/* $OpenBSD: x509_addr.c,v 1.78 2022/03/16 11:44:36 tb Exp $ */ /* * Contributed to the OpenSSL Project by the American Registry for * Internet Numbers ("ARIN"). */ /* ==================================================================== * Copyright (c) 2006-2016 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ /* * Implementation of RFC 3779 section 2.2. */ #include #include #include #include #include #include #include #include #include #include #include #include "bytestring.h" #include "x509_lcl.h" #ifndef OPENSSL_NO_RFC3779 /* * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. */ static const ASN1_TEMPLATE IPAddressRange_seq_tt[] = { { .flags = 0, .tag = 0, .offset = offsetof(IPAddressRange, min), .field_name = "min", .item = &ASN1_BIT_STRING_it, }, { .flags = 0, .tag = 0, .offset = offsetof(IPAddressRange, max), .field_name = "max", .item = &ASN1_BIT_STRING_it, }, }; const ASN1_ITEM IPAddressRange_it = { .itype = ASN1_ITYPE_SEQUENCE, .utype = V_ASN1_SEQUENCE, .templates = IPAddressRange_seq_tt, .tcount = sizeof(IPAddressRange_seq_tt) / sizeof(ASN1_TEMPLATE), .funcs = NULL, .size = sizeof(IPAddressRange), .sname = "IPAddressRange", }; static const ASN1_TEMPLATE IPAddressOrRange_ch_tt[] = { { .flags = 0, .tag = 0, .offset = offsetof(IPAddressOrRange, u.addressPrefix), .field_name = "u.addressPrefix", .item = &ASN1_BIT_STRING_it, }, { .flags = 0, .tag = 0, .offset = offsetof(IPAddressOrRange, u.addressRange), .field_name = "u.addressRange", .item = &IPAddressRange_it, }, }; const ASN1_ITEM IPAddressOrRange_it = { .itype = ASN1_ITYPE_CHOICE, .utype = offsetof(IPAddressOrRange, type), .templates = IPAddressOrRange_ch_tt, .tcount = sizeof(IPAddressOrRange_ch_tt) / sizeof(ASN1_TEMPLATE), .funcs = NULL, .size = sizeof(IPAddressOrRange), .sname = "IPAddressOrRange", }; static const ASN1_TEMPLATE IPAddressChoice_ch_tt[] = { { .flags = 0, .tag = 0, .offset = offsetof(IPAddressChoice, u.inherit), .field_name = "u.inherit", .item = &ASN1_NULL_it, }, { .flags = ASN1_TFLG_SEQUENCE_OF, .tag = 0, .offset = offsetof(IPAddressChoice, u.addressesOrRanges), .field_name = "u.addressesOrRanges", .item = &IPAddressOrRange_it, }, }; const ASN1_ITEM IPAddressChoice_it = { .itype = ASN1_ITYPE_CHOICE, .utype = offsetof(IPAddressChoice, type), .templates = IPAddressChoice_ch_tt, .tcount = sizeof(IPAddressChoice_ch_tt) / sizeof(ASN1_TEMPLATE), .funcs = NULL, .size = sizeof(IPAddressChoice), .sname = "IPAddressChoice", }; static const ASN1_TEMPLATE IPAddressFamily_seq_tt[] = { { .flags = 0, .tag = 0, .offset = offsetof(IPAddressFamily, addressFamily), .field_name = "addressFamily", .item = &ASN1_OCTET_STRING_it, }, { .flags = 0, .tag = 0, .offset = offsetof(IPAddressFamily, ipAddressChoice), .field_name = "ipAddressChoice", .item = &IPAddressChoice_it, }, }; const ASN1_ITEM IPAddressFamily_it = { .itype = ASN1_ITYPE_SEQUENCE, .utype = V_ASN1_SEQUENCE, .templates = IPAddressFamily_seq_tt, .tcount = sizeof(IPAddressFamily_seq_tt) / sizeof(ASN1_TEMPLATE), .funcs = NULL, .size = sizeof(IPAddressFamily), .sname = "IPAddressFamily", }; static const ASN1_TEMPLATE IPAddrBlocks_item_tt = { .flags = ASN1_TFLG_SEQUENCE_OF, .tag = 0, .offset = 0, .field_name = "IPAddrBlocks", .item = &IPAddressFamily_it, }; static const ASN1_ITEM IPAddrBlocks_it = { .itype = ASN1_ITYPE_PRIMITIVE, .utype = -1, .templates = &IPAddrBlocks_item_tt, .tcount = 0, .funcs = NULL, .size = 0, .sname = "IPAddrBlocks", }; IPAddressRange * d2i_IPAddressRange(IPAddressRange **a, const unsigned char **in, long len) { return (IPAddressRange *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, &IPAddressRange_it); } int i2d_IPAddressRange(IPAddressRange *a, unsigned char **out) { return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressRange_it); } IPAddressRange * IPAddressRange_new(void) { return (IPAddressRange *)ASN1_item_new(&IPAddressRange_it); } void IPAddressRange_free(IPAddressRange *a) { ASN1_item_free((ASN1_VALUE *)a, &IPAddressRange_it); } IPAddressOrRange * d2i_IPAddressOrRange(IPAddressOrRange **a, const unsigned char **in, long len) { return (IPAddressOrRange *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, &IPAddressOrRange_it); } int i2d_IPAddressOrRange(IPAddressOrRange *a, unsigned char **out) { return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressOrRange_it); } IPAddressOrRange * IPAddressOrRange_new(void) { return (IPAddressOrRange *)ASN1_item_new(&IPAddressOrRange_it); } void IPAddressOrRange_free(IPAddressOrRange *a) { ASN1_item_free((ASN1_VALUE *)a, &IPAddressOrRange_it); } IPAddressChoice * d2i_IPAddressChoice(IPAddressChoice **a, const unsigned char **in, long len) { return (IPAddressChoice *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, &IPAddressChoice_it); } int i2d_IPAddressChoice(IPAddressChoice *a, unsigned char **out) { return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressChoice_it); } IPAddressChoice * IPAddressChoice_new(void) { return (IPAddressChoice *)ASN1_item_new(&IPAddressChoice_it); } void IPAddressChoice_free(IPAddressChoice *a) { ASN1_item_free((ASN1_VALUE *)a, &IPAddressChoice_it); } IPAddressFamily * d2i_IPAddressFamily(IPAddressFamily **a, const unsigned char **in, long len) { return (IPAddressFamily *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, &IPAddressFamily_it); } int i2d_IPAddressFamily(IPAddressFamily *a, unsigned char **out) { return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressFamily_it); } IPAddressFamily * IPAddressFamily_new(void) { return (IPAddressFamily *)ASN1_item_new(&IPAddressFamily_it); } void IPAddressFamily_free(IPAddressFamily *a) { ASN1_item_free((ASN1_VALUE *)a, &IPAddressFamily_it); } /* * Convenience accessors for IPAddressFamily. */ static int IPAddressFamily_type(IPAddressFamily *af) { /* XXX - can af->ipAddressChoice == NULL actually happen? */ if (af == NULL || af->ipAddressChoice == NULL) return -1; switch (af->ipAddressChoice->type) { case IPAddressChoice_inherit: case IPAddressChoice_addressesOrRanges: return af->ipAddressChoice->type; default: return -1; } } static IPAddressOrRanges * IPAddressFamily_addressesOrRanges(IPAddressFamily *af) { if (IPAddressFamily_type(af) == IPAddressChoice_addressesOrRanges) return af->ipAddressChoice->u.addressesOrRanges; return NULL; } static ASN1_NULL * IPAddressFamily_inheritance(IPAddressFamily *af) { if (IPAddressFamily_type(af) == IPAddressChoice_inherit) return af->ipAddressChoice->u.inherit; return NULL; } static int IPAddressFamily_set_inheritance(IPAddressFamily *af) { if (IPAddressFamily_addressesOrRanges(af) != NULL) return 0; if (IPAddressFamily_inheritance(af) != NULL) return 1; if ((af->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) return 0; af->ipAddressChoice->type = IPAddressChoice_inherit; return 1; } /* * How much buffer space do we need for a raw address? */ #define ADDR_RAW_BUF_LEN 16 /* * What's the address length associated with this AFI? */ static int length_from_afi(const unsigned afi) { switch (afi) { case IANA_AFI_IPV4: return 4; case IANA_AFI_IPV6: return 16; default: return 0; } } /* * Get AFI and optional SAFI from an IPAddressFamily. All three out arguments * are optional; if |out_safi| is non-NULL, |safi_is_set| must be non-NULL. */ static int IPAddressFamily_afi_safi(const IPAddressFamily *af, uint16_t *out_afi, uint8_t *out_safi, int *safi_is_set) { CBS cbs; uint16_t afi; uint8_t safi = 0; int got_safi = 0; CBS_init(&cbs, af->addressFamily->data, af->addressFamily->length); if (!CBS_get_u16(&cbs, &afi)) return 0; /* Fetch the optional SAFI. */ if (CBS_len(&cbs) != 0) { if (!CBS_get_u8(&cbs, &safi)) return 0; got_safi = 1; } /* If there's anything left, it's garbage. */ if (CBS_len(&cbs) != 0) return 0; /* XXX - error on reserved AFI/SAFI? */ if (out_afi != NULL) *out_afi = afi; if (out_safi != NULL) { *out_safi = safi; *safi_is_set = got_safi; } return 1; } static int IPAddressFamily_afi(const IPAddressFamily *af, uint16_t *out_afi) { return IPAddressFamily_afi_safi(af, out_afi, NULL, NULL); } static int IPAddressFamily_afi_is_valid(const IPAddressFamily *af) { return IPAddressFamily_afi_safi(af, NULL, NULL, NULL); } static int IPAddressFamily_afi_length(const IPAddressFamily *af, int *out_length) { uint16_t afi; *out_length = 0; if (!IPAddressFamily_afi(af, &afi)) return 0; *out_length = length_from_afi(afi); return 1; } #define MINIMUM(a, b) (((a) < (b)) ? (a) : (b)) /* * Sort comparison function for a sequence of IPAddressFamily. * * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about * the ordering: I can read it as meaning that IPv6 without a SAFI * comes before IPv4 with a SAFI, which seems pretty weird. The * examples in appendix B suggest that the author intended the * null-SAFI rule to apply only within a single AFI, which is what I * would have expected and is what the following code implements. */ static int IPAddressFamily_cmp(const IPAddressFamily *const *a_, const IPAddressFamily *const *b_) { const ASN1_OCTET_STRING *a = (*a_)->addressFamily; const ASN1_OCTET_STRING *b = (*b_)->addressFamily; int len, cmp; len = MINIMUM(a->length, b->length); if ((cmp = memcmp(a->data, b->data, len)) != 0) return cmp; return a->length - b->length; } static IPAddressFamily * IPAddressFamily_find_in_parent(IPAddrBlocks *parent, IPAddressFamily *child_af) { int index; (void)sk_IPAddressFamily_set_cmp_func(parent, IPAddressFamily_cmp); if ((index = sk_IPAddressFamily_find(parent, child_af)) < 0) return NULL; return sk_IPAddressFamily_value(parent, index); } /* * Extract the AFI from an IPAddressFamily. * * This is public API. It uses the reserved AFI 0 as an in-band error * while it doesn't care about the reserved AFI 65535... */ unsigned int X509v3_addr_get_afi(const IPAddressFamily *af) { uint16_t afi; /* * XXX are these NULL checks really sensible? If af is non-NULL, it * should have both addressFamily and ipAddressChoice... */ if (af == NULL || af->addressFamily == NULL || af->addressFamily->data == NULL) return 0; if (!IPAddressFamily_afi(af, &afi)) return 0; return afi; } /* * Expand the bitstring form (RFC 3779, section 2.1.2) of an address into * a raw byte array. At the moment this is coded for simplicity, not speed. * * Unused bits in the last octet of |bs| and all bits in subsequent bytes * of |addr| are set to 0 or 1 depending on whether |fill| is 0 or not. */ static int addr_expand(unsigned char *addr, const ASN1_BIT_STRING *bs, const int length, uint8_t fill) { if (bs->length < 0 || bs->length > length) return 0; if (fill != 0) fill = 0xff; if (bs->length > 0) { /* XXX - shouldn't this check ASN1_STRING_FLAG_BITS_LEFT? */ uint8_t unused_bits = bs->flags & 7; uint8_t mask = (1 << unused_bits) - 1; memcpy(addr, bs->data, bs->length); if (fill == 0) addr[bs->length - 1] &= ~mask; else addr[bs->length - 1] |= mask; } memset(addr + bs->length, fill, length - bs->length); return 1; } /* * Extract the prefix length from a bitstring: 8 * length - unused bits. */ #define addr_prefix_len(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) /* * i2r handler for one address bitstring. */ static int i2r_address(BIO *out, const unsigned afi, const unsigned char fill, const ASN1_BIT_STRING *bs) { unsigned char addr[ADDR_RAW_BUF_LEN]; int i, n; if (bs->length < 0) return 0; switch (afi) { case IANA_AFI_IPV4: if (!addr_expand(addr, bs, 4, fill)) return 0; BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); break; case IANA_AFI_IPV6: if (!addr_expand(addr, bs, 16, fill)) return 0; for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; n -= 2) continue; for (i = 0; i < n; i += 2) BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1], (i < 14 ? ":" : "")); if (i < 16) BIO_puts(out, ":"); if (i == 0) BIO_puts(out, ":"); break; default: for (i = 0; i < bs->length; i++) BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); BIO_printf(out, "[%d]", (int)(bs->flags & 7)); break; } return 1; } /* * i2r handler for a sequence of addresses and ranges. */ static int i2r_IPAddressOrRanges(BIO *out, const int indent, const IPAddressOrRanges *aors, const unsigned afi) { const IPAddressOrRange *aor; const ASN1_BIT_STRING *prefix; const IPAddressRange *range; int i; for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { aor = sk_IPAddressOrRange_value(aors, i); BIO_printf(out, "%*s", indent, ""); switch (aor->type) { case IPAddressOrRange_addressPrefix: prefix = aor->u.addressPrefix; if (!i2r_address(out, afi, 0x00, prefix)) return 0; BIO_printf(out, "/%d\n", addr_prefix_len(prefix)); continue; case IPAddressOrRange_addressRange: range = aor->u.addressRange; if (!i2r_address(out, afi, 0x00, range->min)) return 0; BIO_puts(out, "-"); if (!i2r_address(out, afi, 0xff, range->max)) return 0; BIO_puts(out, "\n"); continue; } } return 1; } /* * i2r handler for an IPAddrBlocks extension. */ static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, void *ext, BIO *out, int indent) { const IPAddrBlocks *addr = ext; IPAddressFamily *af; uint16_t afi; uint8_t safi; int i, safi_is_set; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { af = sk_IPAddressFamily_value(addr, i); if (!IPAddressFamily_afi_safi(af, &afi, &safi, &safi_is_set)) goto print_addresses; switch (afi) { case IANA_AFI_IPV4: BIO_printf(out, "%*sIPv4", indent, ""); break; case IANA_AFI_IPV6: BIO_printf(out, "%*sIPv6", indent, ""); break; default: BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); break; } if (safi_is_set) { switch (safi) { case 1: BIO_puts(out, " (Unicast)"); break; case 2: BIO_puts(out, " (Multicast)"); break; case 3: BIO_puts(out, " (Unicast/Multicast)"); break; case 4: BIO_puts(out, " (MPLS)"); break; case 64: BIO_puts(out, " (Tunnel)"); break; case 65: BIO_puts(out, " (VPLS)"); break; case 66: BIO_puts(out, " (BGP MDT)"); break; case 128: BIO_puts(out, " (MPLS-labeled VPN)"); break; default: BIO_printf(out, " (Unknown SAFI %u)", safi); break; } } print_addresses: switch (IPAddressFamily_type(af)) { case IPAddressChoice_inherit: BIO_puts(out, ": inherit\n"); break; case IPAddressChoice_addressesOrRanges: BIO_puts(out, ":\n"); if (!i2r_IPAddressOrRanges(out, indent + 2, IPAddressFamily_addressesOrRanges(af), afi)) return 0; break; /* XXX - how should we handle -1 here? */ } } return 1; } /* * Sort comparison function for a sequence of IPAddressOrRange * elements. * * There's no sane answer we can give if addr_expand() fails, and an * assertion failure on externally supplied data is seriously uncool, * so we just arbitrarily declare that if given invalid inputs this * function returns -1. If this messes up your preferred sort order * for garbage input, tough noogies. */ static int IPAddressOrRange_cmp(const IPAddressOrRange *a, const IPAddressOrRange *b, const int length) { unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; int prefix_len_a = 0, prefix_len_b = 0; int r; switch (a->type) { case IPAddressOrRange_addressPrefix: if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) return -1; prefix_len_a = addr_prefix_len(a->u.addressPrefix); break; case IPAddressOrRange_addressRange: if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) return -1; prefix_len_a = length * 8; break; } switch (b->type) { case IPAddressOrRange_addressPrefix: if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) return -1; prefix_len_b = addr_prefix_len(b->u.addressPrefix); break; case IPAddressOrRange_addressRange: if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) return -1; prefix_len_b = length * 8; break; } if ((r = memcmp(addr_a, addr_b, length)) != 0) return r; else return prefix_len_a - prefix_len_b; } /* * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() * comparison routines are only allowed two arguments. */ static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a, const IPAddressOrRange *const *b) { return IPAddressOrRange_cmp(*a, *b, 4); } /* * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() * comparison routines are only allowed two arguments. */ static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a, const IPAddressOrRange *const *b) { return IPAddressOrRange_cmp(*a, *b, 16); } /* * Calculate whether a range collapses to a prefix. * See last paragraph of RFC 3779 2.2.3.7. * * It's the caller's responsibility to ensure that min <= max. */ static int range_should_be_prefix(const unsigned char *min, const unsigned char *max, const int length) { unsigned char mask; int i, j; for (i = 0; i < length && min[i] == max[i]; i++) continue; for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xff; j--) continue; if (i < j) return -1; if (i > j) return i * 8; mask = min[i] ^ max[i]; switch (mask) { case 0x01: j = 7; break; case 0x03: j = 6; break; case 0x07: j = 5; break; case 0x0f: j = 4; break; case 0x1f: j = 3; break; case 0x3f: j = 2; break; case 0x7f: j = 1; break; default: return -1; } if ((min[i] & mask) != 0 || (max[i] & mask) != mask) return -1; else return i * 8 + j; } /* * Construct a prefix. */ static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr, unsigned int afi, int prefix_len) { IPAddressOrRange *aor; int afi_len, byte_len, bit_len, max_len; if (prefix_len < 0) return 0; max_len = 16; if ((afi_len = length_from_afi(afi)) > 0) max_len = afi_len; if (prefix_len > 8 * max_len) return 0; byte_len = (prefix_len + 7) / 8; bit_len = prefix_len % 8; if ((aor = IPAddressOrRange_new()) == NULL) return 0; aor->type = IPAddressOrRange_addressPrefix; if ((aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) goto err; if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, byte_len)) goto err; aor->u.addressPrefix->flags &= ~7; aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (bit_len > 0) { aor->u.addressPrefix->data[byte_len - 1] &= ~(0xff >> bit_len); aor->u.addressPrefix->flags |= 8 - bit_len; } *result = aor; return 1; err: IPAddressOrRange_free(aor); return 0; } /* * Construct a range. If it can be expressed as a prefix, * return a prefix instead. Doing this here simplifies * the rest of the code considerably. */ static int make_addressRange(IPAddressOrRange **result, unsigned char *min, unsigned char *max, unsigned int afi, int length) { IPAddressOrRange *aor; int i, prefix_len; if (memcmp(min, max, length) > 0) return 0; if ((prefix_len = range_should_be_prefix(min, max, length)) >= 0) return make_addressPrefix(result, min, afi, prefix_len); if ((aor = IPAddressOrRange_new()) == NULL) return 0; aor->type = IPAddressOrRange_addressRange; if ((aor->u.addressRange = IPAddressRange_new()) == NULL) goto err; for (i = length; i > 0 && min[i - 1] == 0x00; --i) continue; if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) goto err; aor->u.addressRange->min->flags &= ~7; aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (i > 0) { unsigned char b = min[i - 1]; int j = 1; while ((b & (0xffU >> j)) != 0) ++j; aor->u.addressRange->min->flags |= 8 - j; } for (i = length; i > 0 && max[i - 1] == 0xff; --i) continue; if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) goto err; aor->u.addressRange->max->flags &= ~7; aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; if (i > 0) { unsigned char b = max[i - 1]; int j = 1; while ((b & (0xffU >> j)) != (0xffU >> j)) ++j; aor->u.addressRange->max->flags |= 8 - j; } *result = aor; return 1; err: IPAddressOrRange_free(aor); return 0; } /* * Construct a new address family or find an existing one. */ static IPAddressFamily * make_IPAddressFamily(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *af = NULL; CBB cbb; CBS cbs; uint8_t *key = NULL; size_t keylen; int i; if (!CBB_init(&cbb, 0)) goto err; /* XXX - should afi <= 65535 and *safi <= 255 be checked here? */ if (!CBB_add_u16(&cbb, afi)) goto err; if (safi != NULL) { if (!CBB_add_u8(&cbb, *safi)) goto err; } if (!CBB_finish(&cbb, &key, &keylen)) goto err; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { af = sk_IPAddressFamily_value(addr, i); CBS_init(&cbs, af->addressFamily->data, af->addressFamily->length); if (CBS_mem_equal(&cbs, key, keylen)) goto done; } if ((af = IPAddressFamily_new()) == NULL) goto err; if (!ASN1_OCTET_STRING_set(af->addressFamily, key, keylen)) goto err; if (!sk_IPAddressFamily_push(addr, af)) goto err; done: free(key); return af; err: CBB_cleanup(&cbb); free(key); IPAddressFamily_free(af); return NULL; } /* * Add an inheritance element. */ int X509v3_addr_add_inherit(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *af; if ((af = make_IPAddressFamily(addr, afi, safi)) == NULL) return 0; return IPAddressFamily_set_inheritance(af); } /* * Construct an IPAddressOrRange sequence, or return an existing one. */ static IPAddressOrRanges * make_prefix_or_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *af; IPAddressOrRanges *aors = NULL; if ((af = make_IPAddressFamily(addr, afi, safi)) == NULL) return NULL; if (IPAddressFamily_inheritance(af) != NULL) return NULL; if ((aors = IPAddressFamily_addressesOrRanges(af)) != NULL) return aors; if ((aors = sk_IPAddressOrRange_new_null()) == NULL) return NULL; switch (afi) { case IANA_AFI_IPV4: (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); break; case IANA_AFI_IPV6: (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); break; } af->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; af->ipAddressChoice->u.addressesOrRanges = aors; return aors; } /* * Add a prefix. */ int X509v3_addr_add_prefix(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, unsigned char *a, const int prefix_len) { IPAddressOrRanges *aors; IPAddressOrRange *aor; if ((aors = make_prefix_or_range(addr, afi, safi)) == NULL) return 0; if (!make_addressPrefix(&aor, a, afi, prefix_len)) return 0; if (sk_IPAddressOrRange_push(aors, aor) <= 0) { IPAddressOrRange_free(aor); return 0; } return 1; } /* * Add a range. */ int X509v3_addr_add_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, unsigned char *min, unsigned char *max) { IPAddressOrRanges *aors; IPAddressOrRange *aor; int length; if ((aors = make_prefix_or_range(addr, afi, safi)) == NULL) return 0; length = length_from_afi(afi); if (!make_addressRange(&aor, min, max, afi, length)) return 0; if (sk_IPAddressOrRange_push(aors, aor) <= 0) { IPAddressOrRange_free(aor); return 0; } return 1; } static int extract_min_max_bitstr(IPAddressOrRange *aor, ASN1_BIT_STRING **out_min, ASN1_BIT_STRING **out_max) { switch (aor->type) { case IPAddressOrRange_addressPrefix: *out_min = *out_max = aor->u.addressPrefix; return 1; case IPAddressOrRange_addressRange: *out_min = aor->u.addressRange->min; *out_max = aor->u.addressRange->max; return 1; default: return 0; } } /* * Extract min and max values from an IPAddressOrRange. */ static int extract_min_max(IPAddressOrRange *aor, unsigned char *min, unsigned char *max, int length) { ASN1_BIT_STRING *min_bitstr, *max_bitstr; if (aor == NULL || min == NULL || max == NULL) return 0; if (!extract_min_max_bitstr(aor, &min_bitstr, &max_bitstr)) return 0; if (!addr_expand(min, min_bitstr, length, 0)) return 0; return addr_expand(max, max_bitstr, length, 1); } /* * Public wrapper for extract_min_max(). */ int X509v3_addr_get_range(IPAddressOrRange *aor, const unsigned afi, unsigned char *min, unsigned char *max, const int length) { int afi_len; if ((afi_len = length_from_afi(afi)) == 0) return 0; if (length < afi_len) return 0; if (!extract_min_max(aor, min, max, afi_len)) return 0; return afi_len; } /* * Check whether an IPAddrBLocks is in canonical form. */ int X509v3_addr_is_canonical(IPAddrBlocks *addr) { unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; IPAddressFamily *af; IPAddressOrRanges *aors; IPAddressOrRange *aor, *aor_a, *aor_b; int i, j, k, length; /* * Empty extension is canonical. */ if (addr == NULL) return 1; /* * Check whether the top-level list is in order. */ for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); /* Check that both have valid AFIs before comparing them. */ if (!IPAddressFamily_afi_is_valid(a)) return 0; if (!IPAddressFamily_afi_is_valid(b)) return 0; if (IPAddressFamily_cmp(&a, &b) >= 0) return 0; } /* * Top level's ok, now check each address family. */ for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { af = sk_IPAddressFamily_value(addr, i); if (!IPAddressFamily_afi_length(af, &length)) return 0; /* * If this family has an inheritance element, it is canonical. */ if (IPAddressFamily_inheritance(af) != NULL) continue; /* * If this family has neither an inheritance element nor an * addressesOrRanges, we don't know what this is. */ if ((aors = IPAddressFamily_addressesOrRanges(af)) == NULL) return 0; if (sk_IPAddressOrRange_num(aors) == 0) return 0; for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { aor_a = sk_IPAddressOrRange_value(aors, j); aor_b = sk_IPAddressOrRange_value(aors, j + 1); /* * XXX - check that both are either a prefix or a range. */ if (!extract_min_max(aor_a, a_min, a_max, length) || !extract_min_max(aor_b, b_min, b_max, length)) return 0; /* * Punt misordered list, overlapping start, or inverted * range. */ if (memcmp(a_min, b_min, length) >= 0 || memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0) return 0; /* * Punt if adjacent or overlapping. Check for adjacency * by subtracting one from b_min first. */ for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) continue; if (memcmp(a_max, b_min, length) >= 0) return 0; /* * Check for range that should be expressed as a prefix. */ if (aor_a->type == IPAddressOrRange_addressPrefix) continue; if (range_should_be_prefix(a_min, a_max, length) >= 0) return 0; } /* * Check final range to see if it's inverted or should be a * prefix. */ aor = sk_IPAddressOrRange_value(aors, j); if (aor->type == IPAddressOrRange_addressRange) { if (!extract_min_max(aor, a_min, a_max, length)) return 0; if (memcmp(a_min, a_max, length) > 0) return 0; if (range_should_be_prefix(a_min, a_max, length) >= 0) return 0; } } /* * If we made it through all that, we're happy. */ return 1; } /* * Whack an IPAddressOrRanges into canonical form. */ static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, const unsigned afi) { IPAddressOrRange *a, *b, *merged; unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; int i, j, length; length = length_from_afi(afi); /* * Sort the IPAddressOrRanges sequence. */ sk_IPAddressOrRange_sort(aors); /* * Clean up representation issues, punt on duplicates or overlaps. */ for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { a = sk_IPAddressOrRange_value(aors, i); b = sk_IPAddressOrRange_value(aors, i + 1); if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length)) return 0; /* * Punt inverted ranges. */ if (memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0) return 0; /* * Punt overlaps. */ if (memcmp(a_max, b_min, length) >= 0) return 0; /* * Merge if a and b are adjacent. We check for * adjacency by subtracting one from b_min first. */ for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) continue; if (memcmp(a_max, b_min, length) != 0) continue; if (!make_addressRange(&merged, a_min, b_max, afi, length)) return 0; sk_IPAddressOrRange_set(aors, i, merged); (void)sk_IPAddressOrRange_delete(aors, i + 1); IPAddressOrRange_free(a); IPAddressOrRange_free(b); i--; } /* * Check for inverted final range. */ a = sk_IPAddressOrRange_value(aors, i); if (a != NULL && a->type == IPAddressOrRange_addressRange) { if (!extract_min_max(a, a_min, a_max, length)) return 0; if (memcmp(a_min, a_max, length) > 0) return 0; } return 1; } /* * Whack an IPAddrBlocks extension into canonical form. */ int X509v3_addr_canonize(IPAddrBlocks *addr) { IPAddressFamily *af; IPAddressOrRanges *aors; uint16_t afi; int i; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { af = sk_IPAddressFamily_value(addr, i); /* Check AFI/SAFI here - IPAddressFamily_cmp() can't error. */ if (!IPAddressFamily_afi(af, &afi)) return 0; if ((aors = IPAddressFamily_addressesOrRanges(af)) == NULL) continue; if (!IPAddressOrRanges_canonize(aors, afi)) return 0; } (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); sk_IPAddressFamily_sort(addr); return X509v3_addr_is_canonical(addr); } /* * v2i handler for the IPAddrBlocks extension. */ static void * v2i_IPAddrBlocks(const struct v3_ext_method *method, struct v3_ext_ctx *ctx, STACK_OF(CONF_VALUE)*values) { static const char v4addr_chars[] = "0123456789."; static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; IPAddrBlocks *addr = NULL; char *s = NULL, *t; int i; if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { X509V3error(ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(values); i++) { CONF_VALUE *val = sk_CONF_VALUE_value(values, i); unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; unsigned afi, *safi = NULL, safi_; const char *addr_chars = NULL; const char *errstr; int prefix_len, i1, i2, delim, length; if (!name_cmp(val->name, "IPv4")) { afi = IANA_AFI_IPV4; } else if (!name_cmp(val->name, "IPv6")) { afi = IANA_AFI_IPV6; } else if (!name_cmp(val->name, "IPv4-SAFI")) { afi = IANA_AFI_IPV4; safi = &safi_; } else if (!name_cmp(val->name, "IPv6-SAFI")) { afi = IANA_AFI_IPV6; safi = &safi_; } else { X509V3error(X509V3_R_EXTENSION_NAME_ERROR); X509V3_conf_err(val); goto err; } switch (afi) { case IANA_AFI_IPV4: addr_chars = v4addr_chars; break; case IANA_AFI_IPV6: addr_chars = v6addr_chars; break; } length = length_from_afi(afi); /* * Handle SAFI, if any, and strdup() so we can null-terminate * the other input values. */ if (safi != NULL) { unsigned long parsed_safi; int saved_errno = errno; errno = 0; parsed_safi = strtoul(val->value, &t, 0); /* Value must be present, then a tab, space or colon. */ if (val->value[0] == '\0' || (*t != '\t' && *t != ' ' && *t != ':')) { X509V3error(X509V3_R_INVALID_SAFI); X509V3_conf_err(val); goto err; } /* Range and overflow check. */ if ((errno == ERANGE && parsed_safi == ULONG_MAX) || parsed_safi > 0xff) { X509V3error(X509V3_R_INVALID_SAFI); X509V3_conf_err(val); goto err; } errno = saved_errno; *safi = parsed_safi; /* Check possible whitespace is followed by a colon. */ t += strspn(t, " \t"); if (*t != ':') { X509V3error(X509V3_R_INVALID_SAFI); X509V3_conf_err(val); goto err; } /* Skip over colon. */ t++; /* Then over any trailing whitespace. */ t += strspn(t, " \t"); s = strdup(t); } else { s = strdup(val->value); } if (s == NULL) { X509V3error(ERR_R_MALLOC_FAILURE); goto err; } /* * Check for inheritance. Not worth additional complexity to * optimize this (seldom-used) case. */ if (strcmp(s, "inherit") == 0) { if (!X509v3_addr_add_inherit(addr, afi, safi)) { X509V3error(X509V3_R_INVALID_INHERITANCE); X509V3_conf_err(val); goto err; } free(s); s = NULL; continue; } i1 = strspn(s, addr_chars); i2 = i1 + strspn(s + i1, " \t"); delim = s[i2++]; s[i1] = '\0'; if (a2i_ipadd(min, s) != length) { X509V3error(X509V3_R_INVALID_IPADDRESS); X509V3_conf_err(val); goto err; } switch (delim) { case '/': /* length contains the size of the address in bytes. */ if (length != 4 && length != 16) goto err; prefix_len = strtonum(s + i2, 0, 8 * length, &errstr); if (errstr != NULL) { X509V3error(X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefix_len)) { X509V3error(ERR_R_MALLOC_FAILURE); goto err; } break; case '-': i1 = i2 + strspn(s + i2, " \t"); i2 = i1 + strspn(s + i1, addr_chars); if (i1 == i2 || s[i2] != '\0') { X509V3error(X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } if (a2i_ipadd(max, s + i1) != length) { X509V3error(X509V3_R_INVALID_IPADDRESS); X509V3_conf_err(val); goto err; } if (memcmp(min, max, length_from_afi(afi)) > 0) { X509V3error(X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } if (!X509v3_addr_add_range(addr, afi, safi, min, max)) { X509V3error(ERR_R_MALLOC_FAILURE); goto err; } break; case '\0': if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { X509V3error(ERR_R_MALLOC_FAILURE); goto err; } break; default: X509V3error(X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_err(val); goto err; } free(s); s = NULL; } /* * Canonize the result, then we're done. */ if (!X509v3_addr_canonize(addr)) goto err; return addr; err: free(s); sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); return NULL; } /* * OpenSSL dispatch */ const X509V3_EXT_METHOD v3_addr = { .ext_nid = NID_sbgp_ipAddrBlock, .ext_flags = 0, .it = &IPAddrBlocks_it, .ext_new = NULL, .ext_free = NULL, .d2i = NULL, .i2d = NULL, .i2s = NULL, .s2i = NULL, .i2v = NULL, .v2i = v2i_IPAddrBlocks, .i2r = i2r_IPAddrBlocks, .r2i = NULL, .usr_data = NULL, }; /* * Figure out whether extension uses inheritance. */ int X509v3_addr_inherits(IPAddrBlocks *addr) { IPAddressFamily *af; int i; if (addr == NULL) return 0; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { af = sk_IPAddressFamily_value(addr, i); if (IPAddressFamily_inheritance(af) != NULL) return 1; } return 0; } /* * Figure out whether parent contains child. * * This only works correctly if both parent and child are in canonical form. */ static int addr_contains(IPAddressOrRanges *parent, IPAddressOrRanges *child, int length) { IPAddressOrRange *child_aor, *parent_aor; uint8_t parent_min[ADDR_RAW_BUF_LEN], parent_max[ADDR_RAW_BUF_LEN]; uint8_t child_min[ADDR_RAW_BUF_LEN], child_max[ADDR_RAW_BUF_LEN]; int p, c; if (child == NULL || parent == child) return 1; if (parent == NULL) return 0; p = 0; for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { child_aor = sk_IPAddressOrRange_value(child, c); if (!extract_min_max(child_aor, child_min, child_max, length)) return 0; for (;; p++) { if (p >= sk_IPAddressOrRange_num(parent)) return 0; parent_aor = sk_IPAddressOrRange_value(parent, p); if (!extract_min_max(parent_aor, parent_min, parent_max, length)) return 0; if (memcmp(parent_max, child_max, length) < 0) continue; if (memcmp(parent_min, child_min, length) > 0) return 0; break; } } return 1; } /* * Test whether |child| is a subset of |parent|. */ int X509v3_addr_subset(IPAddrBlocks *child, IPAddrBlocks *parent) { IPAddressFamily *child_af, *parent_af; IPAddressOrRanges *child_aor, *parent_aor; int i, length; if (child == NULL || child == parent) return 1; if (parent == NULL) return 0; if (X509v3_addr_inherits(child) || X509v3_addr_inherits(parent)) return 0; for (i = 0; i < sk_IPAddressFamily_num(child); i++) { child_af = sk_IPAddressFamily_value(child, i); parent_af = IPAddressFamily_find_in_parent(parent, child_af); if (parent_af == NULL) return 0; if (!IPAddressFamily_afi_length(parent_af, &length)) return 0; child_aor = IPAddressFamily_addressesOrRanges(child_af); parent_aor = IPAddressFamily_addressesOrRanges(parent_af); if (!addr_contains(parent_aor, child_aor, length)) return 0; } return 1; } static int verify_error(X509_STORE_CTX *ctx, X509 *cert, int error, int depth) { if (ctx == NULL) return 0; ctx->current_cert = cert; ctx->error = error; ctx->error_depth = depth; return ctx->verify_cb(0, ctx); } /* * Core code for RFC 3779 2.3 path validation. * * Returns 1 for success, 0 on error. * * When returning 0, ctx->error MUST be set to an appropriate value other than * X509_V_OK. */ static int addr_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509) *chain, IPAddrBlocks *ext) { IPAddrBlocks *child = NULL, *parent = NULL; IPAddressFamily *child_af, *parent_af; IPAddressOrRanges *child_aor, *parent_aor; X509 *cert = NULL; int depth = -1; int i; unsigned int length; int ret = 1; /* We need a non-empty chain to test against. */ if (sk_X509_num(chain) <= 0) goto err; /* We need either a store ctx or an extension to work with. */ if (ctx == NULL && ext == NULL) goto err; /* If there is a store ctx, it needs a verify_cb. */ if (ctx != NULL && ctx->verify_cb == NULL) goto err; /* * Figure out where to start. If we don't have an extension to check, * we're done. Otherwise, check canonical form and set up for walking * up the chain. */ if (ext == NULL) { depth = 0; cert = sk_X509_value(chain, depth); if ((ext = cert->rfc3779_addr) == NULL) goto done; } if (!X509v3_addr_is_canonical(ext)) { if ((ret = verify_error(ctx, cert, X509_V_ERR_INVALID_EXTENSION, depth)) == 0) goto done; } (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { X509V3error(ERR_R_MALLOC_FAILURE); if (ctx != NULL) ctx->error = X509_V_ERR_OUT_OF_MEM; ret = 0; goto done; } /* * Now walk up the chain. No cert may list resources that its parent * doesn't list. */ for (depth++; depth < sk_X509_num(chain); depth++) { cert = sk_X509_value(chain, depth); if ((parent = cert->rfc3779_addr) == NULL) { for (i = 0; i < sk_IPAddressFamily_num(child); i++) { child_af = sk_IPAddressFamily_value(child, i); if (IPAddressFamily_inheritance(child_af) != NULL) continue; if ((ret = verify_error(ctx, cert, X509_V_ERR_UNNESTED_RESOURCE, depth)) == 0) goto done; break; } continue; } if (!X509v3_addr_is_canonical(parent)) { if ((ret = verify_error(ctx, cert, X509_V_ERR_INVALID_EXTENSION, depth)) == 0) goto done; } /* * Check that the child's resources are covered by the parent. * Each covered resource is replaced with the parent's resource * covering it, so the next iteration will check that the * parent's resources are covered by the grandparent. */ for (i = 0; i < sk_IPAddressFamily_num(child); i++) { child_af = sk_IPAddressFamily_value(child, i); if ((parent_af = IPAddressFamily_find_in_parent(parent, child_af)) == NULL) { /* * If we have no match in the parent and the * child inherits, that's fine. */ if (IPAddressFamily_inheritance(child_af) != NULL) continue; /* Otherwise the child isn't covered. */ if ((ret = verify_error(ctx, cert, X509_V_ERR_UNNESTED_RESOURCE, depth)) == 0) goto done; break; } /* Parent inherits, nothing to do. */ if (IPAddressFamily_inheritance(parent_af) != NULL) continue; /* Child inherits. Use parent's address family. */ if (IPAddressFamily_inheritance(child_af) != NULL) { sk_IPAddressFamily_set(child, i, parent_af); continue; } child_aor = IPAddressFamily_addressesOrRanges(child_af); parent_aor = IPAddressFamily_addressesOrRanges(parent_af); /* * Child and parent are canonical and neither inherits. * If either addressesOrRanges is NULL, something's * very wrong. */ if (child_aor == NULL || parent_aor == NULL) goto err; if (!IPAddressFamily_afi_length(child_af, &length)) goto err; /* Now check containment and replace or error. */ if (addr_contains(parent_aor, child_aor, length)) { sk_IPAddressFamily_set(child, i, parent_af); continue; } if ((ret = verify_error(ctx, cert, X509_V_ERR_UNNESTED_RESOURCE, depth)) == 0) goto done; } } /* * Trust anchor can't inherit. */ if ((parent = cert->rfc3779_addr) != NULL) { for (i = 0; i < sk_IPAddressFamily_num(parent); i++) { parent_af = sk_IPAddressFamily_value(parent, i); if (IPAddressFamily_inheritance(parent_af) == NULL) continue; if ((ret = verify_error(ctx, cert, X509_V_ERR_UNNESTED_RESOURCE, depth)) == 0) goto done; } } done: sk_IPAddressFamily_free(child); return ret; err: sk_IPAddressFamily_free(child); if (ctx != NULL) ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } /* * RFC 3779 2.3 path validation -- called from X509_verify_cert(). */ int X509v3_addr_validate_path(X509_STORE_CTX *ctx) { if (sk_X509_num(ctx->chain) <= 0 || ctx->verify_cb == NULL) { ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } return addr_validate_path_internal(ctx, ctx->chain, NULL); } /* * RFC 3779 2.3 path validation of an extension. * Test whether chain covers extension. */ int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain, IPAddrBlocks *ext, int allow_inheritance) { if (ext == NULL) return 1; if (sk_X509_num(chain) <= 0) return 0; if (!allow_inheritance && X509v3_addr_inherits(ext)) return 0; return addr_validate_path_internal(NULL, chain, ext); } #endif /* OPENSSL_NO_RFC3779 */