/* $OpenBSD: e_aes_cbc_hmac_sha1.c,v 1.15 2019/04/03 15:33:37 tb Exp $ */ /* ==================================================================== * Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1) #include #include #include #include #include "evp_locl.h" #include "constant_time_locl.h" #define TLS1_1_VERSION 0x0302 typedef struct { AES_KEY ks; SHA_CTX head, tail, md; size_t payload_length; /* AAD length in decrypt case */ union { unsigned int tls_ver; unsigned char tls_aad[16]; /* 13 used */ } aux; } EVP_AES_HMAC_SHA1; #define NO_PAYLOAD_LENGTH ((size_t)-1) #if defined(AES_ASM) && ( \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) || \ defined(__INTEL__) ) #include "x86_arch.h" #if defined(__GNUC__) && __GNUC__>=2 # define BSWAP(x) ({ unsigned int r=(x); asm ("bswapl %0":"=r"(r):"0"(r)); r; }) #endif int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks, const AES_KEY *key, unsigned char iv[16], SHA_CTX *ctx, const void *in0); #define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data) static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *inkey, const unsigned char *iv, int enc) { EVP_AES_HMAC_SHA1 *key = data(ctx); int ret; if (enc) ret = aesni_set_encrypt_key(inkey, ctx->key_len * 8, &key->ks); else ret = aesni_set_decrypt_key(inkey, ctx->key_len * 8, &key->ks); SHA1_Init(&key->head); /* handy when benchmarking */ key->tail = key->head; key->md = key->head; key->payload_length = NO_PAYLOAD_LENGTH; return ret < 0 ? 0 : 1; } #define STITCHED_CALL #if !defined(STITCHED_CALL) #define aes_off 0 #endif void sha1_block_data_order (void *c, const void *p, size_t len); static void sha1_update(SHA_CTX *c, const void *data, size_t len) { const unsigned char *ptr = data; size_t res; if ((res = c->num)) { res = SHA_CBLOCK - res; if (len < res) res = len; SHA1_Update(c, ptr, res); ptr += res; len -= res; } res = len % SHA_CBLOCK; len -= res; if (len) { sha1_block_data_order(c, ptr, len / SHA_CBLOCK); ptr += len; c->Nh += len >> 29; c->Nl += len <<= 3; if (c->Nl < (unsigned int)len) c->Nh++; } if (res) SHA1_Update(c, ptr, res); } #ifdef SHA1_Update #undef SHA1_Update #endif #define SHA1_Update sha1_update static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_HMAC_SHA1 *key = data(ctx); unsigned int l; size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and later */ sha_off = 0; #if defined(STITCHED_CALL) size_t aes_off = 0, blocks; sha_off = SHA_CBLOCK - key->md.num; #endif key->payload_length = NO_PAYLOAD_LENGTH; if (len % AES_BLOCK_SIZE) return 0; if (ctx->encrypt) { if (plen == NO_PAYLOAD_LENGTH) plen = len; else if (len != ((plen + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)) return 0; else if (key->aux.tls_ver >= TLS1_1_VERSION) iv = AES_BLOCK_SIZE; #if defined(STITCHED_CALL) if (plen > (sha_off + iv) && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) { SHA1_Update(&key->md, in + iv, sha_off); aesni_cbc_sha1_enc(in, out, blocks, &key->ks, ctx->iv, &key->md, in + iv + sha_off); blocks *= SHA_CBLOCK; aes_off += blocks; sha_off += blocks; key->md.Nh += blocks >> 29; key->md.Nl += blocks <<= 3; if (key->md.Nl < (unsigned int)blocks) key->md.Nh++; } else { sha_off = 0; } #endif sha_off += iv; SHA1_Update(&key->md, in + sha_off, plen - sha_off); if (plen != len) { /* "TLS" mode of operation */ if (in != out) memcpy(out + aes_off, in + aes_off, plen - aes_off); /* calculate HMAC and append it to payload */ SHA1_Final(out + plen, &key->md); key->md = key->tail; SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH); SHA1_Final(out + plen, &key->md); /* pad the payload|hmac */ plen += SHA_DIGEST_LENGTH; for (l = len - plen - 1; plen < len; plen++) out[plen] = l; /* encrypt HMAC|padding at once */ aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off, &key->ks, ctx->iv, 1); } else { aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off, &key->ks, ctx->iv, 1); } } else { union { unsigned int u[SHA_DIGEST_LENGTH/sizeof(unsigned int)]; unsigned char c[32 + SHA_DIGEST_LENGTH]; } mac, *pmac; /* arrange cache line alignment */ pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32)); /* decrypt HMAC|padding at once */ aesni_cbc_encrypt(in, out, len, &key->ks, ctx->iv, 0); if (plen == 0 || plen == NO_PAYLOAD_LENGTH) { SHA1_Update(&key->md, out, len); } else if (plen < 4) { return 0; } else { /* "TLS" mode of operation */ size_t inp_len, mask, j, i; unsigned int res, maxpad, pad, bitlen; int ret = 1; union { unsigned int u[SHA_LBLOCK]; unsigned char c[SHA_CBLOCK]; } *data = (void *)key->md.data; if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3]) >= TLS1_1_VERSION) iv = AES_BLOCK_SIZE; if (len < (iv + SHA_DIGEST_LENGTH + 1)) return 0; /* omit explicit iv */ out += iv; len -= iv; /* figure out payload length */ pad = out[len - 1]; maxpad = len - (SHA_DIGEST_LENGTH + 1); maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8); maxpad &= 255; ret &= constant_time_ge(maxpad, pad); inp_len = len - (SHA_DIGEST_LENGTH + pad + 1); mask = (0 - ((inp_len - len) >> (sizeof(inp_len) * 8 - 1))); inp_len &= mask; ret &= (int)mask; key->aux.tls_aad[plen - 2] = inp_len >> 8; key->aux.tls_aad[plen - 1] = inp_len; /* calculate HMAC */ key->md = key->head; SHA1_Update(&key->md, key->aux.tls_aad, plen); #if 1 len -= SHA_DIGEST_LENGTH; /* amend mac */ if (len >= (256 + SHA_CBLOCK)) { j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK); j += SHA_CBLOCK - key->md.num; SHA1_Update(&key->md, out, j); out += j; len -= j; inp_len -= j; } /* but pretend as if we hashed padded payload */ bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */ #ifdef BSWAP bitlen = BSWAP(bitlen); #else mac.c[0] = 0; mac.c[1] = (unsigned char)(bitlen >> 16); mac.c[2] = (unsigned char)(bitlen >> 8); mac.c[3] = (unsigned char)bitlen; bitlen = mac.u[0]; #endif pmac->u[0] = 0; pmac->u[1] = 0; pmac->u[2] = 0; pmac->u[3] = 0; pmac->u[4] = 0; for (res = key->md.num, j = 0; j < len; j++) { size_t c = out[j]; mask = (j - inp_len) >> (sizeof(j) * 8 - 8); c &= mask; c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8)); data->c[res++] = (unsigned char)c; if (res != SHA_CBLOCK) continue; /* j is not incremented yet */ mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1)); data->u[SHA_LBLOCK - 1] |= bitlen&mask; sha1_block_data_order(&key->md, data, 1); mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1)); pmac->u[0] |= key->md.h0 & mask; pmac->u[1] |= key->md.h1 & mask; pmac->u[2] |= key->md.h2 & mask; pmac->u[3] |= key->md.h3 & mask; pmac->u[4] |= key->md.h4 & mask; res = 0; } for (i = res; i < SHA_CBLOCK; i++, j++) data->c[i] = 0; if (res > SHA_CBLOCK - 8) { mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1)); data->u[SHA_LBLOCK - 1] |= bitlen & mask; sha1_block_data_order(&key->md, data, 1); mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); pmac->u[0] |= key->md.h0 & mask; pmac->u[1] |= key->md.h1 & mask; pmac->u[2] |= key->md.h2 & mask; pmac->u[3] |= key->md.h3 & mask; pmac->u[4] |= key->md.h4 & mask; memset(data, 0, SHA_CBLOCK); j += 64; } data->u[SHA_LBLOCK - 1] = bitlen; sha1_block_data_order(&key->md, data, 1); mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); pmac->u[0] |= key->md.h0 & mask; pmac->u[1] |= key->md.h1 & mask; pmac->u[2] |= key->md.h2 & mask; pmac->u[3] |= key->md.h3 & mask; pmac->u[4] |= key->md.h4 & mask; #ifdef BSWAP pmac->u[0] = BSWAP(pmac->u[0]); pmac->u[1] = BSWAP(pmac->u[1]); pmac->u[2] = BSWAP(pmac->u[2]); pmac->u[3] = BSWAP(pmac->u[3]); pmac->u[4] = BSWAP(pmac->u[4]); #else for (i = 0; i < 5; i++) { res = pmac->u[i]; pmac->c[4 * i + 0] = (unsigned char)(res >> 24); pmac->c[4 * i + 1] = (unsigned char)(res >> 16); pmac->c[4 * i + 2] = (unsigned char)(res >> 8); pmac->c[4 * i + 3] = (unsigned char)res; } #endif len += SHA_DIGEST_LENGTH; #else SHA1_Update(&key->md, out, inp_len); res = key->md.num; SHA1_Final(pmac->c, &key->md); { unsigned int inp_blocks, pad_blocks; /* but pretend as if we hashed padded payload */ inp_blocks = 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); res += (unsigned int)(len - inp_len); pad_blocks = res / SHA_CBLOCK; res %= SHA_CBLOCK; pad_blocks += 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); for (; inp_blocks < pad_blocks; inp_blocks++) sha1_block_data_order(&key->md, data, 1); } #endif key->md = key->tail; SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH); SHA1_Final(pmac->c, &key->md); /* verify HMAC */ out += inp_len; len -= inp_len; #if 1 { unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH; size_t off = out - p; unsigned int c, cmask; maxpad += SHA_DIGEST_LENGTH; for (res = 0, i = 0, j = 0; j < maxpad; j++) { c = p[j]; cmask = ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) * 8 - 1); res |= (c ^ pad) & ~cmask; /* ... and padding */ cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1); res |= (c ^ pmac->c[i]) & cmask; i += 1 & cmask; } maxpad -= SHA_DIGEST_LENGTH; res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); ret &= (int)~res; } #else for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++) res |= out[i] ^ pmac->c[i]; res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); ret &= (int)~res; /* verify padding */ pad = (pad & ~res) | (maxpad & res); out = out + len - 1 - pad; for (res = 0, i = 0; i < pad; i++) res |= out[i] ^ pad; res = (0 - res) >> (sizeof(res) * 8 - 1); ret &= (int)~res; #endif return ret; } } return 1; } static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { EVP_AES_HMAC_SHA1 *key = data(ctx); switch (type) { case EVP_CTRL_AEAD_SET_MAC_KEY: { unsigned int i; unsigned char hmac_key[64]; memset(hmac_key, 0, sizeof(hmac_key)); if (arg > (int)sizeof(hmac_key)) { SHA1_Init(&key->head); SHA1_Update(&key->head, ptr, arg); SHA1_Final(hmac_key, &key->head); } else { memcpy(hmac_key, ptr, arg); } for (i = 0; i < sizeof(hmac_key); i++) hmac_key[i] ^= 0x36; /* ipad */ SHA1_Init(&key->head); SHA1_Update(&key->head, hmac_key, sizeof(hmac_key)); for (i = 0; i < sizeof(hmac_key); i++) hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */ SHA1_Init(&key->tail); SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key)); explicit_bzero(hmac_key, sizeof(hmac_key)); return 1; } case EVP_CTRL_AEAD_TLS1_AAD: { unsigned char *p = ptr; unsigned int len; /* RFC 5246, 6.2.3.3: additional data has length 13 */ if (arg != 13) return -1; len = p[arg - 2] << 8 | p[arg - 1]; if (ctx->encrypt) { key->payload_length = len; if ((key->aux.tls_ver = p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) { len -= AES_BLOCK_SIZE; p[arg - 2] = len >> 8; p[arg - 1] = len; } key->md = key->head; SHA1_Update(&key->md, p, arg); return (int)(((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE) & -AES_BLOCK_SIZE) - len); } else { memcpy(key->aux.tls_aad, ptr, arg); key->payload_length = arg; return SHA_DIGEST_LENGTH; } } default: return -1; } } static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = { #ifdef NID_aes_128_cbc_hmac_sha1 .nid = NID_aes_128_cbc_hmac_sha1, #else .nid = NID_undef, #endif .block_size = 16, .key_len = 16, .iv_len = 16, .flags = EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_FLAG_AEAD_CIPHER, .init = aesni_cbc_hmac_sha1_init_key, .do_cipher = aesni_cbc_hmac_sha1_cipher, .ctx_size = sizeof(EVP_AES_HMAC_SHA1), .ctrl = aesni_cbc_hmac_sha1_ctrl }; static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = { #ifdef NID_aes_256_cbc_hmac_sha1 .nid = NID_aes_256_cbc_hmac_sha1, #else .nid = NID_undef, #endif .block_size = 16, .key_len = 32, .iv_len = 16, .flags = EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_FLAG_AEAD_CIPHER, .init = aesni_cbc_hmac_sha1_init_key, .do_cipher = aesni_cbc_hmac_sha1_cipher, .ctx_size = sizeof(EVP_AES_HMAC_SHA1), .ctrl = aesni_cbc_hmac_sha1_ctrl }; const EVP_CIPHER * EVP_aes_128_cbc_hmac_sha1(void) { return (OPENSSL_cpu_caps() & CPUCAP_MASK_AESNI) ? &aesni_128_cbc_hmac_sha1_cipher : NULL; } const EVP_CIPHER * EVP_aes_256_cbc_hmac_sha1(void) { return (OPENSSL_cpu_caps() & CPUCAP_MASK_AESNI) ? &aesni_256_cbc_hmac_sha1_cipher : NULL; } #else const EVP_CIPHER * EVP_aes_128_cbc_hmac_sha1(void) { return NULL; } const EVP_CIPHER * EVP_aes_256_cbc_hmac_sha1(void) { return NULL; } #endif #endif