin(), pos), end()); destroy_elements(destroy_after, end()); front_guard.release(); back_guard.release(); m_.front_idx = 0; m_.set_back_idx(size_type(pos - begin())); return first; } template BOOST_CONTAINER_FORCEINLINE void overwrite_buffer(ForwardIterator first, ForwardIterator last) { this->overwrite_buffer_impl(first, last, dtl::bool_::value>()); } bool invariants_ok() { return (!m_.capacity || m_.buffer) && m_.front_idx <= m_.back_idx && m_.back_idx <= m_.capacity; } struct impl : allocator_type { private: impl(const impl &i); public: allocator_type &get_al() { return *this; } static pointer do_allocate(allocator_type &a, size_type cap) { if (cap) { //First detect overflow on smaller stored_size_types if (cap > stored_size_type(-1)){ boost::container::throw_length_error("get_next_capacity, allocator's max size reached"); } return allocator_traits_type::allocate(a, cap); } else { return pointer(); } } impl() : allocator_type(), buffer(), front_idx(), back_idx(), capacity() #ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS , capacity_alloc_count(0) #endif {} explicit impl(const allocator_type &a) : allocator_type(a), buffer(), front_idx(), back_idx(), capacity() #ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS , capacity_alloc_count(0) #endif {} impl(const allocator_type &a, size_type f, size_type b, size_type c) : allocator_type(a), buffer(do_allocate(get_al(), c)) //static cast sizes, as the allocation function will take care of overflows , front_idx(static_cast(f)) , back_idx(static_cast(b)) , capacity(static_cast(c)) #ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS , capacity_alloc_count(size_type(buffer != pointer())) #endif {} impl(const allocator_type &a, pointer p, size_type f, size_type b, size_type c) : allocator_type(a), buffer(p) //static cast sizes, as the allocation function will take care of overflows , front_idx(static_cast(f)) , back_idx(static_cast(b)) , capacity(static_cast(c)) #ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS , capacity_alloc_count(0) #endif {} impl(BOOST_RV_REF(allocator_type) a, pointer p, size_type f, size_type b, size_type c) : allocator_type(boost::move(a)), buffer(p) //static cast sizes, as the allocation function will take care of overflows , front_idx(static_cast(f)) , back_idx(static_cast(b)) , capacity(static_cast(c)) #ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS , capacity_alloc_count(0) #endif {} void set_back_idx(size_type bi) { back_idx = static_cast(bi);} void set_front_idx(size_type fi) { front_idx = static_cast(fi);} void set_capacity(size_type c) { capacity = static_cast(c);} pointer buffer; stored_size_type front_idx; stored_size_type back_idx; stored_size_type capacity; #ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS size_type capacity_alloc_count; #endif } m_; #ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS public: void reset_alloc_stats() { m_.capacity_alloc_count = 0; } size_type get_alloc_count() const { return m_.capacity_alloc_count; } #endif // ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS #endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED }; }} // namespace boost::container #include #endif // BOOST_CONTAINER_DEVECTOR_HPP