Initial commit

Proof-of-concept implementation. Bugs will occur.
This commit is contained in:
2026-02-12 01:18:46 +03:00
commit 13ac06c14b
553 changed files with 253003 additions and 0 deletions

50
vendor/github.com/hanwen/go-fuse/v2/fs/README.md generated vendored Normal file
View File

@@ -0,0 +1,50 @@
Objective
=========
A high-performance FUSE API that minimizes pitfalls with writing
correct filesystems.
Decisions
=========
* Nodes contain references to their children. This is useful
because most filesystems will need to construct tree-like
structures.
* Nodes contain references to their parents. As a result, we can
derive the path for each Inode, and there is no need for a
separate PathFS.
* Nodes can be "persistent", meaning their lifetime is not under
control of the kernel. This is useful for constructing FS trees
in advance, rather than driven by LOOKUP.
* The NodeID (used for communicating with the kernel, not to be
confused with the inode number reported by `ls -i`) is generated
internally and immutable for an Inode. This avoids any races
between LOOKUP, NOTIFY and FORGET.
* The mode of an Inode is defined on creation. Files cannot change
type during their lifetime. This also prevents the common error
of forgetting to return the filetype in Lookup/GetAttr.
* No global treelock, to ensure scalability.
* Support for hard links. libfuse doesn't support this in the
high-level API. Extra care for race conditions is needed when
looking up the same file through different paths.
* do not issue Notify{Entry,Delete} as part of
AddChild/RmChild/MvChild: because NodeIDs are unique and
immutable, there is no confusion about which nodes are
invalidated, and the notification doesn't have to happen under
lock.
* Directory reading uses the FileHandles as well, the API for read
is one DirEntry at a time. FileHandles may implement seeking, and we
call the Seek if we see Offsets change in the incoming request.
* Method names are based on syscall names. Where there is no
syscall (eg. "open directory"), we bias towards writing
everything together (Opendir)

822
vendor/github.com/hanwen/go-fuse/v2/fs/api.go generated vendored Normal file
View File

@@ -0,0 +1,822 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fs provides infrastructure to build tree-organized filesystems.
//
// # Structure of a file system implementation
//
// To create a file system, you should first define types for the
// nodes of the file system tree.
//
// type myNode struct {
// fs.Inode
// }
//
// // Node types must be InodeEmbedders
// var _ = (fs.InodeEmbedder)((*myNode)(nil))
//
// // Node types should implement some file system operations, eg. Lookup
// var _ = (fs.NodeLookuper)((*myNode)(nil))
//
// func (n *myNode) Lookup(ctx context.Context, name string, out *fuse.EntryOut) (*fs.Inode, syscall.Errno) {
// ops := myNode{}
// out.Mode = 0755
// out.Size = 42
// return n.NewInode(ctx, &ops, fs.StableAttr{Mode: syscall.S_IFREG}), 0
// }
//
// The method names are inspired on the system call names, so we have
// Listxattr rather than ListXAttr.
//
// the file system is mounted by calling mount on the root of the tree,
//
// server, err := fs.Mount("/tmp/mnt", &myNode{}, &fs.Options{})
// ..
// // start serving the file system
// server.Wait()
//
// # Error handling
//
// All error reporting must use the syscall.Errno type. This is an
// integer with predefined error codes, where the value 0 (`OK`)
// should be used to indicate success.
//
// # File system concepts
//
// The FUSE API is very similar to Linux' internal VFS API for
// defining file systems in the kernel. It is therefore useful to
// understand some terminology.
//
// File content: the raw bytes that we store inside regular files.
//
// Path: a /-separated string path that describes location of a node
// in the file system tree. For example
//
// dir1/file
//
// describes path root → dir1 → file.
//
// There can be several paths leading from tree root to a particular node,
// known as hard-linking, for example
//
// root
// / \
// dir1 dir2
// \ /
// file
//
// Inode: ("index node") points to the file content, and stores
// metadata (size, timestamps) about a file or directory. Each
// inode has a type (directory, symlink, regular file, etc.) and
// an identity (a 64-bit number, unique to the file
// system). Directories can have children.
//
// The inode in the kernel is represented in Go-FUSE as the Inode
// type.
//
// While common OS APIs are phrased in terms of paths (strings), the
// precise semantics of a file system are better described in terms of
// Inodes. This allows us to specify what happens in corner cases,
// such as writing data to deleted files.
//
// File descriptor: a handle returned to opening a file. File
// descriptors always refer to a single inode.
//
// Dentry: a dirent maps (parent inode number, name string) tuple to
// child inode, thus representing a parent/child relation (or the
// absense thereof). Dentries do not have an equivalent type inside
// Go-FUSE, but the result of Lookup operation essentially is a
// dentry, which the kernel puts in a cache.
//
// # Kernel caching
//
// The kernel caches several pieces of information from the FUSE process:
//
// 1. File contents: enabled with the fuse.FOPEN_KEEP_CACHE return flag
// in Open, manipulated with ReadCache and WriteCache, and invalidated
// with Inode.NotifyContent
//
// 2. File Attributes (size, mtime, etc.): controlled with the
// attribute timeout fields in fuse.AttrOut and fuse.EntryOut, which
// get be populated from Getattr and Lookup
//
// 3. Dentries (parent/child relations in the FS tree):
// controlled with the timeout fields in fuse.EntryOut, and
// invalidated with Inode.NotifyEntry and Inode.NotifyDelete.
//
// Without entry timeouts, every operation on file "a/b/c"
// must first do lookups for "a", "a/b" and "a/b/c", which is
// expensive because of context switches between the kernel and the
// FUSE process.
//
// Unsuccessful entry lookups can also be cached by setting an entry
// timeout when Lookup returns ENOENT.
//
// The libfuse C library specifies 1 second timeouts for both
// attribute and directory entries, but no timeout for negative
// entries. by default. This can be achieve in go-fuse by setting
// options on mount, eg.
//
// sec := time.Second
// opts := fs.Options{
// EntryTimeout: &sec,
// AttrTimeout: &sec,
// }
//
// # Interrupts
//
// If the process accessing a FUSE file system is interrupted, the
// kernel sends an interrupt message, which cancels the context passed
// to the NodeXxxxx methods. If the file system chooses to honor this
// cancellation, the method must return [syscall.EINTR]. All unmasked
// signals generate an interrupt. In particular, the SIGURG signal
// (which the Go runtime uses for managing goroutine preemption) also
// generates an interrupt.
//
// # Locking
//
// Locks for networked filesystems are supported through the suite of
// Getlk, Setlk and Setlkw methods. They alllow locks on regions of
// regular files.
//
// # Parallelism
//
// The VFS layer in the kernel is optimized to be highly parallel, and
// this parallelism also affects FUSE file systems: many FUSE
// operations can run in parallel, and this invites race
// conditions. It is strongly recommended to test your FUSE file
// system issuing file operations in parallel, and using the race
// detector to weed out data races.
//
// # Deadlocks
//
// The Go runtime multiplexes Goroutines onto operating system
// threads, and makes assumptions that some system calls do not
// block. When accessing a file system from the same process that
// serves the file system (e.g. in unittests), this can lead to
// deadlocks, especially when GOMAXPROCS=1, when the Go runtime
// assumes a system call does not block, but actually is served by the
// Go-FUSE process.
//
// The following deadlocks are known:
//
// 1. Spawning a subprocess uses a fork/exec sequence: the process
// forks itself into a parent and child. The parent waits for the
// child to signal that the exec failed or succeeded, while the child
// prepares for calling exec(). Any setup step in the child that
// triggers a FUSE request can cause a deadlock.
//
// 1a. If the subprocess has a directory specified, the child will
// chdir into that directory. This generates an ACCESS operation on
// the directory.
//
// This deadlock can be avoided by disabling the ACCESS
// operation: return syscall.ENOSYS in the Access implementation, and
// ensure it is triggered called before initiating the subprocess.
//
// 1b. If the subprocess inherits files, the child process uses dup3()
// to remap file descriptors. If the destination fd happens to be
// backed by Go-FUSE, the dup3() call will implicitly close the fd,
// generating a FLUSH operation, eg.
//
// f1, err := os.Open("/fusemnt/file1")
// // f1.Fd() == 3
// f2, err := os.Open("/fusemnt/file1")
// // f2.Fd() == 4
//
// cmd := exec.Command("/bin/true")
// cmd.ExtraFiles = []*os.File{f2}
// // f2 (fd 4) is moved to fd 3. Deadlocks with GOMAXPROCS=1.
// cmd.Start()
//
// This deadlock can be avoided by ensuring that file descriptors
// pointing into FUSE mounts and file descriptors passed into
// subprocesses do not overlap, e.g. inserting the following before
// the above example:
//
// for {
// f, _ := os.Open("/dev/null")
// defer f.Close()
// if f.Fd() > 3 {
// break
// }
// }
//
// The library tries to reserve fd 3, because FUSE mounts are created
// by calling "fusermount" with an inherited file descriptor, but the
// same problem may occur for other file descriptors.
//
// 1c. If the executable is on the FUSE mount. In this case, the child
// calls exec, which reads the file to execute, which triggers an OPEN
// opcode. This can be worked around by invoking the subprocess
// through a wrapper, eg `bash -c file/on/fuse-mount`.
//
// 2. The Go runtime uses the epoll system call to understand which
// goroutines can respond to I/O. The runtime assumes that epoll does
// not block, but if files are on a FUSE filesystem, the kernel will
// generate a POLL operation. To prevent this from happening, Go-FUSE
// disables the POLL opcode on mount. To ensure this has happened, call
// WaitMount.
//
// 3. Memory mapping a file served by FUSE. Accessing the mapped
// memory generates a page fault, which blocks the OS thread running
// the goroutine.
//
// # Dynamically discovered file systems
//
// File system data usually cannot fit all in RAM, so the kernel must
// discover the file system dynamically: as you are entering and list
// directory contents, the kernel asks the FUSE server about the files
// and directories you are busy reading/writing, and forgets parts of
// your file system when it is low on memory.
//
// The two important operations for dynamic file systems are:
// 1. Lookup, part of the NodeLookuper interface for discovering
// individual children of directories, and 2. Readdir, part of the
// NodeReaddirer interface for listing the contents of a directory.
//
// # Static in-memory file systems
//
// For small, read-only file systems, getting the locking mechanics of
// Lookup correct is tedious, so Go-FUSE provides a feature to
// simplify building such file systems.
//
// Instead of discovering the FS tree on the fly, you can construct
// the entire tree from an OnAdd method. Then, that in-memory tree
// structure becomes the source of truth. This means that Go-FUSE must
// remember Inodes even if the kernel is no longer interested in
// them. This is done by instantiating "persistent" inodes from the
// OnAdd method of the root node. See the ZipFS example for a
// runnable example of how to do this.
package fs
import (
"context"
"log"
"syscall"
"time"
"github.com/hanwen/go-fuse/v2/fuse"
)
// InodeEmbedder is an interface for structs that embed Inode.
//
// InodeEmbedder objects usually should implement some of the NodeXxxx
// interfaces, to provide user-defined file system behaviors.
//
// In general, if an InodeEmbedder does not implement specific
// filesystem methods, the filesystem will react as if it is a
// read-only filesystem with a predefined tree structure.
type InodeEmbedder interface {
// inode is used internally to link Inode to a Node.
//
// See Inode() for the public API to retrieve an inode from Node.
embed() *Inode
// EmbeddedInode returns a pointer to the embedded inode.
EmbeddedInode() *Inode
}
// Statfs implements statistics for the filesystem that holds this
// Inode. If not defined, the `out` argument will zeroed with an OK
// result. This is because OSX filesystems must Statfs, or the mount
// will not work.
type NodeStatfser interface {
Statfs(ctx context.Context, out *fuse.StatfsOut) syscall.Errno
}
// Access should return if the caller can access the file with the
// given mode. This is used for two purposes: to determine if a user
// may enter a directory, and to implement the access system
// call. In the latter case, the context has data about the real
// UID. For example, a root-SUID binary called by user susan gets the
// UID and GID for susan here.
//
// If not defined, a default implementation will check traditional
// unix permissions of the Getattr result agains the caller. If access
// permissions must be obeyed precisely, the filesystem should return
// permissions from GetAttr/Lookup, and set [Options.NullPermissions].
// Without [Options.NullPermissions], a missing permission (mode =
// 0000) is interpreted as 0755 for directories, and chdir is always
// allowed.
type NodeAccesser interface {
Access(ctx context.Context, mask uint32) syscall.Errno
}
// GetAttr reads attributes for an Inode. The library will ensure that
// Mode and Ino are set correctly. For files that are not opened with
// FOPEN_DIRECTIO, Size should be set so it can be read correctly. If
// returning zeroed permissions, the default behavior is to change the
// mode of 0755 (directory) or 0644 (files). This can be switched off
// with the Options.NullPermissions setting. If blksize is unset, 4096
// is assumed, and the 'blocks' field is set accordingly. The 'f'
// argument is provided for consistency, however, in practice the
// kernel never sends a file handle, even if the Getattr call
// originated from an fstat system call.
type NodeGetattrer interface {
Getattr(ctx context.Context, f FileHandle, out *fuse.AttrOut) syscall.Errno
}
// SetAttr sets attributes for an Inode. Default is to return ENOTSUP.
type NodeSetattrer interface {
Setattr(ctx context.Context, f FileHandle, in *fuse.SetAttrIn, out *fuse.AttrOut) syscall.Errno
}
// OnAdd is called when this InodeEmbedder is initialized.
type NodeOnAdder interface {
OnAdd(ctx context.Context)
}
// Getxattr should read data for the given attribute into
// `dest` and return the number of bytes. If `dest` is too
// small, it should return ERANGE and the size of the attribute.
// If not defined, Getxattr will return ENOATTR.
type NodeGetxattrer interface {
Getxattr(ctx context.Context, attr string, dest []byte) (uint32, syscall.Errno)
}
// Setxattr should store data for the given attribute. See
// setxattr(2) for information about flags.
// If not defined, Setxattr will return ENOATTR.
type NodeSetxattrer interface {
Setxattr(ctx context.Context, attr string, data []byte, flags uint32) syscall.Errno
}
// Removexattr should delete the given attribute.
// If not defined, Removexattr will return ENOATTR.
type NodeRemovexattrer interface {
Removexattr(ctx context.Context, attr string) syscall.Errno
}
// Listxattr should read all attributes (null terminated) into
// `dest`. If the `dest` buffer is too small, it should return ERANGE
// and the correct size. If not defined, return an empty list and
// success.
type NodeListxattrer interface {
Listxattr(ctx context.Context, dest []byte) (uint32, syscall.Errno)
}
// Readlink reads the content of a symlink.
type NodeReadlinker interface {
Readlink(ctx context.Context) ([]byte, syscall.Errno)
}
// Open opens an Inode (of regular file type) for reading. It
// is optional but recommended to return a FileHandle.
type NodeOpener interface {
Open(ctx context.Context, flags uint32) (fh FileHandle, fuseFlags uint32, errno syscall.Errno)
}
// Reads data from a file. The data should be returned as
// ReadResult, which may be constructed from the incoming
// `dest` buffer. If the file was opened without FileHandle,
// the FileHandle argument here is nil. The default
// implementation forwards to the FileHandle.
type NodeReader interface {
Read(ctx context.Context, f FileHandle, dest []byte, off int64) (fuse.ReadResult, syscall.Errno)
}
// Writes the data into the file handle at given offset. After
// returning, the data will be reused and may not referenced.
// The default implementation forwards to the FileHandle.
type NodeWriter interface {
Write(ctx context.Context, f FileHandle, data []byte, off int64) (written uint32, errno syscall.Errno)
}
// Fsync is a signal to ensure writes to the Inode are flushed
// to stable storage.
type NodeFsyncer interface {
Fsync(ctx context.Context, f FileHandle, flags uint32) syscall.Errno
}
// Flush is called for the close(2) call on a file descriptor. In case
// of a descriptor that was duplicated using dup(2), it may be called
// more than once for the same FileHandle. The default implementation
// forwards to the FileHandle, or if the handle does not support
// FileFlusher, returns OK.
type NodeFlusher interface {
Flush(ctx context.Context, f FileHandle) syscall.Errno
}
// This is called to before a FileHandle is forgotten. The
// kernel ignores the return value of this method,
// so any cleanup that requires specific synchronization or
// could fail with I/O errors should happen in Flush instead.
// The default implementation forwards to the FileHandle.
type NodeReleaser interface {
Release(ctx context.Context, f FileHandle) syscall.Errno
// TODO - what about ReleaseIn?
}
// Allocate preallocates space for future writes, so they will
// never encounter ESPACE.
type NodeAllocater interface {
Allocate(ctx context.Context, f FileHandle, off uint64, size uint64, mode uint32) syscall.Errno
}
// CopyFileRange copies data between sections of two files,
// without the data having to pass through the calling process.
type NodeCopyFileRanger interface {
CopyFileRange(ctx context.Context, fhIn FileHandle,
offIn uint64, out *Inode, fhOut FileHandle, offOut uint64,
len uint64, flags uint64) (uint32, syscall.Errno)
// Ugh. should have been called Copyfilerange
}
type NodeStatxer interface {
Statx(ctx context.Context, f FileHandle, flags uint32, mask uint32, out *fuse.StatxOut) syscall.Errno
}
// Lseek is used to implement holes: it should return the
// first offset beyond `off` where there is data (SEEK_DATA)
// or where there is a hole (SEEK_HOLE).
type NodeLseeker interface {
Lseek(ctx context.Context, f FileHandle, Off uint64, whence uint32) (uint64, syscall.Errno)
}
// Getlk returns locks that would conflict with the given input
// lock. If no locks conflict, the output has type L_UNLCK. See
// fcntl(2) for more information.
// If not defined, returns ENOTSUP
type NodeGetlker interface {
Getlk(ctx context.Context, f FileHandle, owner uint64, lk *fuse.FileLock, flags uint32, out *fuse.FileLock) syscall.Errno
}
// Setlk obtains a lock on a file, or fail if the lock could not
// obtained. See fcntl(2) for more information. If not defined,
// returns ENOTSUP
type NodeSetlker interface {
Setlk(ctx context.Context, f FileHandle, owner uint64, lk *fuse.FileLock, flags uint32) syscall.Errno
}
// Setlkw obtains a lock on a file, waiting if necessary. See fcntl(2)
// for more information. If not defined, returns ENOTSUP
type NodeSetlkwer interface {
Setlkw(ctx context.Context, f FileHandle, owner uint64, lk *fuse.FileLock, flags uint32) syscall.Errno
}
// Ioctl implements an ioctl on an open file.
type NodeIoctler interface {
Ioctl(ctx context.Context, f FileHandle, cmd uint32, arg uint64, input []byte, output []byte) (result int32, errno syscall.Errno)
}
// OnForget is called when the node becomes unreachable. This can
// happen because the kernel issues a FORGET request,
// ForgetPersistent() is called on the inode, the last child of the
// directory disappears, or (for the root node) unmounting the file
// system. Implementers must make sure that the inode cannot be
// revived concurrently by a LOOKUP call. Modifying the tree using
// RmChild and AddChild can also trigger a spurious OnForget; use
// MvChild instead.
type NodeOnForgetter interface {
OnForget()
}
// DirStream lists directory entries.
type DirStream interface {
// HasNext indicates if there are further entries. HasNext
// might be called on already closed streams.
HasNext() bool
// Next retrieves the next entry. It is only called if HasNext
// has previously returned true. The Errno return may be used to
// indicate I/O errors
Next() (fuse.DirEntry, syscall.Errno)
// Close releases resources related to this directory
// stream.
Close()
}
// Lookup should find a direct child of a directory by the child's name. If
// the entry does not exist, it should return ENOENT and optionally
// set a NegativeTimeout in `out`. If it does exist, it should return
// attribute data in `out` and return the Inode for the child. A new
// inode can be created using `Inode.NewInode`. The new Inode will be
// added to the FS tree automatically if the return status is OK.
//
// If a directory does not implement NodeLookuper, the library looks
// for an existing child with the given name.
//
// The input to a Lookup is {parent directory, name string}.
//
// Lookup, if successful, must return an *Inode. Once the Inode is
// returned to the kernel, the kernel can issue further operations,
// such as Open or Getxattr on that node.
//
// A successful Lookup also returns an EntryOut. Among others, this
// contains file attributes (mode, size, mtime, etc.).
//
// FUSE supports other operations that modify the namespace. For
// example, the Symlink, Create, Mknod, Link methods all create new
// children in directories. Hence, they also return *Inode and must
// populate their fuse.EntryOut arguments.
type NodeLookuper interface {
Lookup(ctx context.Context, name string, out *fuse.EntryOut) (*Inode, syscall.Errno)
}
// NodeWrapChilder wraps a FS node implementation in another one. If
// defined, it is called automatically from NewInode and
// NewPersistentInode. Thus, existing file system implementations,
// even from other packages, can be customized by wrapping them. The
// following example is a loopback file system that forbids deletions.
//
// type NoDelete struct {
// *fs.LoopbackNode
// }
// func (w *NoDelete) Unlink(ctx context.Context, name string) syscall.Errno {
// return syscall.EPERM
// }
// func (w *NoDelete) WrapChild(ctx context.Context, ops fs.InodeEmbedder) fs.InodeEmbedder {
// return &NoDelete{ops.(*LoopbackNode)}
// }
//
// See also the LoopbackReuse example for a more practical
// application.
type NodeWrapChilder interface {
WrapChild(ctx context.Context, ops InodeEmbedder) InodeEmbedder
}
// OpenDir opens a directory Inode for reading its
// contents. The actual reading is driven from Readdir, so
// this method is just for performing sanity/permission
// checks. The default is to return success.
type NodeOpendirer interface {
Opendir(ctx context.Context) syscall.Errno
}
// Readdir opens a stream of directory entries.
//
// Readdir essentiallly returns a list of strings, and it is allowed
// for Readdir to return different results from Lookup. For example,
// you can return nothing for Readdir ("ls my-fuse-mount" is empty),
// while still implementing Lookup ("ls my-fuse-mount/a-specific-file"
// shows a single file). The DirStream returned must be deterministic;
// a randomized result (e.g. due to map iteration) can lead to entries
// disappearing if multiple processes read the same directory
// concurrently.
//
// If a directory does not implement NodeReaddirer, a list of
// currently known children from the tree is returned. This means that
// static in-memory file systems need not implement NodeReaddirer.
type NodeReaddirer interface {
Readdir(ctx context.Context) (DirStream, syscall.Errno)
}
// Mkdir is similar to Lookup, but must create a directory entry and Inode.
// Default is to return ENOTSUP.
type NodeMkdirer interface {
Mkdir(ctx context.Context, name string, mode uint32, out *fuse.EntryOut) (*Inode, syscall.Errno)
}
// Mknod is similar to Lookup, but must create a device entry and Inode.
// Default is to return ENOTSUP.
type NodeMknoder interface {
Mknod(ctx context.Context, name string, mode uint32, dev uint32, out *fuse.EntryOut) (*Inode, syscall.Errno)
}
// Link is similar to Lookup, but must create a new link to an existing Inode.
// Default is to return ENOTSUP.
type NodeLinker interface {
Link(ctx context.Context, target InodeEmbedder, name string, out *fuse.EntryOut) (node *Inode, errno syscall.Errno)
}
// Symlink is similar to Lookup, but must create a new symbolic link.
// Default is to return ENOTSUP.
type NodeSymlinker interface {
Symlink(ctx context.Context, target, name string, out *fuse.EntryOut) (node *Inode, errno syscall.Errno)
}
// Create is similar to Lookup, but should create a new
// child. It typically also returns a FileHandle as a
// reference for future reads/writes.
// Default is to return EROFS.
type NodeCreater interface {
Create(ctx context.Context, name string, flags uint32, mode uint32, out *fuse.EntryOut) (node *Inode, fh FileHandle, fuseFlags uint32, errno syscall.Errno)
}
// Unlink should remove a child from this directory. If the
// return status is OK, the Inode is removed as child in the
// FS tree automatically. Default is to return success.
type NodeUnlinker interface {
Unlink(ctx context.Context, name string) syscall.Errno
}
// Rmdir is like Unlink but for directories.
// Default is to return success.
type NodeRmdirer interface {
Rmdir(ctx context.Context, name string) syscall.Errno
}
// Rename should move a child from one directory to a different
// one. The change is effected in the FS tree if the return status is
// OK. Default is to return ENOTSUP.
type NodeRenamer interface {
Rename(ctx context.Context, name string, newParent InodeEmbedder, newName string, flags uint32) syscall.Errno
}
// FileHandle is a resource identifier for opened files. Usually, a
// FileHandle should implement some of the FileXxxx interfaces.
//
// All of the FileXxxx operations can also be implemented at the
// InodeEmbedder level, for example, one can implement NodeReader
// instead of FileReader.
//
// FileHandles are useful in two cases: First, if the underlying
// storage systems needs a handle for reading/writing. This is the
// case with Unix system calls, which need a file descriptor (See also
// the function `NewLoopbackFile`). Second, it is useful for
// implementing files whose contents are not tied to an inode. For
// example, a file like `/proc/interrupts` has no fixed content, but
// changes on each open call. This means that each file handle must
// have its own view of the content; this view can be tied to a
// FileHandle. Files that have such dynamic content should return the
// FOPEN_DIRECT_IO flag from their `Open` method. See directio_test.go
// for an example.
type FileHandle interface {
}
// FilePassthroughFder is a file backed by a physical
// file. PassthroughFd should return an open file descriptor (and
// true), and the kernel will execute read/write operations directly
// on the backing file, bypassing the FUSE process. This function will
// be called once when processing the Create or Open operation, so
// there is no concern about concurrent access to the Fd. If the
// function returns false, passthrough will not be used for this file.
type FilePassthroughFder interface {
PassthroughFd() (int, bool)
}
// See NodeReleaser.
type FileReleaser interface {
Release(ctx context.Context) syscall.Errno
}
// See NodeGetattrer.
type FileGetattrer interface {
Getattr(ctx context.Context, out *fuse.AttrOut) syscall.Errno
}
type FileStatxer interface {
Statx(ctx context.Context, flags uint32, mask uint32, out *fuse.StatxOut) syscall.Errno
}
// See NodeReader.
type FileReader interface {
Read(ctx context.Context, dest []byte, off int64) (fuse.ReadResult, syscall.Errno)
}
// See NodeWriter.
type FileWriter interface {
Write(ctx context.Context, data []byte, off int64) (written uint32, errno syscall.Errno)
}
// See NodeGetlker.
type FileGetlker interface {
Getlk(ctx context.Context, owner uint64, lk *fuse.FileLock, flags uint32, out *fuse.FileLock) syscall.Errno
}
// See NodeSetlker.
type FileSetlker interface {
Setlk(ctx context.Context, owner uint64, lk *fuse.FileLock, flags uint32) syscall.Errno
}
// See NodeSetlkwer.
type FileSetlkwer interface {
Setlkw(ctx context.Context, owner uint64, lk *fuse.FileLock, flags uint32) syscall.Errno
}
// See NodeLseeker.
type FileLseeker interface {
Lseek(ctx context.Context, off uint64, whence uint32) (uint64, syscall.Errno)
}
// See NodeFlusher.
type FileFlusher interface {
Flush(ctx context.Context) syscall.Errno
}
// See NodeFsync.
type FileFsyncer interface {
Fsync(ctx context.Context, flags uint32) syscall.Errno
}
// See NodeFsync.
type FileSetattrer interface {
Setattr(ctx context.Context, in *fuse.SetAttrIn, out *fuse.AttrOut) syscall.Errno
}
// See NodeAllocater.
type FileAllocater interface {
Allocate(ctx context.Context, off uint64, size uint64, mode uint32) syscall.Errno
}
// See NodeIoctler.
type FileIoctler interface {
Ioctl(ctx context.Context, cmd uint32, arg uint64, input []byte, output []byte) (result int32, errno syscall.Errno)
}
// Opens a directory. This supersedes NodeOpendirer, allowing to pass
// back flags (eg. FOPEN_CACHE_DIR).
type NodeOpendirHandler interface {
OpendirHandle(ctx context.Context, flags uint32) (fh FileHandle, fuseFlags uint32, errno syscall.Errno)
}
// FileReaddirenter is a directory that supports reading.
type FileReaddirenter interface {
// Read a single directory entry.
Readdirent(ctx context.Context) (*fuse.DirEntry, syscall.Errno)
}
// FileLookuper is a directory handle that supports lookup. If this is
// defined, FileLookuper.Lookup on the directory is called for
// READDIRPLUS calls, rather than NodeLookuper.Lookup. The name passed
// in will always be the last name produced by Readdirent. If a child
// with the given name already exists, that should be returned. In
// case of directory seeks that straddle response boundaries,
// Readdirent may be called without a subsequent Lookup call.
type FileLookuper interface {
Lookup(ctx context.Context, name string, out *fuse.EntryOut) (child *Inode, errno syscall.Errno)
}
// FileFsyncer is a directory that supports fsyncdir.
type FileFsyncdirer interface {
Fsyncdir(ctx context.Context, flags uint32) syscall.Errno
}
// FileSeekdirer is directory that supports seeking. `off` is an
// opaque uint64 value, where only the value 0 is reserved for the
// start of the stream. (See https://lwn.net/Articles/544520/ for
// background).
type FileSeekdirer interface {
Seekdir(ctx context.Context, off uint64) syscall.Errno
}
// FileReleasedirer is a directory that supports a cleanup operation.
type FileReleasedirer interface {
Releasedir(ctx context.Context, releaseFlags uint32)
}
// Options are options for the entire filesystem.
type Options struct {
// MountOptions contain the options for mounting the fuse server.
fuse.MountOptions
// EntryTimeout, if non-nil, defines the overall entry timeout
// for the file system. See [fuse.EntryOut] for more information.
EntryTimeout *time.Duration
// AttrTimeout, if non-nil, defines the overall attribute
// timeout for the file system. See [fuse.AttrOut] for more
// information.
AttrTimeout *time.Duration
// NegativeTimeout, if non-nil, defines the overall entry timeout
// for failed lookups (fuse.ENOENT). See [fuse.EntryOut] for
// more information.
NegativeTimeout *time.Duration
// FirstAutomaticIno is start of the automatic inode numbers that are handed
// out sequentially.
//
// If unset, the default is 2^63.
FirstAutomaticIno uint64
// OnAdd, if non-nil, is an alternative way to specify the OnAdd
// functionality of the root node.
OnAdd func(ctx context.Context)
// NullPermissions, if set, leaves null file permissions
// alone. Otherwise, they are set to 755 (dirs) or 644 (other
// files.), which is necessary for doing a chdir into the FUSE
// directories.
NullPermissions bool
// UID, if nonzero, is the default UID to use instead of the
// zero (zero) UID.
UID uint32
// GID, if nonzero, is the default GID to use instead of the
// zero (zero) GID.
GID uint32
// ServerCallbacks are optional callbacks to stub out notification functions
// for testing a filesystem without mounting it.
ServerCallbacks ServerCallbacks
// Logger is a sink for diagnostic messages. Diagnostic
// messages are printed under conditions where we cannot
// return error, but want to signal something seems off
// anyway. If unset, no messages are printed.
//
// This field shadows (and thus, is distinct) from
// MountOptions.Logger.
Logger *log.Logger
// RootStableAttr is an optional way to set e.g. Ino and/or Gen for
// the root directory when calling fs.Mount(), Mode is ignored.
RootStableAttr *StableAttr
}

1327
vendor/github.com/hanwen/go-fuse/v2/fs/bridge.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

60
vendor/github.com/hanwen/go-fuse/v2/fs/bridge_linux.go generated vendored Normal file
View File

@@ -0,0 +1,60 @@
package fs
import (
"syscall"
"github.com/hanwen/go-fuse/v2/fuse"
)
// see rawBridge.setAttr
func (b *rawBridge) setStatx(out *fuse.Statx) {
if !b.options.NullPermissions && out.Mode&07777 == 0 {
out.Mode |= 0644
if out.Mode&syscall.S_IFDIR != 0 {
out.Mode |= 0111
}
}
if b.options.UID != 0 && out.Uid == 0 {
out.Uid = b.options.UID
}
if b.options.GID != 0 && out.Gid == 0 {
out.Gid = b.options.GID
}
setStatxBlocks(out)
}
// see rawBridge.setAttrTimeout
func (b *rawBridge) setStatxTimeout(out *fuse.StatxOut) {
if b.options.AttrTimeout != nil && out.Timeout() == 0 {
out.SetTimeout(*b.options.AttrTimeout)
}
}
func (b *rawBridge) Statx(cancel <-chan struct{}, in *fuse.StatxIn, out *fuse.StatxOut) fuse.Status {
n, fe := b.inode(in.NodeId, in.Fh)
var fh FileHandle
if fe != nil {
fh = fe.file
}
ctx := &fuse.Context{Caller: in.Caller, Cancel: cancel}
errno := syscall.ENOSYS
if sx, ok := n.ops.(NodeStatxer); ok {
errno = sx.Statx(ctx, fh, in.SxFlags, in.SxMask, out)
} else if fsx, ok := n.ops.(FileStatxer); ok {
errno = fsx.Statx(ctx, in.SxFlags, in.SxMask, out)
}
if errno == 0 {
if out.Ino != 0 && n.stableAttr.Ino > 1 && out.Ino != n.stableAttr.Ino {
b.logf("warning: rawBridge.getattr: overriding ino %d with %d", out.Ino, n.stableAttr.Ino)
}
out.Ino = n.stableAttr.Ino
out.Mode = (out.Statx.Mode & 07777) | uint16(n.stableAttr.Mode)
b.setStatx(&out.Statx)
b.setStatxTimeout(out)
}
return errnoToStatus(errno)
}

View File

@@ -0,0 +1,9 @@
//go:build !linux
package fs
import "github.com/hanwen/go-fuse/v2/fuse"
func (b *rawBridge) Statx(cancel <-chan struct{}, in *fuse.StatxIn, out *fuse.StatxOut) fuse.Status {
return fuse.ENOSYS
}

33
vendor/github.com/hanwen/go-fuse/v2/fs/constants.go generated vendored Normal file
View File

@@ -0,0 +1,33 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"syscall"
"github.com/hanwen/go-fuse/v2/fuse"
"github.com/hanwen/go-fuse/v2/internal/xattr"
)
// OK is the Errno return value to indicate absense of errors.
var OK = syscall.Errno(0)
// ToErrno exhumes the syscall.Errno error from wrapped error values.
func ToErrno(err error) syscall.Errno {
s := fuse.ToStatus(err)
return syscall.Errno(s)
}
// RENAME_EXCHANGE is a flag argument for renameat2()
const RENAME_EXCHANGE = 0x2
// seek to the next data
const _SEEK_DATA = 3
// seek to the next hole
const _SEEK_HOLE = 4
// ENOATTR indicates that an extended attribute was not present.
const ENOATTR = xattr.ENOATTR

5
vendor/github.com/hanwen/go-fuse/v2/fs/default.go generated vendored Normal file
View File

@@ -0,0 +1,5 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs

216
vendor/github.com/hanwen/go-fuse/v2/fs/dirstream.go generated vendored Normal file
View File

@@ -0,0 +1,216 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"sync"
"syscall"
"github.com/hanwen/go-fuse/v2/fuse"
"golang.org/x/sys/unix"
)
type dirArray struct {
idx int
entries []fuse.DirEntry
}
func (a *dirArray) HasNext() bool {
return a.idx < len(a.entries)
}
func (a *dirArray) Next() (fuse.DirEntry, syscall.Errno) {
e := a.entries[a.idx]
a.idx++
e.Off = uint64(a.idx)
return e, 0
}
func (a *dirArray) Seekdir(ctx context.Context, off uint64) syscall.Errno {
idx := int(off)
if idx < 0 || idx > len(a.entries) {
return syscall.EINVAL
}
a.idx = idx
return 0
}
func (a *dirArray) Close() {
}
func (a *dirArray) Releasedir(ctx context.Context, releaseFlags uint32) {}
func (a *dirArray) Readdirent(ctx context.Context) (de *fuse.DirEntry, errno syscall.Errno) {
if !a.HasNext() {
return nil, 0
}
e, errno := a.Next()
return &e, errno
}
// NewLoopbackDirStream opens a directory for reading as a DirStream
func NewLoopbackDirStream(name string) (DirStream, syscall.Errno) {
// TODO: should return concrete type.
fd, err := syscall.Open(name, syscall.O_DIRECTORY|syscall.O_CLOEXEC, 0755)
if err != nil {
return nil, ToErrno(err)
}
return NewLoopbackDirStreamFd(fd)
}
// NewListDirStream wraps a slice of DirEntry as a DirStream.
func NewListDirStream(list []fuse.DirEntry) DirStream {
return &dirArray{entries: list}
}
// implement FileReaddirenter/FileReleasedirer
type dirStreamAsFile struct {
creator func(context.Context) (DirStream, syscall.Errno)
ds DirStream
}
func (d *dirStreamAsFile) Releasedir(ctx context.Context, releaseFlags uint32) {
if d.ds != nil {
d.ds.Close()
}
}
func (d *dirStreamAsFile) Readdirent(ctx context.Context) (de *fuse.DirEntry, errno syscall.Errno) {
if d.ds == nil {
d.ds, errno = d.creator(ctx)
if errno != 0 {
return nil, errno
}
}
if !d.ds.HasNext() {
return nil, 0
}
e, errno := d.ds.Next()
return &e, errno
}
func (d *dirStreamAsFile) Seekdir(ctx context.Context, off uint64) syscall.Errno {
if d.ds == nil {
var errno syscall.Errno
d.ds, errno = d.creator(ctx)
if errno != 0 {
return errno
}
}
if sd, ok := d.ds.(FileSeekdirer); ok {
return sd.Seekdir(ctx, off)
}
return syscall.ENOTSUP
}
type loopbackDirStream struct {
buf []byte
// Protects mutable members
mu sync.Mutex
// mutable
todo []byte
todoErrno syscall.Errno
fd int
}
// NewLoopbackDirStreamFd reads the directory opened at file descriptor fd as
// a DirStream
func NewLoopbackDirStreamFd(fd int) (DirStream, syscall.Errno) {
ds := &loopbackDirStream{
buf: make([]byte, 4096),
fd: fd,
}
ds.load()
return ds, OK
}
func (ds *loopbackDirStream) Close() {
ds.mu.Lock()
defer ds.mu.Unlock()
if ds.fd != -1 {
syscall.Close(ds.fd)
ds.fd = -1
}
}
var _ = (FileReleasedirer)((*loopbackDirStream)(nil))
func (ds *loopbackDirStream) Releasedir(ctx context.Context, flags uint32) {
ds.Close()
}
var _ = (FileSeekdirer)((*loopbackDirStream)(nil))
func (ds *loopbackDirStream) Seekdir(ctx context.Context, off uint64) syscall.Errno {
ds.mu.Lock()
defer ds.mu.Unlock()
_, errno := unix.Seek(ds.fd, int64(off), unix.SEEK_SET)
if errno != nil {
return ToErrno(errno)
}
ds.todo = nil
ds.todoErrno = 0
ds.load()
return 0
}
var _ = (FileFsyncdirer)((*loopbackDirStream)(nil))
func (ds *loopbackDirStream) Fsyncdir(ctx context.Context, flags uint32) syscall.Errno {
ds.mu.Lock()
defer ds.mu.Unlock()
return ToErrno(syscall.Fsync(ds.fd))
}
func (ds *loopbackDirStream) HasNext() bool {
ds.mu.Lock()
defer ds.mu.Unlock()
return len(ds.todo) > 0 || ds.todoErrno != 0
}
var _ = (FileReaddirenter)((*loopbackDirStream)(nil))
func (ds *loopbackDirStream) Readdirent(ctx context.Context) (*fuse.DirEntry, syscall.Errno) {
if !ds.HasNext() {
return nil, 0
}
de, errno := ds.Next()
return &de, errno
}
func (ds *loopbackDirStream) Next() (fuse.DirEntry, syscall.Errno) {
ds.mu.Lock()
defer ds.mu.Unlock()
if ds.todoErrno != 0 {
return fuse.DirEntry{}, ds.todoErrno
}
var res fuse.DirEntry
n := res.Parse(ds.todo)
ds.todo = ds.todo[n:]
if len(ds.todo) == 0 {
ds.load()
}
return res, 0
}
func (ds *loopbackDirStream) load() {
if len(ds.todo) > 0 {
return
}
n, err := getdents(ds.fd, ds.buf)
if n < 0 {
n = 0
}
ds.todo = ds.buf[:n]
ds.todoErrno = ToErrno(err)
}

View File

@@ -0,0 +1,11 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import "golang.org/x/sys/unix"
func getdents(fd int, buf []byte) (int, error) {
return unix.Getdirentries(fd, buf, nil)
}

View File

@@ -0,0 +1,13 @@
//go:build !darwin
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import "golang.org/x/sys/unix"
func getdents(fd int, buf []byte) (int, error) {
return unix.Getdents(fd, buf)
}

277
vendor/github.com/hanwen/go-fuse/v2/fs/files.go generated vendored Normal file
View File

@@ -0,0 +1,277 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"sync"
"syscall"
"unsafe"
"github.com/hanwen/go-fuse/v2/fuse"
"github.com/hanwen/go-fuse/v2/internal/fallocate"
"github.com/hanwen/go-fuse/v2/internal/ioctl"
"golang.org/x/sys/unix"
)
// NewLoopbackFile creates a FileHandle out of a file descriptor. All
// operations are implemented. When using the Fd from a *os.File, call
// syscall.Dup() on the fd, to avoid os.File's finalizer from closing
// the file descriptor.
func NewLoopbackFile(fd int) FileHandle {
return &loopbackFile{fd: fd}
}
type loopbackFile struct {
mu sync.Mutex
fd int
}
var _ = (FileHandle)((*loopbackFile)(nil))
var _ = (FileReleaser)((*loopbackFile)(nil))
var _ = (FileGetattrer)((*loopbackFile)(nil))
var _ = (FileReader)((*loopbackFile)(nil))
var _ = (FileWriter)((*loopbackFile)(nil))
var _ = (FileGetlker)((*loopbackFile)(nil))
var _ = (FileSetlker)((*loopbackFile)(nil))
var _ = (FileSetlkwer)((*loopbackFile)(nil))
var _ = (FileLseeker)((*loopbackFile)(nil))
var _ = (FileFlusher)((*loopbackFile)(nil))
var _ = (FileFsyncer)((*loopbackFile)(nil))
var _ = (FileSetattrer)((*loopbackFile)(nil))
var _ = (FileAllocater)((*loopbackFile)(nil))
var _ = (FilePassthroughFder)((*loopbackFile)(nil))
func (f *loopbackFile) PassthroughFd() (int, bool) {
// This Fd is not accessed concurrently, but lock anyway for uniformity.
f.mu.Lock()
defer f.mu.Unlock()
return f.fd, true
}
func (f *loopbackFile) Read(ctx context.Context, buf []byte, off int64) (res fuse.ReadResult, errno syscall.Errno) {
f.mu.Lock()
defer f.mu.Unlock()
r := fuse.ReadResultFd(uintptr(f.fd), off, len(buf))
return r, OK
}
func (f *loopbackFile) Write(ctx context.Context, data []byte, off int64) (uint32, syscall.Errno) {
f.mu.Lock()
defer f.mu.Unlock()
n, err := syscall.Pwrite(f.fd, data, off)
return uint32(n), ToErrno(err)
}
func (f *loopbackFile) Release(ctx context.Context) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
if f.fd != -1 {
err := syscall.Close(f.fd)
f.fd = -1
return ToErrno(err)
}
return syscall.EBADF
}
func (f *loopbackFile) Flush(ctx context.Context) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
// Since Flush() may be called for each dup'd fd, we don't
// want to really close the file, we just want to flush. This
// is achieved by closing a dup'd fd.
newFd, err := syscall.Dup(f.fd)
if err != nil {
return ToErrno(err)
}
err = syscall.Close(newFd)
return ToErrno(err)
}
func (f *loopbackFile) Fsync(ctx context.Context, flags uint32) (errno syscall.Errno) {
f.mu.Lock()
defer f.mu.Unlock()
r := ToErrno(syscall.Fsync(f.fd))
return r
}
const (
_OFD_GETLK = 36
_OFD_SETLK = 37
_OFD_SETLKW = 38
)
func (f *loopbackFile) Getlk(ctx context.Context, owner uint64, lk *fuse.FileLock, flags uint32, out *fuse.FileLock) (errno syscall.Errno) {
f.mu.Lock()
defer f.mu.Unlock()
flk := syscall.Flock_t{}
lk.ToFlockT(&flk)
errno = ToErrno(syscall.FcntlFlock(uintptr(f.fd), _OFD_GETLK, &flk))
out.FromFlockT(&flk)
return
}
func (f *loopbackFile) Setlk(ctx context.Context, owner uint64, lk *fuse.FileLock, flags uint32) (errno syscall.Errno) {
return f.setLock(ctx, owner, lk, flags, false)
}
func (f *loopbackFile) Setlkw(ctx context.Context, owner uint64, lk *fuse.FileLock, flags uint32) (errno syscall.Errno) {
return f.setLock(ctx, owner, lk, flags, true)
}
func (f *loopbackFile) setLock(ctx context.Context, owner uint64, lk *fuse.FileLock, flags uint32, blocking bool) (errno syscall.Errno) {
f.mu.Lock()
defer f.mu.Unlock()
if (flags & fuse.FUSE_LK_FLOCK) != 0 {
var op int
switch lk.Typ {
case syscall.F_RDLCK:
op = syscall.LOCK_SH
case syscall.F_WRLCK:
op = syscall.LOCK_EX
case syscall.F_UNLCK:
op = syscall.LOCK_UN
default:
return syscall.EINVAL
}
if !blocking {
op |= syscall.LOCK_NB
}
return ToErrno(syscall.Flock(f.fd, op))
} else {
flk := syscall.Flock_t{}
lk.ToFlockT(&flk)
var op int
if blocking {
op = _OFD_SETLKW
} else {
op = _OFD_SETLK
}
return ToErrno(syscall.FcntlFlock(uintptr(f.fd), op, &flk))
}
}
func (f *loopbackFile) Setattr(ctx context.Context, in *fuse.SetAttrIn, out *fuse.AttrOut) syscall.Errno {
if errno := f.setAttr(ctx, in); errno != 0 {
return errno
}
return f.Getattr(ctx, out)
}
func (f *loopbackFile) fchmod(mode uint32) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
return ToErrno(syscall.Fchmod(f.fd, mode))
}
func (f *loopbackFile) fchown(uid, gid int) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
return ToErrno(syscall.Fchown(f.fd, uid, gid))
}
func (f *loopbackFile) ftruncate(sz uint64) syscall.Errno {
return ToErrno(syscall.Ftruncate(f.fd, int64(sz)))
}
func (f *loopbackFile) setAttr(ctx context.Context, in *fuse.SetAttrIn) syscall.Errno {
var errno syscall.Errno
if mode, ok := in.GetMode(); ok {
if errno := f.fchmod(mode); errno != 0 {
return errno
}
}
uid32, uOk := in.GetUID()
gid32, gOk := in.GetGID()
if uOk || gOk {
uid := -1
gid := -1
if uOk {
uid = int(uid32)
}
if gOk {
gid = int(gid32)
}
if errno := f.fchown(uid, gid); errno != 0 {
return errno
}
}
mtime, mok := in.GetMTime()
atime, aok := in.GetATime()
if mok || aok {
ap := &atime
mp := &mtime
if !aok {
ap = nil
}
if !mok {
mp = nil
}
errno = f.utimens(ap, mp)
if errno != 0 {
return errno
}
}
if sz, ok := in.GetSize(); ok {
if errno := f.ftruncate(sz); errno != 0 {
return errno
}
}
return OK
}
func (f *loopbackFile) Getattr(ctx context.Context, a *fuse.AttrOut) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
st := syscall.Stat_t{}
err := syscall.Fstat(f.fd, &st)
if err != nil {
return ToErrno(err)
}
a.FromStat(&st)
return OK
}
func (f *loopbackFile) Lseek(ctx context.Context, off uint64, whence uint32) (uint64, syscall.Errno) {
f.mu.Lock()
defer f.mu.Unlock()
n, err := unix.Seek(f.fd, int64(off), int(whence))
return uint64(n), ToErrno(err)
}
func (f *loopbackFile) Allocate(ctx context.Context, off uint64, sz uint64, mode uint32) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
err := fallocate.Fallocate(f.fd, mode, int64(off), int64(sz))
if err != nil {
return ToErrno(err)
}
return OK
}
func (f *loopbackFile) Ioctl(ctx context.Context, cmd uint32, arg uint64, input []byte, output []byte) (result int32, errno syscall.Errno) {
f.mu.Lock()
defer f.mu.Unlock()
argWord := uintptr(arg)
ioc := ioctl.Command(cmd)
if ioc.Read() {
argWord = uintptr(unsafe.Pointer(&input[0]))
} else if ioc.Write() {
argWord = uintptr(unsafe.Pointer(&output[0]))
}
res, _, errno := syscall.Syscall(syscall.SYS_IOCTL, uintptr(f.fd), uintptr(cmd), argWord)
return int32(res), errno
}

32
vendor/github.com/hanwen/go-fuse/v2/fs/files_darwin.go generated vendored Normal file
View File

@@ -0,0 +1,32 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"syscall"
"time"
"github.com/hanwen/go-fuse/v2/fuse"
"github.com/hanwen/go-fuse/v2/internal/utimens"
)
func setBlocks(out *fuse.Attr) {
}
// MacOS before High Sierra lacks utimensat() and UTIME_OMIT.
// We emulate using utimes() and extra Getattr() calls.
func (f *loopbackFile) utimens(a *time.Time, m *time.Time) syscall.Errno {
var attr fuse.AttrOut
if a == nil || m == nil {
errno := f.Getattr(context.Background(), &attr)
if errno != 0 {
return errno
}
}
tv := utimens.Fill(a, m, &attr.Attr)
err := syscall.Futimes(int(f.fd), tv)
return ToErrno(err)
}

View File

@@ -0,0 +1,6 @@
package fs
import "github.com/hanwen/go-fuse/v2/fuse"
func setBlocks(out *fuse.Attr) {
}

46
vendor/github.com/hanwen/go-fuse/v2/fs/files_linux.go generated vendored Normal file
View File

@@ -0,0 +1,46 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"syscall"
"github.com/hanwen/go-fuse/v2/fuse"
"golang.org/x/sys/unix"
)
func setBlocks(out *fuse.Attr) {
if out.Blksize > 0 {
return
}
out.Blksize = 4096
pages := (out.Size + 4095) / 4096
out.Blocks = pages * 8
}
func setStatxBlocks(out *fuse.Statx) {
if out.Blksize > 0 {
return
}
out.Blksize = 4096
pages := (out.Size + 4095) / 4096
out.Blocks = pages * 8
}
func (f *loopbackFile) Statx(ctx context.Context, flags uint32, mask uint32, out *fuse.StatxOut) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
st := unix.Statx_t{}
err := unix.Statx(f.fd, "", int(flags), int(mask), &st)
if err != nil {
return ToErrno(err)
}
out.FromStatx(&st)
return OK
}

30
vendor/github.com/hanwen/go-fuse/v2/fs/files_unix.go generated vendored Normal file
View File

@@ -0,0 +1,30 @@
//go:build !darwin
package fs
import (
"syscall"
"time"
"unsafe"
"github.com/hanwen/go-fuse/v2/fuse"
)
// Utimens - file handle based version of loopbackFileSystem.Utimens()
func (f *loopbackFile) utimens(a *time.Time, m *time.Time) syscall.Errno {
var ts [2]syscall.Timespec
ts[0] = fuse.UtimeToTimespec(a)
ts[1] = fuse.UtimeToTimespec(m)
err := futimens(int(f.fd), &ts)
return ToErrno(err)
}
// futimens - futimens(3) calls utimensat(2) with "pathname" set to null and
// "flags" set to zero
func futimens(fd int, times *[2]syscall.Timespec) (err error) {
_, _, e1 := syscall.Syscall6(syscall.SYS_UTIMENSAT, uintptr(fd), 0, uintptr(unsafe.Pointer(times)), uintptr(0), 0, 0)
if e1 != 0 {
err = syscall.Errno(e1)
}
return
}

762
vendor/github.com/hanwen/go-fuse/v2/fs/inode.go generated vendored Normal file
View File

@@ -0,0 +1,762 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"fmt"
"log"
"math/rand"
"sort"
"strings"
"sync"
"syscall"
"unsafe"
"github.com/hanwen/go-fuse/v2/fuse"
)
// StableAttr holds immutable attributes of a object in the filesystem.
type StableAttr struct {
// Each Inode has a type, which does not change over the
// lifetime of the inode, for example fuse.S_IFDIR. The default (0)
// is interpreted as S_IFREG (regular file).
Mode uint32
// The inode number must be unique among the currently live
// objects in the file system. It is used to communicate to
// the kernel about this file object. The value uint64(-1)
// is reserved. When using Ino==0, a unique, sequential
// number is assigned (starting at 2^63 by default) on Inode creation.
Ino uint64
// When reusing a previously used inode number for a new
// object, the new object must have a different Gen
// number. This is irrelevant if the FS is not exported over
// NFS
Gen uint64
}
// Reserved returns if the StableAttr is using reserved Inode numbers.
func (i *StableAttr) Reserved() bool {
return i.Ino == ^uint64(0) // fuse.pollHackInode = ^uint64(0)
}
// Inode is a node in VFS tree. Inodes are one-to-one mapped to
// Operations instances, which is the extension interface for file
// systems. One can create fully-formed trees of Inodes ahead of time
// by creating "persistent" Inodes.
//
// The Inode struct contains a lock, so it should not be
// copied. Inodes should be obtained by calling Inode.NewInode() or
// Inode.NewPersistentInode().
type Inode struct {
stableAttr StableAttr
ops InodeEmbedder
bridge *rawBridge
// The *Node ID* is an arbitrary uint64 identifier chosen by the FUSE library.
// It is used the identify *nodes* (files/directories/symlinks/...) in the
// communication between the FUSE library and the Linux kernel.
nodeId uint64
// Following data is mutable.
// file handles.
// protected by bridge.mu
openFiles []uint32
// backing files, protected by bridge.mu
backingIDRefcount int
backingID int32
backingFd int
// mu protects the following mutable fields. When locking
// multiple Inodes, locks must be acquired using
// lockNodes/unlockNodes
mu sync.Mutex
// persistent indicates that this node should not be removed
// from the tree, even if there are no live references. This
// must be set on creation, and can only be changed to false
// by calling removeRef.
// When you change this, you MUST increment changeCounter.
persistent bool
// changeCounter increments every time the mutable state
// (lookupCount, persistent, children, parents) protected by
// mu is modified.
//
// This is used in places where we have to relock inode into inode
// group lock, and after locking the group we have to check if inode
// did not changed, and if it changed - retry the operation.
changeCounter uint32
// Number of kernel refs to this node.
// When you change this, you MUST increment changeCounter.
lookupCount uint64
// Children of this Inode.
// When you change this, you MUST increment changeCounter.
children inodeChildren
// Parents of this Inode. Can be more than one due to hard links.
// When you change this, you MUST increment changeCounter.
parents inodeParents
}
func (n *Inode) IsDir() bool {
return n.stableAttr.Mode&syscall.S_IFMT == syscall.S_IFDIR
}
func (n *Inode) embed() *Inode {
return n
}
func (n *Inode) EmbeddedInode() *Inode {
return n
}
func initInode(n *Inode, ops InodeEmbedder, attr StableAttr, bridge *rawBridge, persistent bool, nodeId uint64) {
n.ops = ops
n.stableAttr = attr
n.bridge = bridge
n.persistent = persistent
n.nodeId = nodeId
if attr.Mode == fuse.S_IFDIR {
n.children.init()
}
}
// Set node ID and mode in EntryOut
func (n *Inode) setEntryOut(out *fuse.EntryOut) {
out.NodeId = n.nodeId
out.Ino = n.stableAttr.Ino
out.Mode = (out.Attr.Mode & 07777) | n.stableAttr.Mode
}
// StableAttr returns the (Ino, Gen) tuple for this node.
func (n *Inode) StableAttr() StableAttr {
return n.stableAttr
}
// Mode returns the filetype
func (n *Inode) Mode() uint32 {
return n.stableAttr.Mode
}
// Returns the root of the tree
func (n *Inode) Root() *Inode {
return n.bridge.root
}
// Returns whether this is the root of the tree
func (n *Inode) IsRoot() bool {
return n.bridge.root == n
}
func modeStr(m uint32) string {
return map[uint32]string{
syscall.S_IFREG: "reg",
syscall.S_IFLNK: "lnk",
syscall.S_IFDIR: "dir",
syscall.S_IFSOCK: "soc",
syscall.S_IFIFO: "pip",
syscall.S_IFCHR: "chr",
syscall.S_IFBLK: "blk",
}[m]
}
func (a StableAttr) String() string {
return fmt.Sprintf("i%d g%d (%s)",
a.Ino, a.Gen, modeStr(a.Mode))
}
// debugString is used for debugging. Racy.
func (n *Inode) String() string {
n.mu.Lock()
defer n.mu.Unlock()
return fmt.Sprintf("%s: %s", n.stableAttr.String(), n.children.String())
}
// sortNodes rearranges inode group in consistent order.
//
// The nodes are ordered by their in-RAM address, which gives consistency
// property: for any A and B inodes, sortNodes will either always order A < B,
// or always order A > B.
//
// See lockNodes where this property is used to avoid deadlock when taking
// locks on inode group.
func sortNodes(ns []*Inode) {
sort.Slice(ns, func(i, j int) bool {
return nodeLess(ns[i], ns[j])
})
}
func nodeLess(a, b *Inode) bool {
return uintptr(unsafe.Pointer(a)) < uintptr(unsafe.Pointer(b))
}
// lockNodes locks group of inodes.
//
// It always lock the inodes in the same order - to avoid deadlocks.
// It also avoids locking an inode more than once, if it was specified multiple times.
// An example when an inode might be given multiple times is if dir/a and dir/b
// are hardlinked to the same inode and the caller needs to take locks on dir children.
func lockNodes(ns ...*Inode) {
sortNodes(ns)
// The default value nil prevents trying to lock nil nodes.
var nprev *Inode
for _, n := range ns {
if n != nprev {
n.mu.Lock()
nprev = n
}
}
}
// lockNode2 locks a and b in order consistent with lockNodes.
func lockNode2(a, b *Inode) {
if a == b {
a.mu.Lock()
} else if nodeLess(a, b) {
a.mu.Lock()
b.mu.Lock()
} else {
b.mu.Lock()
a.mu.Lock()
}
}
// unlockNode2 unlocks a and b
func unlockNode2(a, b *Inode) {
if a == b {
a.mu.Unlock()
} else {
a.mu.Unlock()
b.mu.Unlock()
}
}
// unlockNodes releases locks taken by lockNodes.
func unlockNodes(ns ...*Inode) {
// we don't need to unlock in the same order that was used in lockNodes.
// however it still helps to have nodes sorted to avoid duplicates.
sortNodes(ns)
var nprev *Inode
for _, n := range ns {
if n != nprev {
n.mu.Unlock()
nprev = n
}
}
}
// Forgotten returns true if the kernel holds no references to this
// inode. This can be used for background cleanup tasks, since the
// kernel has no way of reviving forgotten nodes by its own
// initiative.
//
// Bugs: Forgotten() may momentarily return true in the window between
// creation (NewInode) and adding the node into the tree, which
// happens after Lookup/Mkdir/etc. return.
//
// Deprecated: use NodeOnForgetter instead.
func (n *Inode) Forgotten() bool {
n.mu.Lock()
defer n.mu.Unlock()
return n.lookupCount == 0 && n.parents.count() == 0 && !n.persistent
}
// Operations returns the object implementing the file system
// operations.
func (n *Inode) Operations() InodeEmbedder {
return n.ops
}
// Path returns a path string to the inode relative to `root`.
// Pass nil to walk the hierarchy as far up as possible.
//
// If you set `root`, Path() warns if it finds an orphaned Inode, i.e.
// if it does not end up at `root` after walking the hierarchy.
func (n *Inode) Path(root *Inode) string {
var segments []string
p := n
for p != nil && p != root {
// We don't try to take all locks at the same time, because
// the caller won't use the "path" string under lock anyway.
p.mu.Lock()
// Get last known parent
pd := p.parents.get()
p.mu.Unlock()
if pd == nil {
p = nil
break
}
segments = append(segments, pd.name)
p = pd.parent
}
if root != nil && root != p {
deletedPlaceholder := fmt.Sprintf(".go-fuse.%d/deleted", rand.Uint64())
n.bridge.logf("warning: Inode.Path: n%d is orphaned, replacing segment with %q",
n.nodeId, deletedPlaceholder)
// NOSUBMIT - should replace rather than append?
segments = append(segments, deletedPlaceholder)
}
i := 0
j := len(segments) - 1
for i < j {
segments[i], segments[j] = segments[j], segments[i]
i++
j--
}
path := strings.Join(segments, "/")
return path
}
// setEntry does `iparent[name] = ichild` linking.
//
// setEntry must not be called simultaneously for any of iparent or ichild.
// This, for example could be satisfied if both iparent and ichild are locked,
// but it could be also valid if only iparent is locked and ichild was just
// created and only one goroutine keeps referencing it.
func (iparent *Inode) setEntry(name string, ichild *Inode) {
if ichild.stableAttr.Mode == syscall.S_IFDIR {
// Directories cannot have more than one parent. Clear the map.
// This special-case is neccessary because ichild may still have a
// parent that was forgotten (i.e. removed from bridge.inoMap).
ichild.parents.clear()
}
iparent.children.set(iparent, name, ichild)
}
// NewPersistentInode returns an Inode whose lifetime is not in
// control of the kernel.
//
// When the kernel is short on memory, it will forget cached file
// system information (directory entries and inode metadata). This is
// announced with FORGET messages. There are no guarantees if or when
// this happens. When it happens, these are handled transparently by
// go-fuse: all Inodes created with NewInode are released
// automatically. NewPersistentInode creates inodes that go-fuse keeps
// in memory, even if the kernel is not interested in them. This is
// convenient for building static trees up-front.
func (n *Inode) NewPersistentInode(ctx context.Context, node InodeEmbedder, id StableAttr) *Inode {
return n.newInode(ctx, node, id, true)
}
// ForgetPersistent manually marks the node as no longer important. If
// it has no children, and if the kernel as no references, the nodes
// gets removed from the tree.
func (n *Inode) ForgetPersistent() {
n.removeRef(0, true)
}
// NewInode returns an inode for the given InodeEmbedder. The mode
// should be standard mode argument (eg. S_IFDIR). The inode number in
// id.Ino argument is used to implement hard-links. If it is given,
// and another node with the same ID is known, the new inode may be
// ignored, and the old one used instead. If the parent inode
// implements NodeWrapChilder, the returned Inode will have a
// different InodeEmbedder from the one passed in.
func (n *Inode) NewInode(ctx context.Context, node InodeEmbedder, id StableAttr) *Inode {
return n.newInode(ctx, node, id, false)
}
func (n *Inode) newInode(ctx context.Context, ops InodeEmbedder, id StableAttr, persistent bool) *Inode {
if wc, ok := n.ops.(NodeWrapChilder); ok {
ops = wc.WrapChild(ctx, ops)
}
return n.bridge.newInode(ctx, ops, id, persistent)
}
// removeRef decreases references. Returns if this operation caused
// the node to be forgotten (for kernel references), and whether it is
// live (ie. was not dropped from the tree)
func (n *Inode) removeRef(nlookup uint64, dropPersistence bool) (hasLookups, isPersistent, hasChildren bool) {
var beforeLookups, beforePersistence, beforeChildren bool
var unusedParents []*Inode
beforeLookups, hasLookups, beforePersistence, isPersistent, beforeChildren, hasChildren, unusedParents = n.removeRefInner(nlookup, dropPersistence, unusedParents)
if !hasLookups && !isPersistent && !hasChildren && (beforeChildren || beforeLookups || beforePersistence) {
if nf, ok := n.ops.(NodeOnForgetter); ok {
nf.OnForget()
}
}
for len(unusedParents) > 0 {
l := len(unusedParents)
p := unusedParents[l-1]
unusedParents = unusedParents[:l-1]
_, _, _, _, _, _, unusedParents = p.removeRefInner(0, false, unusedParents)
if nf, ok := p.ops.(NodeOnForgetter); ok {
nf.OnForget()
}
}
return
}
func (n *Inode) removeRefInner(nlookup uint64, dropPersistence bool, inputUnusedParents []*Inode) (beforeLookups, hasLookups, beforePersistent, isPersistent, beforeChildren, hasChildren bool, unusedParents []*Inode) {
var lockme []*Inode
var parents []parentData
unusedParents = inputUnusedParents
n.mu.Lock()
beforeLookups = n.lookupCount > 0
beforePersistent = n.persistent
beforeChildren = n.children.len() > 0
if nlookup > 0 && dropPersistence {
log.Panic("only one allowed")
} else if nlookup > n.lookupCount {
log.Panicf("n%d lookupCount underflow: lookupCount=%d, decrement=%d", n.nodeId, n.lookupCount, nlookup)
} else if nlookup > 0 {
n.lookupCount -= nlookup
n.changeCounter++
} else if dropPersistence && n.persistent {
n.persistent = false
n.changeCounter++
}
n.bridge.mu.Lock()
if n.lookupCount == 0 {
// Dropping the node from stableAttrs guarantees that no new references to this node are
// handed out to the kernel, hence we can also safely delete it from kernelNodeIds.
delete(n.bridge.stableAttrs, n.stableAttr)
delete(n.bridge.kernelNodeIds, n.nodeId)
}
n.bridge.mu.Unlock()
retry:
for {
lockme = append(lockme[:0], n)
parents = parents[:0]
nChange := n.changeCounter
hasLookups = n.lookupCount > 0
hasChildren = n.children.len() > 0
isPersistent = n.persistent
for _, p := range n.parents.all() {
parents = append(parents, p)
lockme = append(lockme, p.parent)
}
n.mu.Unlock()
if hasLookups || hasChildren || isPersistent {
return
}
lockNodes(lockme...)
if n.changeCounter != nChange {
unlockNodes(lockme...)
// could avoid unlocking and relocking n here.
n.mu.Lock()
continue retry
}
for _, p := range parents {
parentNode := p.parent
if parentNode.children.get(p.name) != n {
// another node has replaced us already
continue
}
parentNode.children.del(p.parent, p.name)
if parentNode.children.len() == 0 && parentNode.lookupCount == 0 && !parentNode.persistent {
unusedParents = append(unusedParents, parentNode)
}
}
if n.lookupCount != 0 {
log.Panicf("n%d %p lookupCount changed: %d", n.nodeId, n, n.lookupCount)
}
unlockNodes(lockme...)
break
}
return
}
// GetChild returns a child node with the given name, or nil if the
// directory has no child by that name.
func (n *Inode) GetChild(name string) *Inode {
n.mu.Lock()
defer n.mu.Unlock()
return n.children.get(name)
}
// AddChild adds a child to this node. If overwrite is false, fail if
// the destination already exists.
func (n *Inode) AddChild(name string, ch *Inode, overwrite bool) (success bool) {
if len(name) == 0 {
log.Panic("empty name for inode")
}
retry:
for {
lockNode2(n, ch)
prev := n.children.get(name)
parentCounter := n.changeCounter
if prev == nil {
n.children.set(n, name, ch)
unlockNode2(n, ch)
return true
}
unlockNode2(n, ch)
if !overwrite {
return false
}
lockme := [3]*Inode{n, ch, prev}
lockNodes(lockme[:]...)
if parentCounter != n.changeCounter {
unlockNodes(lockme[:]...)
continue retry
}
prev.parents.delete(parentData{name, n})
n.children.set(n, name, ch)
prev.changeCounter++
unlockNodes(lockme[:]...)
return true
}
}
// Children returns the list of children of this directory Inode.
func (n *Inode) Children() map[string]*Inode {
n.mu.Lock()
defer n.mu.Unlock()
return n.children.toMap()
}
// childrenList returns the list of children of this directory Inode.
// The result is guaranteed to be stable as long as the directory did
// not change.
func (n *Inode) childrenList() []childEntry {
n.mu.Lock()
defer n.mu.Unlock()
return n.children.list()
}
// Parents returns a parent of this Inode, or nil if this Inode is
// deleted or is the root
func (n *Inode) Parent() (string, *Inode) {
n.mu.Lock()
defer n.mu.Unlock()
p := n.parents.get()
if p == nil {
return "", nil
}
return p.name, p.parent
}
// RmAllChildren recursively drops a tree, forgetting all persistent
// nodes.
func (n *Inode) RmAllChildren() {
for {
chs := n.Children()
if len(chs) == 0 {
break
}
for nm, ch := range chs {
ch.RmAllChildren()
n.RmChild(nm)
}
}
n.removeRef(0, true)
}
// RmChild removes multiple children. Returns whether the removal
// succeeded and whether the node is still live afterward. The removal
// is transactional: it only succeeds if all names are children, and
// if they all were removed successfully. If the removal was
// successful, and there are no children left, the node may be removed
// from the FS tree. In that case, RmChild returns live==false.
func (n *Inode) RmChild(names ...string) (success, live bool) {
var lockme []*Inode
retry:
for {
n.mu.Lock()
lockme = append(lockme[:0], n)
nChange := n.changeCounter
for _, nm := range names {
ch := n.children.get(nm)
if ch == nil {
n.mu.Unlock()
return false, true
}
lockme = append(lockme, ch)
}
n.mu.Unlock()
lockNodes(lockme...)
if n.changeCounter != nChange {
unlockNodes(lockme...)
continue retry
}
for _, nm := range names {
n.children.del(n, nm)
}
live = n.lookupCount > 0 || n.children.len() > 0 || n.persistent
unlockNodes(lockme...)
// removal successful
break
}
if !live {
hasLookups, isPersistent, hasChildren := n.removeRef(0, false)
return true, (hasLookups || isPersistent || hasChildren)
}
return true, true
}
// MvChild executes a rename. If overwrite is set, a child at the
// destination will be overwritten, should it exist. It returns false
// if 'overwrite' is false, and the destination exists.
func (n *Inode) MvChild(old string, newParent *Inode, newName string, overwrite bool) bool {
if len(newName) == 0 {
log.Panicf("empty newName for MvChild")
}
retry:
for {
lockNode2(n, newParent)
counter1 := n.changeCounter
counter2 := newParent.changeCounter
oldChild := n.children.get(old)
destChild := newParent.children.get(newName)
unlockNode2(n, newParent)
if destChild != nil && !overwrite {
return false
}
lockNodes(n, newParent, oldChild, destChild)
if counter2 != newParent.changeCounter || counter1 != n.changeCounter {
unlockNodes(n, newParent, oldChild, destChild)
continue retry
}
if oldChild != nil {
n.children.del(n, old)
}
if destChild != nil {
// This can cause the child to be slated for
// removal; see below
newParent.children.del(newParent, newName)
}
if oldChild != nil {
newParent.children.set(newParent, newName, oldChild)
}
unlockNodes(n, newParent, oldChild, destChild)
if destChild != nil {
destChild.removeRef(0, false)
}
return true
}
}
// ExchangeChild swaps the entries at (n, oldName) and (newParent,
// newName).
func (n *Inode) ExchangeChild(oldName string, newParent *Inode, newName string) {
oldParent := n
retry:
for {
lockNode2(oldParent, newParent)
counter1 := oldParent.changeCounter
counter2 := newParent.changeCounter
oldChild := oldParent.children.get(oldName)
destChild := newParent.children.get(newName)
unlockNode2(oldParent, newParent)
if destChild == oldChild {
return
}
lockNodes(oldParent, newParent, oldChild, destChild)
if counter2 != newParent.changeCounter || counter1 != oldParent.changeCounter {
unlockNodes(oldParent, newParent, oldChild, destChild)
continue retry
}
// Detach
if oldChild != nil {
oldParent.children.del(oldParent, oldName)
}
if destChild != nil {
newParent.children.del(newParent, newName)
}
// Attach
if oldChild != nil {
newParent.children.set(newParent, newName, oldChild)
}
if destChild != nil {
oldParent.children.set(oldParent, oldName, destChild)
}
unlockNodes(oldParent, newParent, oldChild, destChild)
return
}
}
// NotifyEntry notifies the kernel that data for a (directory, name)
// tuple should be invalidated. On next access, a LOOKUP operation
// will be started.
func (n *Inode) NotifyEntry(name string) syscall.Errno {
status := n.bridge.server.EntryNotify(n.nodeId, name)
return syscall.Errno(status)
}
// NotifyDelete notifies the kernel that the given inode was removed
// from this directory as entry under the given name. It is equivalent
// to NotifyEntry, but also sends an event to inotify watchers.
func (n *Inode) NotifyDelete(name string, child *Inode) syscall.Errno {
// XXX arg ordering?
return syscall.Errno(n.bridge.server.DeleteNotify(n.nodeId, child.nodeId, name))
}
// NotifyContent notifies the kernel that content under the given
// inode should be flushed from buffers.
func (n *Inode) NotifyContent(off, sz int64) syscall.Errno {
// XXX how does this work for directories?
return syscall.Errno(n.bridge.server.InodeNotify(n.nodeId, off, sz))
}
// WriteCache stores data in the kernel cache.
func (n *Inode) WriteCache(offset int64, data []byte) syscall.Errno {
return syscall.Errno(n.bridge.server.InodeNotifyStoreCache(n.nodeId, offset, data))
}
// ReadCache reads data from the kernel cache.
func (n *Inode) ReadCache(offset int64, dest []byte) (count int, errno syscall.Errno) {
c, s := n.bridge.server.InodeRetrieveCache(n.nodeId, offset, dest)
return c, syscall.Errno(s)
}

View File

@@ -0,0 +1,133 @@
// Copyright 2023 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"fmt"
"strings"
)
type childEntry struct {
Name string
Inode *Inode
// TODO: store int64 changeCounter of the parent, so we can
// use the changeCounter as a directory offset.
}
// inodeChildren is a hashmap with deterministic ordering. It is
// important to return the children in a deterministic order for 2
// reasons:
//
// 1. if the ordering is non-deterministic, multiple concurrent
// readdirs can lead to cache corruption (see issue #391)
//
// 2. it simplifies the implementation of directory seeking: the NFS
// protocol doesn't open and close directories. Instead, a directory
// read must always be continued from a previously handed out offset.
//
// By storing the entries in insertion order, and marking them with a
// int64 logical timestamp, the logical timestamp can serve as readdir
// cookie.
type inodeChildren struct {
// index into children slice.
childrenMap map[string]int
children []childEntry
}
func (c *inodeChildren) init() {
c.childrenMap = make(map[string]int)
}
func (c *inodeChildren) String() string {
var ss []string
for _, e := range c.children {
ch := e.Inode
ss = append(ss, fmt.Sprintf("%q=i%d[%s]", e.Name, ch.stableAttr.Ino, modeStr(ch.stableAttr.Mode)))
}
return strings.Join(ss, ",")
}
func (c *inodeChildren) get(name string) *Inode {
idx, ok := c.childrenMap[name]
if !ok {
return nil
}
return c.children[idx].Inode
}
func (c *inodeChildren) compact() {
nc := make([]childEntry, 0, 2*len(c.childrenMap)+1)
nm := make(map[string]int, len(c.childrenMap))
for _, e := range c.children {
if e.Inode == nil {
continue
}
nm[e.Name] = len(nc)
nc = append(nc, e)
}
c.childrenMap = nm
c.children = nc
}
func (c *inodeChildren) set(parent *Inode, name string, ch *Inode) {
idx, ok := c.childrenMap[name]
if !ok {
if cap(c.children) == len(c.children) {
c.compact()
}
idx = len(c.children)
c.children = append(c.children, childEntry{})
}
c.childrenMap[name] = idx
c.children[idx] = childEntry{Name: name, Inode: ch}
parent.changeCounter++
ch.parents.add(parentData{name, parent})
ch.changeCounter++
}
func (c *inodeChildren) len() int {
return len(c.childrenMap)
}
func (c *inodeChildren) toMap() map[string]*Inode {
r := make(map[string]*Inode, len(c.childrenMap))
for _, e := range c.children {
if e.Inode != nil {
r[e.Name] = e.Inode
}
}
return r
}
func (c *inodeChildren) del(parent *Inode, name string) {
idx, ok := c.childrenMap[name]
if !ok {
return
}
ch := c.children[idx].Inode
delete(c.childrenMap, name)
c.children[idx] = childEntry{}
ch.parents.delete(parentData{name, parent})
ch.changeCounter++
parent.changeCounter++
}
func (c *inodeChildren) list() []childEntry {
r := make([]childEntry, 0, len(c.childrenMap))
for _, e := range c.children {
if e.Inode != nil {
r = append(r, e)
}
}
return r
}

101
vendor/github.com/hanwen/go-fuse/v2/fs/inode_parents.go generated vendored Normal file
View File

@@ -0,0 +1,101 @@
// Copyright 2021 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
// inodeParents stores zero or more parents of an Inode,
// remembering which one is the most recent.
//
// No internal locking: the caller is responsible for preventing
// concurrent access.
type inodeParents struct {
// newest is the most-recently add()'ed parent.
// nil when we don't have any parents.
newest *parentData
// other are parents in addition to the newest.
// nil or empty when we have <= 1 parents.
other map[parentData]struct{}
}
// add adds a parent to the store.
func (p *inodeParents) add(n parentData) {
// one and only parent
if p.newest == nil {
p.newest = &n
}
// already known as `newest`
if *p.newest == n {
return
}
// old `newest` gets displaced into `other`
if p.other == nil {
p.other = make(map[parentData]struct{})
}
p.other[*p.newest] = struct{}{}
// new parent becomes `newest` (possibly moving up from `other`)
delete(p.other, n)
p.newest = &n
}
// get returns the most recent parent
// or nil if there is no parent at all.
func (p *inodeParents) get() *parentData {
return p.newest
}
// all returns all known parents
// or nil if there is no parent at all.
func (p *inodeParents) all() []parentData {
count := p.count()
if count == 0 {
return nil
}
out := make([]parentData, 0, count)
out = append(out, *p.newest)
for i := range p.other {
out = append(out, i)
}
return out
}
func (p *inodeParents) delete(n parentData) {
// We have zero parents, so we can't delete any.
if p.newest == nil {
return
}
// If it's not the `newest` it must be in `other` (or nowhere).
if *p.newest != n {
delete(p.other, n)
return
}
// We want to delete `newest`, but there is no other to replace it.
if len(p.other) == 0 {
p.newest = nil
return
}
// Move random entry from `other` over `newest`.
var i parentData
for i = range p.other {
p.newest = &i
break
}
delete(p.other, i)
}
func (p *inodeParents) clear() {
p.newest = nil
p.other = nil
}
func (p *inodeParents) count() int {
if p.newest == nil {
return 0
}
return 1 + len(p.other)
}
type parentData struct {
name string
parent *Inode
}

549
vendor/github.com/hanwen/go-fuse/v2/fs/loopback.go generated vendored Normal file
View File

@@ -0,0 +1,549 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"os"
"path/filepath"
"syscall"
"github.com/hanwen/go-fuse/v2/fuse"
"github.com/hanwen/go-fuse/v2/internal/openat"
"github.com/hanwen/go-fuse/v2/internal/renameat"
"golang.org/x/sys/unix"
)
// LoopbackRoot holds the parameters for creating a new loopback
// filesystem. Loopback filesystem delegate their operations to an
// underlying POSIX file system.
type LoopbackRoot struct {
// The path to the root of the underlying file system.
Path string
// The device on which the Path resides. This must be set if
// the underlying filesystem crosses file systems.
Dev uint64
// NewNode returns a new InodeEmbedder to be used to respond
// to a LOOKUP/CREATE/MKDIR/MKNOD opcode. If not set, use a
// LoopbackNode.
//
// Deprecated: use NodeWrapChilder instead.
NewNode func(rootData *LoopbackRoot, parent *Inode, name string, st *syscall.Stat_t) InodeEmbedder
// RootNode is the root of the Loopback. This must be set if
// the Loopback file system is not the root of the FUSE
// mount. It is set automatically by NewLoopbackRoot.
RootNode InodeEmbedder
}
func (r *LoopbackRoot) newNode(parent *Inode, name string, st *syscall.Stat_t) InodeEmbedder {
if r.NewNode != nil {
return r.NewNode(r, parent, name, st)
}
return &LoopbackNode{
RootData: r,
}
}
func (r *LoopbackRoot) idFromStat(st *syscall.Stat_t) StableAttr {
// We compose an inode number by the underlying inode, and
// mixing in the device number. In traditional filesystems,
// the inode numbers are small. The device numbers are also
// small (typically 16 bit). Finally, we mask out the root
// device number of the root, so a loopback FS that does not
// encompass multiple mounts will reflect the inode numbers of
// the underlying filesystem
swapped := (uint64(st.Dev) << 32) | (uint64(st.Dev) >> 32)
swappedRootDev := (r.Dev << 32) | (r.Dev >> 32)
return StableAttr{
Mode: uint32(st.Mode),
Gen: 1,
// This should work well for traditional backing FSes,
// not so much for other go-fuse FS-es
Ino: (swapped ^ swappedRootDev) ^ st.Ino,
}
}
// LoopbackNode is a filesystem node in a loopback file system. It is
// public so it can be used as a basis for other loopback based
// filesystems. See NewLoopbackFile or LoopbackRoot for more
// information.
type LoopbackNode struct {
Inode
// RootData points back to the root of the loopback filesystem.
RootData *LoopbackRoot
}
// loopbackNodeEmbedder can only be implemented by the LoopbackNode
// concrete type.
type loopbackNodeEmbedder interface {
loopbackNode() *LoopbackNode
}
func (n *LoopbackNode) loopbackNode() *LoopbackNode {
return n
}
var _ = (NodeStatfser)((*LoopbackNode)(nil))
func (n *LoopbackNode) Statfs(ctx context.Context, out *fuse.StatfsOut) syscall.Errno {
s := syscall.Statfs_t{}
err := syscall.Statfs(n.path(), &s)
if err != nil {
return ToErrno(err)
}
out.FromStatfsT(&s)
return OK
}
// path returns the full path to the file in the underlying file
// system.
func (n *LoopbackNode) root() *Inode {
var rootNode *Inode
if n.RootData.RootNode != nil {
rootNode = n.RootData.RootNode.EmbeddedInode()
} else {
rootNode = n.Root()
}
return rootNode
}
// relativePath returns the path the node, relative to to the root directory
func (n *LoopbackNode) relativePath() string {
return n.Path(n.root())
}
// path returns the absolute path to the node
func (n *LoopbackNode) path() string {
return filepath.Join(n.RootData.Path, n.relativePath())
}
var _ = (NodeLookuper)((*LoopbackNode)(nil))
func (n *LoopbackNode) Lookup(ctx context.Context, name string, out *fuse.EntryOut) (*Inode, syscall.Errno) {
p := filepath.Join(n.path(), name)
st := syscall.Stat_t{}
err := syscall.Lstat(p, &st)
if err != nil {
return nil, ToErrno(err)
}
out.Attr.FromStat(&st)
node := n.RootData.newNode(n.EmbeddedInode(), name, &st)
ch := n.NewInode(ctx, node, n.RootData.idFromStat(&st))
return ch, 0
}
// preserveOwner sets uid and gid of `path` according to the caller information
// in `ctx`.
func (n *LoopbackNode) preserveOwner(ctx context.Context, path string) error {
if os.Getuid() != 0 {
return nil
}
caller, ok := fuse.FromContext(ctx)
if !ok {
return nil
}
return syscall.Lchown(path, int(caller.Uid), int(caller.Gid))
}
var _ = (NodeMknoder)((*LoopbackNode)(nil))
func (n *LoopbackNode) Mknod(ctx context.Context, name string, mode, rdev uint32, out *fuse.EntryOut) (*Inode, syscall.Errno) {
p := filepath.Join(n.path(), name)
err := syscall.Mknod(p, mode, intDev(rdev))
if err != nil {
return nil, ToErrno(err)
}
n.preserveOwner(ctx, p)
st := syscall.Stat_t{}
if err := syscall.Lstat(p, &st); err != nil {
syscall.Rmdir(p)
return nil, ToErrno(err)
}
out.Attr.FromStat(&st)
node := n.RootData.newNode(n.EmbeddedInode(), name, &st)
ch := n.NewInode(ctx, node, n.RootData.idFromStat(&st))
return ch, 0
}
var _ = (NodeMkdirer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Mkdir(ctx context.Context, name string, mode uint32, out *fuse.EntryOut) (*Inode, syscall.Errno) {
p := filepath.Join(n.path(), name)
err := os.Mkdir(p, os.FileMode(mode))
if err != nil {
return nil, ToErrno(err)
}
n.preserveOwner(ctx, p)
st := syscall.Stat_t{}
if err := syscall.Lstat(p, &st); err != nil {
syscall.Rmdir(p)
return nil, ToErrno(err)
}
out.Attr.FromStat(&st)
node := n.RootData.newNode(n.EmbeddedInode(), name, &st)
ch := n.NewInode(ctx, node, n.RootData.idFromStat(&st))
return ch, 0
}
var _ = (NodeRmdirer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Rmdir(ctx context.Context, name string) syscall.Errno {
p := filepath.Join(n.path(), name)
err := syscall.Rmdir(p)
return ToErrno(err)
}
var _ = (NodeUnlinker)((*LoopbackNode)(nil))
func (n *LoopbackNode) Unlink(ctx context.Context, name string) syscall.Errno {
p := filepath.Join(n.path(), name)
err := syscall.Unlink(p)
return ToErrno(err)
}
var _ = (NodeRenamer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Rename(ctx context.Context, name string, newParent InodeEmbedder, newName string, flags uint32) syscall.Errno {
e2, ok := newParent.(loopbackNodeEmbedder)
if !ok {
return syscall.EXDEV
}
if e2.loopbackNode().RootData != n.RootData {
return syscall.EXDEV
}
if flags != 0 {
return n.rename2(name, e2.loopbackNode(), newName, flags)
}
p1 := filepath.Join(n.path(), name)
p2 := filepath.Join(e2.loopbackNode().path(), newName)
err := syscall.Rename(p1, p2)
return ToErrno(err)
}
var _ = (NodeCreater)((*LoopbackNode)(nil))
func (n *LoopbackNode) Create(ctx context.Context, name string, flags uint32, mode uint32, out *fuse.EntryOut) (inode *Inode, fh FileHandle, fuseFlags uint32, errno syscall.Errno) {
p := filepath.Join(n.path(), name)
flags = flags &^ syscall.O_APPEND
fd, err := syscall.Open(p, int(flags)|os.O_CREATE, mode)
if err != nil {
return nil, nil, 0, ToErrno(err)
}
n.preserveOwner(ctx, p)
st := syscall.Stat_t{}
if err := syscall.Fstat(fd, &st); err != nil {
syscall.Close(fd)
return nil, nil, 0, ToErrno(err)
}
node := n.RootData.newNode(n.EmbeddedInode(), name, &st)
ch := n.NewInode(ctx, node, n.RootData.idFromStat(&st))
lf := NewLoopbackFile(fd)
out.FromStat(&st)
return ch, lf, 0, 0
}
func (n *LoopbackNode) rename2(name string, newParent *LoopbackNode, newName string, flags uint32) syscall.Errno {
fd1, err := syscall.Open(n.path(), syscall.O_DIRECTORY, 0)
if err != nil {
return ToErrno(err)
}
defer syscall.Close(fd1)
p2 := newParent.path()
fd2, err := syscall.Open(p2, syscall.O_DIRECTORY, 0)
if err != nil {
return ToErrno(err)
}
defer syscall.Close(fd2)
var st syscall.Stat_t
if err := syscall.Fstat(fd1, &st); err != nil {
return ToErrno(err)
}
// Double check that nodes didn't change from under us.
if n.root() != n.EmbeddedInode() && n.Inode.StableAttr().Ino != n.RootData.idFromStat(&st).Ino {
return syscall.EBUSY
}
if err := syscall.Fstat(fd2, &st); err != nil {
return ToErrno(err)
}
if (newParent.root() != newParent.EmbeddedInode()) && newParent.Inode.StableAttr().Ino != n.RootData.idFromStat(&st).Ino {
return syscall.EBUSY
}
return ToErrno(renameat.Renameat(fd1, name, fd2, newName, uint(flags)))
}
var _ = (NodeSymlinker)((*LoopbackNode)(nil))
func (n *LoopbackNode) Symlink(ctx context.Context, target, name string, out *fuse.EntryOut) (*Inode, syscall.Errno) {
p := filepath.Join(n.path(), name)
err := syscall.Symlink(target, p)
if err != nil {
return nil, ToErrno(err)
}
n.preserveOwner(ctx, p)
st := syscall.Stat_t{}
if err := syscall.Lstat(p, &st); err != nil {
syscall.Unlink(p)
return nil, ToErrno(err)
}
node := n.RootData.newNode(n.EmbeddedInode(), name, &st)
ch := n.NewInode(ctx, node, n.RootData.idFromStat(&st))
out.Attr.FromStat(&st)
return ch, 0
}
var _ = (NodeLinker)((*LoopbackNode)(nil))
func (n *LoopbackNode) Link(ctx context.Context, target InodeEmbedder, name string, out *fuse.EntryOut) (*Inode, syscall.Errno) {
p := filepath.Join(n.path(), name)
err := syscall.Link(filepath.Join(n.RootData.Path, target.EmbeddedInode().Path(nil)), p)
if err != nil {
return nil, ToErrno(err)
}
st := syscall.Stat_t{}
if err := syscall.Lstat(p, &st); err != nil {
syscall.Unlink(p)
return nil, ToErrno(err)
}
node := n.RootData.newNode(n.EmbeddedInode(), name, &st)
ch := n.NewInode(ctx, node, n.RootData.idFromStat(&st))
out.Attr.FromStat(&st)
return ch, 0
}
var _ = (NodeReadlinker)((*LoopbackNode)(nil))
func (n *LoopbackNode) Readlink(ctx context.Context) ([]byte, syscall.Errno) {
p := n.path()
for l := 256; ; l *= 2 {
buf := make([]byte, l)
sz, err := syscall.Readlink(p, buf)
if err != nil {
return nil, ToErrno(err)
}
if sz < len(buf) {
return buf[:sz], 0
}
}
}
var _ = (NodeOpener)((*LoopbackNode)(nil))
// Symlink-safe through use of OpenSymlinkAware.
func (n *LoopbackNode) Open(ctx context.Context, flags uint32) (fh FileHandle, fuseFlags uint32, errno syscall.Errno) {
flags = flags &^ (syscall.O_APPEND | fuse.FMODE_EXEC)
f, err := openat.OpenSymlinkAware(n.RootData.Path, n.relativePath(), int(flags), 0)
if err != nil {
return nil, 0, ToErrno(err)
}
lf := NewLoopbackFile(f)
return lf, 0, 0
}
var _ = (NodeOpendirHandler)((*LoopbackNode)(nil))
func (n *LoopbackNode) OpendirHandle(ctx context.Context, flags uint32) (FileHandle, uint32, syscall.Errno) {
ds, errno := NewLoopbackDirStream(n.path())
if errno != 0 {
return nil, 0, errno
}
return ds, 0, errno
}
var _ = (NodeReaddirer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Readdir(ctx context.Context) (DirStream, syscall.Errno) {
return NewLoopbackDirStream(n.path())
}
var _ = (NodeGetattrer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Getattr(ctx context.Context, f FileHandle, out *fuse.AttrOut) syscall.Errno {
if f != nil {
if fga, ok := f.(FileGetattrer); ok {
return fga.Getattr(ctx, out)
}
}
p := n.path()
var err error
st := syscall.Stat_t{}
if &n.Inode == n.Root() {
err = syscall.Stat(p, &st)
} else {
err = syscall.Lstat(p, &st)
}
if err != nil {
return ToErrno(err)
}
out.FromStat(&st)
return OK
}
var _ = (NodeSetattrer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Setattr(ctx context.Context, f FileHandle, in *fuse.SetAttrIn, out *fuse.AttrOut) syscall.Errno {
p := n.path()
fsa, ok := f.(FileSetattrer)
if ok && fsa != nil {
fsa.Setattr(ctx, in, out)
} else {
if m, ok := in.GetMode(); ok {
if err := syscall.Chmod(p, m); err != nil {
return ToErrno(err)
}
}
uid, uok := in.GetUID()
gid, gok := in.GetGID()
if uok || gok {
suid := -1
sgid := -1
if uok {
suid = int(uid)
}
if gok {
sgid = int(gid)
}
if err := syscall.Chown(p, suid, sgid); err != nil {
return ToErrno(err)
}
}
mtime, mok := in.GetMTime()
atime, aok := in.GetATime()
if mok || aok {
ta := unix.Timespec{Nsec: unix_UTIME_OMIT}
tm := unix.Timespec{Nsec: unix_UTIME_OMIT}
var err error
if aok {
ta, err = unix.TimeToTimespec(atime)
if err != nil {
return ToErrno(err)
}
}
if mok {
tm, err = unix.TimeToTimespec(mtime)
if err != nil {
return ToErrno(err)
}
}
ts := []unix.Timespec{ta, tm}
if err := unix.UtimesNanoAt(unix.AT_FDCWD, p, ts, unix.AT_SYMLINK_NOFOLLOW); err != nil {
return ToErrno(err)
}
}
if sz, ok := in.GetSize(); ok {
if err := syscall.Truncate(p, int64(sz)); err != nil {
return ToErrno(err)
}
}
}
fga, ok := f.(FileGetattrer)
if ok && fga != nil {
fga.Getattr(ctx, out)
} else {
st := syscall.Stat_t{}
err := syscall.Lstat(p, &st)
if err != nil {
return ToErrno(err)
}
out.FromStat(&st)
}
return OK
}
var _ = (NodeGetxattrer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Getxattr(ctx context.Context, attr string, dest []byte) (uint32, syscall.Errno) {
sz, err := unix.Lgetxattr(n.path(), attr, dest)
return uint32(sz), ToErrno(err)
}
var _ = (NodeSetxattrer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Setxattr(ctx context.Context, attr string, data []byte, flags uint32) syscall.Errno {
err := unix.Lsetxattr(n.path(), attr, data, int(flags))
return ToErrno(err)
}
var _ = (NodeRemovexattrer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Removexattr(ctx context.Context, attr string) syscall.Errno {
err := unix.Lremovexattr(n.path(), attr)
return ToErrno(err)
}
var _ = (NodeCopyFileRanger)((*LoopbackNode)(nil))
func (n *LoopbackNode) CopyFileRange(ctx context.Context, fhIn FileHandle,
offIn uint64, out *Inode, fhOut FileHandle, offOut uint64,
len uint64, flags uint64) (uint32, syscall.Errno) {
lfIn, ok := fhIn.(*loopbackFile)
if !ok {
return 0, unix.ENOTSUP
}
lfOut, ok := fhOut.(*loopbackFile)
if !ok {
return 0, unix.ENOTSUP
}
signedOffIn := int64(offIn)
signedOffOut := int64(offOut)
doCopyFileRange(lfIn.fd, signedOffIn, lfOut.fd, signedOffOut, int(len), int(flags))
return 0, syscall.ENOSYS
}
// NewLoopbackRoot returns a root node for a loopback file system whose
// root is at the given root. This node implements all NodeXxxxer
// operations available.
func NewLoopbackRoot(rootPath string) (InodeEmbedder, error) {
var st syscall.Stat_t
err := syscall.Stat(rootPath, &st)
if err != nil {
return nil, err
}
root := &LoopbackRoot{
Path: rootPath,
Dev: uint64(st.Dev),
}
rootNode := root.newNode(nil, "", &st)
root.RootNode = rootNode
return rootNode, nil
}

View File

@@ -0,0 +1,36 @@
//go:build darwin
// +build darwin
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"syscall"
"time"
)
const unix_UTIME_OMIT = 0x0
// timeToTimeval - Convert time.Time to syscall.Timeval
//
// Note: This does not use syscall.NsecToTimespec because
// that does not work properly for times before 1970,
// see https://github.com/golang/go/issues/12777
func timeToTimeval(t *time.Time) syscall.Timeval {
var tv syscall.Timeval
tv.Usec = int32(t.Nanosecond() / 1000)
tv.Sec = t.Unix()
return tv
}
func doCopyFileRange(fdIn int, offIn int64, fdOut int, offOut int64,
len int, flags int) (uint32, syscall.Errno) {
return 0, syscall.ENOSYS
}
func intDev(dev uint32) int {
return int(dev)
}

View File

@@ -0,0 +1,80 @@
// Copyright 2024 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"syscall"
"github.com/hanwen/go-fuse/v2/internal/xattr"
"golang.org/x/sys/unix"
)
const unix_UTIME_OMIT = unix.UTIME_OMIT
// FreeBSD has added copy_file_range(2) since FreeBSD 12. However,
// golang.org/x/sys/unix hasn't add corresponding syscall constant or
// wrap function. Here we define the syscall constant until sys/unix
// provides.
const sys_COPY_FILE_RANGE = 569
// TODO: replace the manual syscall when sys/unix provides CopyFileRange
// for FreeBSD
func doCopyFileRange(fdIn int, offIn int64, fdOut int, offOut int64,
len int, flags int) (uint32, syscall.Errno) {
count, _, errno := unix.Syscall6(sys_COPY_FILE_RANGE,
uintptr(fdIn), uintptr(offIn), uintptr(fdOut), uintptr(offOut),
uintptr(len), uintptr(flags),
)
return uint32(count), errno
}
func intDev(dev uint32) uint64 {
return uint64(dev)
}
// Since FUSE on FreeBSD expect Linux flavor data format of
// listxattr, we should reconstruct it with data returned by
// FreeBSD's syscall. And here we have added a "user." prefix
// to put them under "user" namespace, which is readable and
// writable for normal user, for a userspace implemented FS.
func rebuildAttrBuf(attrList [][]byte) []byte {
ret := make([]byte, 0)
for _, attrName := range attrList {
nsAttrName := append([]byte("user."), attrName...)
ret = append(ret, nsAttrName...)
ret = append(ret, 0x0)
}
return ret
}
var _ = (NodeListxattrer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Listxattr(ctx context.Context, dest []byte) (uint32, syscall.Errno) {
// In order to simulate same data format as Linux does,
// and the size of returned buf is required to match, we must
// call unix.Llistxattr twice.
sz, err := unix.Llistxattr(n.path(), nil)
if err != nil {
return uint32(sz), ToErrno(err)
}
rawBuf := make([]byte, sz)
sz, err = unix.Llistxattr(n.path(), rawBuf)
if err != nil {
return uint32(sz), ToErrno(err)
}
attrList := xattr.ParseAttrNames(rawBuf)
rebuiltBuf := rebuildAttrBuf(attrList)
sz = len(rebuiltBuf)
if len(dest) != 0 {
// When len(dest) is 0, which means that caller wants to get
// the size. If len(dest) is less than len(rebuiltBuf), but greater
// than 0 dest will be also filled with data from rebuiltBuf,
// but truncated to len(dest). copy() function will do the same.
// And this behaviour is same as FreeBSD's syscall extattr_list_file(2).
sz = copy(dest, rebuiltBuf)
}
return uint32(sz), ToErrno(err)
}

View File

@@ -0,0 +1,50 @@
//go:build linux
// +build linux
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"syscall"
"github.com/hanwen/go-fuse/v2/fuse"
"golang.org/x/sys/unix"
)
const unix_UTIME_OMIT = unix.UTIME_OMIT
func doCopyFileRange(fdIn int, offIn int64, fdOut int, offOut int64,
len int, flags int) (uint32, syscall.Errno) {
count, err := unix.CopyFileRange(fdIn, &offIn, fdOut, &offOut, len, flags)
return uint32(count), ToErrno(err)
}
func intDev(dev uint32) int {
return int(dev)
}
var _ = (NodeStatxer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Statx(ctx context.Context, f FileHandle,
flags uint32, mask uint32,
out *fuse.StatxOut) syscall.Errno {
if f != nil {
if fga, ok := f.(FileStatxer); ok {
return fga.Statx(ctx, flags, mask, out)
}
}
p := n.path()
st := unix.Statx_t{}
err := unix.Statx(unix.AT_FDCWD, p, int(flags), int(mask), &st)
if err != nil {
return ToErrno(err)
}
out.FromStatx(&st)
return OK
}

View File

@@ -0,0 +1,20 @@
//go:build !freebsd
// Copyright 2024 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"syscall"
"golang.org/x/sys/unix"
)
var _ = (NodeListxattrer)((*LoopbackNode)(nil))
func (n *LoopbackNode) Listxattr(ctx context.Context, dest []byte) (uint32, syscall.Errno) {
sz, err := unix.Llistxattr(n.path(), dest)
return uint32(sz), ToErrno(err)
}

121
vendor/github.com/hanwen/go-fuse/v2/fs/mem.go generated vendored Normal file
View File

@@ -0,0 +1,121 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"context"
"sync"
"syscall"
"github.com/hanwen/go-fuse/v2/fuse"
)
// MemRegularFile is a filesystem node that holds a data
// slice in memory.
type MemRegularFile struct {
Inode
mu sync.Mutex
Data []byte
Attr fuse.Attr
}
var _ = (NodeOpener)((*MemRegularFile)(nil))
var _ = (NodeReader)((*MemRegularFile)(nil))
var _ = (NodeWriter)((*MemRegularFile)(nil))
var _ = (NodeSetattrer)((*MemRegularFile)(nil))
var _ = (NodeFlusher)((*MemRegularFile)(nil))
var _ = (NodeAllocater)((*MemRegularFile)(nil))
func (f *MemRegularFile) Allocate(ctx context.Context, fh FileHandle, off uint64, size uint64, mode uint32) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
oldSz := len(f.Data)
if uint64(cap(f.Data)) < off+size {
n := make([]byte, off+size)
copy(n, f.Data)
f.Data = n
}
if keepSizeMode(mode) {
f.Data = f.Data[:oldSz]
} else if len(f.Data) < int(off+size) {
f.Data = f.Data[:off+size]
}
return 0
}
func (f *MemRegularFile) Open(ctx context.Context, flags uint32) (fh FileHandle, fuseFlags uint32, errno syscall.Errno) {
return nil, fuse.FOPEN_KEEP_CACHE, OK
}
func (f *MemRegularFile) Write(ctx context.Context, fh FileHandle, data []byte, off int64) (uint32, syscall.Errno) {
f.mu.Lock()
defer f.mu.Unlock()
end := int64(len(data)) + off
if int64(len(f.Data)) < end {
n := make([]byte, end)
copy(n, f.Data)
f.Data = n
}
copy(f.Data[off:off+int64(len(data))], data)
return uint32(len(data)), 0
}
var _ = (NodeGetattrer)((*MemRegularFile)(nil))
func (f *MemRegularFile) Getattr(ctx context.Context, fh FileHandle, out *fuse.AttrOut) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
out.Attr = f.Attr
out.Attr.Size = uint64(len(f.Data))
return OK
}
func (f *MemRegularFile) Setattr(ctx context.Context, fh FileHandle, in *fuse.SetAttrIn, out *fuse.AttrOut) syscall.Errno {
f.mu.Lock()
defer f.mu.Unlock()
if sz, ok := in.GetSize(); ok {
f.Data = f.Data[:sz]
}
out.Attr = f.Attr
out.Size = uint64(len(f.Data))
return OK
}
func (f *MemRegularFile) Flush(ctx context.Context, fh FileHandle) syscall.Errno {
return 0
}
func (f *MemRegularFile) Read(ctx context.Context, fh FileHandle, dest []byte, off int64) (fuse.ReadResult, syscall.Errno) {
f.mu.Lock()
defer f.mu.Unlock()
end := int(off) + len(dest)
if end > len(f.Data) {
end = len(f.Data)
}
return fuse.ReadResultData(f.Data[off:end]), OK
}
// MemSymlink is an inode holding a symlink in memory.
type MemSymlink struct {
Inode
Attr fuse.Attr
Data []byte
}
var _ = (NodeReadlinker)((*MemSymlink)(nil))
func (l *MemSymlink) Readlink(ctx context.Context) ([]byte, syscall.Errno) {
return l.Data, OK
}
var _ = (NodeGetattrer)((*MemSymlink)(nil))
func (l *MemSymlink) Getattr(ctx context.Context, fh FileHandle, out *fuse.AttrOut) syscall.Errno {
out.Attr = l.Attr
return OK
}

11
vendor/github.com/hanwen/go-fuse/v2/fs/mem_linux.go generated vendored Normal file
View File

@@ -0,0 +1,11 @@
// Copyright 2025 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import "golang.org/x/sys/unix"
func keepSizeMode(mode uint32) bool {
return mode&unix.FALLOC_FL_KEEP_SIZE != 0
}

11
vendor/github.com/hanwen/go-fuse/v2/fs/mem_unix.go generated vendored Normal file
View File

@@ -0,0 +1,11 @@
//go:build !linux
// Copyright 2025 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
func keepSizeMode(mode uint32) bool {
return false
}

40
vendor/github.com/hanwen/go-fuse/v2/fs/mount.go generated vendored Normal file
View File

@@ -0,0 +1,40 @@
// Copyright 2019 the Go-FUSE Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs
import (
"time"
"github.com/hanwen/go-fuse/v2/fuse"
)
// Mount mounts the given NodeFS on the directory, and starts serving
// requests. This is a convenience wrapper around NewNodeFS and
// fuse.NewServer. If nil is given as options, default settings are
// applied, which are 1 second entry and attribute timeout.
func Mount(dir string, root InodeEmbedder, options *Options) (*fuse.Server, error) {
if options == nil {
oneSec := time.Second
options = &Options{
EntryTimeout: &oneSec,
AttrTimeout: &oneSec,
}
}
rawFS := NewNodeFS(root, options)
server, err := fuse.NewServer(rawFS, dir, &options.MountOptions)
if err != nil {
return nil, err
}
go server.Serve()
if err := server.WaitMount(); err != nil {
// we don't shutdown the serve loop. If the mount does
// not succeed, the loop won't work and exit.
return nil, err
}
return server, nil
}