/* * adaptive and fixed codebook vector operations for ACELP-based codecs * * Copyright (c) 2008 Vladimir Voroshilov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef AVCODEC_ACELP_VECTORS_H #define AVCODEC_ACELP_VECTORS_H #include typedef struct ACELPVContext { /** * float implementation of weighted sum of two vectors. * @param[out] out result of addition * @param in_a first vector * @param in_b second vector * @param weight_coeff_a first vector weight coefficient * @param weight_coeff_a second vector weight coefficient * @param length vectors length (should be a multiple of two) * * @note It is safe to pass the same buffer for out and in_a or in_b. */ void (*weighted_vector_sumf)(float *out, const float *in_a, const float *in_b, float weight_coeff_a, float weight_coeff_b, int length); }ACELPVContext; /** * Initialize ACELPVContext. */ void ff_acelp_vectors_init(ACELPVContext *c); void ff_acelp_vectors_init_mips(ACELPVContext *c); /** Sparse representation for the algebraic codebook (fixed) vector */ typedef struct AMRFixed { int n; int x[10]; float y[10]; int no_repeat_mask; int pitch_lag; float pitch_fac; } AMRFixed; /** * Track|Pulse| Positions * ------------------------------------------------------------------------- * 1 | 0 | 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 * ------------------------------------------------------------------------- * 2 | 1 | 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76 * ------------------------------------------------------------------------- * 3 | 2 | 2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77 * ------------------------------------------------------------------------- * * Table contains only first the pulse indexes. * * Used in G.729 @@8k, G.729 @@4.4k, AMR @@7.95k, AMR @@7.40k */ extern const uint8_t ff_fc_4pulses_8bits_tracks_13[16]; /** * Track|Pulse| Positions * ------------------------------------------------------------------------- * 4 | 3 | 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78 * | | 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79 * ------------------------------------------------------------------------- * * @remark Track in the table should be read top-to-bottom, left-to-right. * * Used in G.729 @@8k, G.729 @@4.4k, AMR @@7.95k, AMR @@7.40k */ extern const uint8_t ff_fc_4pulses_8bits_track_4[32]; /** * Track|Pulse| Positions * ----------------------------------------- * 1 | 0 | 1, 6, 11, 16, 21, 26, 31, 36 * | | 3, 8, 13, 18, 23, 28, 33, 38 * ----------------------------------------- * * @remark Track in the table should be read top-to-bottom, left-to-right. * * @note (EE) Reference G.729D code also uses gray decoding for each * pulse index before looking up the value in the table. * * Used in G.729 @@6.4k (with gray coding), AMR @@5.9k (without gray coding) */ extern const uint8_t ff_fc_2pulses_9bits_track1[16]; extern const uint8_t ff_fc_2pulses_9bits_track1_gray[16]; /** * Track|Pulse| Positions * ----------------------------------------- * 2 | 1 | 0, 7, 14, 20, 27, 34, 1, 21 * | | 2, 9, 15, 22, 29, 35, 6, 26 * | | 4,10, 17, 24, 30, 37, 11, 31 * | | 5,12, 19, 25, 32, 39, 16, 36 * ----------------------------------------- * * @remark Track in the table should be read top-to-bottom, left-to-right. * * @note (EE.1) This table (from the reference code) does not comply with * the specification. * The specification contains the following table: * * Track|Pulse| Positions * ----------------------------------------- * 2 | 1 | 0, 5, 10, 15, 20, 25, 30, 35 * | | 1, 6, 11, 16, 21, 26, 31, 36 * | | 2, 7, 12, 17, 22, 27, 32, 37 * | | 4, 9, 14, 19, 24, 29, 34, 39 * * ----------------------------------------- * * @note (EE.2) Reference G.729D code also uses gray decoding for each * pulse index before looking up the value in the table. * * Used in G.729 @@6.4k (with gray coding) */ extern const uint8_t ff_fc_2pulses_9bits_track2_gray[32]; /** * b60 hamming windowed sinc function coefficients */ extern const float ff_b60_sinc[61]; /** * Table of pow(0.7,n) */ extern const float ff_pow_0_7[10]; /** * Table of pow(0.75,n) */ extern const float ff_pow_0_75[10]; /** * Table of pow(0.55,n) */ extern const float ff_pow_0_55[10]; /** * Decode fixed-codebook vector (3.8 and D.5.8 of G.729, 5.7.1 of AMR). * @param[out] fc_v decoded fixed codebook vector (2.13) * @param tab1 table used for first pulse_count pulses * @param tab2 table used for last pulse * @param pulse_indexes fixed codebook indexes * @param pulse_signs signs of the excitation pulses (0 bit value * means negative sign) * @param bits number of bits per one pulse index * @param pulse_count number of pulses decoded using first table * @param bits length of one pulse index in bits * * Used in G.729 @@8k, G.729 @@4.4k, G.729 @@6.4k, AMR @@7.95k, AMR @@7.40k */ void ff_acelp_fc_pulse_per_track(int16_t* fc_v, const uint8_t *tab1, const uint8_t *tab2, int pulse_indexes, int pulse_signs, int pulse_count, int bits); /** * Decode the algebraic codebook index to pulse positions and signs and * construct the algebraic codebook vector for MODE_12k2. * * @note: The positions and signs are explicitly coded in MODE_12k2. * * @param fixed_index positions of the ten pulses * @param fixed_sparse pointer to the algebraic codebook vector * @param gray_decode gray decoding table * @param half_pulse_count number of couples of pulses * @param bits length of one pulse index in bits */ void ff_decode_10_pulses_35bits(const int16_t *fixed_index, AMRFixed *fixed_sparse, const uint8_t *gray_decode, int half_pulse_count, int bits); /** * weighted sum of two vectors with rounding. * @param[out] out result of addition * @param in_a first vector * @param in_b second vector * @param weight_coeff_a first vector weight coefficient * @param weight_coeff_a second vector weight coefficient * @param rounder this value will be added to the sum of the two vectors * @param shift result will be shifted to right by this value * @param length vectors length * * @note It is safe to pass the same buffer for out and in_a or in_b. * * out[i] = (in_a[i]*weight_a + in_b[i]*weight_b + rounder) >> shift */ void ff_acelp_weighted_vector_sum(int16_t* out, const int16_t *in_a, const int16_t *in_b, int16_t weight_coeff_a, int16_t weight_coeff_b, int16_t rounder, int shift, int length); /** * float implementation of weighted sum of two vectors. * @param[out] out result of addition * @param in_a first vector * @param in_b second vector * @param weight_coeff_a first vector weight coefficient * @param weight_coeff_a second vector weight coefficient * @param length vectors length * * @note It is safe to pass the same buffer for out and in_a or in_b. */ void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b, float weight_coeff_a, float weight_coeff_b, int length); /** * Adaptive gain control (as used in AMR postfiltering) * * @param out output buffer for filtered speech data * @param in the input speech buffer (may be the same as out) * @param speech_energ input energy * @param size the input buffer size * @param alpha exponential filter factor * @param gain_mem a pointer to the filter memory (single float of size) */ void ff_adaptive_gain_control(float *out, const float *in, float speech_energ, int size, float alpha, float *gain_mem); /** * Set the sum of squares of a signal by scaling * * @param out output samples * @param in input samples * @param sum_of_squares new sum of squares * @param n number of samples * * @note If the input is zero (or its energy underflows), the output is zero. * This is the behavior of AGC in the AMR reference decoder. The QCELP * reference decoder seems to have undefined behavior. * * TIA/EIA/IS-733 2.4.8.3-2/3/4/5, 2.4.8.6 * 3GPP TS 26.090 6.1 (6) */ void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in, float sum_of_squares, const int n); /** * Add fixed vector to an array from a sparse representation * * @param out fixed vector with pitch sharpening * @param in sparse fixed vector * @param scale number to multiply the fixed vector by * @param size the output vector size */ void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size); /** * Clear array values set by set_fixed_vector * * @param out fixed vector to be cleared * @param in sparse fixed vector * @param size the output vector size */ void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size); #endif /* AVCODEC_ACELP_VECTORS_H */