Archived
1
This repository has been archived on 2022-11-04. You can view files and clone it, but cannot push or open issues or pull requests.
fwzookeeper/vendor/github.com/pquerna/ffjson/fflib/v1/ftoa.go

543 lines
12 KiB
Go

package v1
/**
* Copyright 2015 Paul Querna, Klaus Post
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/* Most of this file are on Go stdlib's strconv/ftoa.go */
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
import "math"
// TODO: move elsewhere?
type floatInfo struct {
mantbits uint
expbits uint
bias int
}
var optimize = true // can change for testing
var float32info = floatInfo{23, 8, -127}
var float64info = floatInfo{52, 11, -1023}
// AppendFloat appends the string form of the floating-point number f,
// as generated by FormatFloat
func AppendFloat(dst EncodingBuffer, val float64, fmt byte, prec, bitSize int) {
var bits uint64
var flt *floatInfo
switch bitSize {
case 32:
bits = uint64(math.Float32bits(float32(val)))
flt = &float32info
case 64:
bits = math.Float64bits(val)
flt = &float64info
default:
panic("strconv: illegal AppendFloat/FormatFloat bitSize")
}
neg := bits>>(flt.expbits+flt.mantbits) != 0
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
mant := bits & (uint64(1)<<flt.mantbits - 1)
switch exp {
case 1<<flt.expbits - 1:
// Inf, NaN
var s string
switch {
case mant != 0:
s = "NaN"
case neg:
s = "-Inf"
default:
s = "+Inf"
}
dst.WriteString(s)
return
case 0:
// denormalized
exp++
default:
// add implicit top bit
mant |= uint64(1) << flt.mantbits
}
exp += flt.bias
// Pick off easy binary format.
if fmt == 'b' {
fmtB(dst, neg, mant, exp, flt)
return
}
if !optimize {
bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
return
}
var digs decimalSlice
ok := false
// Negative precision means "only as much as needed to be exact."
shortest := prec < 0
if shortest {
// Try Grisu3 algorithm.
f := new(extFloat)
lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
var buf [32]byte
digs.d = buf[:]
ok = f.ShortestDecimal(&digs, &lower, &upper)
if !ok {
bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
return
}
// Precision for shortest representation mode.
switch fmt {
case 'e', 'E':
prec = max(digs.nd-1, 0)
case 'f':
prec = max(digs.nd-digs.dp, 0)
case 'g', 'G':
prec = digs.nd
}
} else if fmt != 'f' {
// Fixed number of digits.
digits := prec
switch fmt {
case 'e', 'E':
digits++
case 'g', 'G':
if prec == 0 {
prec = 1
}
digits = prec
}
if digits <= 15 {
// try fast algorithm when the number of digits is reasonable.
var buf [24]byte
digs.d = buf[:]
f := extFloat{mant, exp - int(flt.mantbits), neg}
ok = f.FixedDecimal(&digs, digits)
}
}
if !ok {
bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
return
}
formatDigits(dst, shortest, neg, digs, prec, fmt)
return
}
// bigFtoa uses multiprecision computations to format a float.
func bigFtoa(dst EncodingBuffer, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) {
d := new(decimal)
d.Assign(mant)
d.Shift(exp - int(flt.mantbits))
var digs decimalSlice
shortest := prec < 0
if shortest {
roundShortest(d, mant, exp, flt)
digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
// Precision for shortest representation mode.
switch fmt {
case 'e', 'E':
prec = digs.nd - 1
case 'f':
prec = max(digs.nd-digs.dp, 0)
case 'g', 'G':
prec = digs.nd
}
} else {
// Round appropriately.
switch fmt {
case 'e', 'E':
d.Round(prec + 1)
case 'f':
d.Round(d.dp + prec)
case 'g', 'G':
if prec == 0 {
prec = 1
}
d.Round(prec)
}
digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
}
formatDigits(dst, shortest, neg, digs, prec, fmt)
return
}
func formatDigits(dst EncodingBuffer, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) {
switch fmt {
case 'e', 'E':
fmtE(dst, neg, digs, prec, fmt)
return
case 'f':
fmtF(dst, neg, digs, prec)
return
case 'g', 'G':
// trailing fractional zeros in 'e' form will be trimmed.
eprec := prec
if eprec > digs.nd && digs.nd >= digs.dp {
eprec = digs.nd
}
// %e is used if the exponent from the conversion
// is less than -4 or greater than or equal to the precision.
// if precision was the shortest possible, use precision 6 for this decision.
if shortest {
eprec = 6
}
exp := digs.dp - 1
if exp < -4 || exp >= eprec {
if prec > digs.nd {
prec = digs.nd
}
fmtE(dst, neg, digs, prec-1, fmt+'e'-'g')
return
}
if prec > digs.dp {
prec = digs.nd
}
fmtF(dst, neg, digs, max(prec-digs.dp, 0))
return
}
// unknown format
dst.Write([]byte{'%', fmt})
return
}
// Round d (= mant * 2^exp) to the shortest number of digits
// that will let the original floating point value be precisely
// reconstructed. Size is original floating point size (64 or 32).
func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
// If mantissa is zero, the number is zero; stop now.
if mant == 0 {
d.nd = 0
return
}
// Compute upper and lower such that any decimal number
// between upper and lower (possibly inclusive)
// will round to the original floating point number.
// We may see at once that the number is already shortest.
//
// Suppose d is not denormal, so that 2^exp <= d < 10^dp.
// The closest shorter number is at least 10^(dp-nd) away.
// The lower/upper bounds computed below are at distance
// at most 2^(exp-mantbits).
//
// So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
// or equivalently log2(10)*(dp-nd) > exp-mantbits.
// It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
minexp := flt.bias + 1 // minimum possible exponent
if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
// The number is already shortest.
return
}
// d = mant << (exp - mantbits)
// Next highest floating point number is mant+1 << exp-mantbits.
// Our upper bound is halfway between, mant*2+1 << exp-mantbits-1.
upper := new(decimal)
upper.Assign(mant*2 + 1)
upper.Shift(exp - int(flt.mantbits) - 1)
// d = mant << (exp - mantbits)
// Next lowest floating point number is mant-1 << exp-mantbits,
// unless mant-1 drops the significant bit and exp is not the minimum exp,
// in which case the next lowest is mant*2-1 << exp-mantbits-1.
// Either way, call it mantlo << explo-mantbits.
// Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.
var mantlo uint64
var explo int
if mant > 1<<flt.mantbits || exp == minexp {
mantlo = mant - 1
explo = exp
} else {
mantlo = mant*2 - 1
explo = exp - 1
}
lower := new(decimal)
lower.Assign(mantlo*2 + 1)
lower.Shift(explo - int(flt.mantbits) - 1)
// The upper and lower bounds are possible outputs only if
// the original mantissa is even, so that IEEE round-to-even
// would round to the original mantissa and not the neighbors.
inclusive := mant%2 == 0
// Now we can figure out the minimum number of digits required.
// Walk along until d has distinguished itself from upper and lower.
for i := 0; i < d.nd; i++ {
var l, m, u byte // lower, middle, upper digits
if i < lower.nd {
l = lower.d[i]
} else {
l = '0'
}
m = d.d[i]
if i < upper.nd {
u = upper.d[i]
} else {
u = '0'
}
// Okay to round down (truncate) if lower has a different digit
// or if lower is inclusive and is exactly the result of rounding down.
okdown := l != m || (inclusive && l == m && i+1 == lower.nd)
// Okay to round up if upper has a different digit and
// either upper is inclusive or upper is bigger than the result of rounding up.
okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd)
// If it's okay to do either, then round to the nearest one.
// If it's okay to do only one, do it.
switch {
case okdown && okup:
d.Round(i + 1)
return
case okdown:
d.RoundDown(i + 1)
return
case okup:
d.RoundUp(i + 1)
return
}
}
}
type decimalSlice struct {
d []byte
nd, dp int
neg bool
}
// %e: -d.ddddde±dd
func fmtE(dst EncodingBuffer, neg bool, d decimalSlice, prec int, fmt byte) {
// sign
if neg {
dst.WriteByte('-')
}
// first digit
ch := byte('0')
if d.nd != 0 {
ch = d.d[0]
}
dst.WriteByte(ch)
// .moredigits
if prec > 0 {
dst.WriteByte('.')
i := 1
m := min(d.nd, prec+1)
if i < m {
dst.Write(d.d[i:m])
i = m
}
for i <= prec {
dst.WriteByte('0')
i++
}
}
// e±
dst.WriteByte(fmt)
exp := d.dp - 1
if d.nd == 0 { // special case: 0 has exponent 0
exp = 0
}
if exp < 0 {
ch = '-'
exp = -exp
} else {
ch = '+'
}
dst.WriteByte(ch)
// dd or ddd
switch {
case exp < 10:
dst.WriteByte('0')
dst.WriteByte(byte(exp) + '0')
case exp < 100:
dst.WriteByte(byte(exp/10) + '0')
dst.WriteByte(byte(exp%10) + '0')
default:
dst.WriteByte(byte(exp/100) + '0')
dst.WriteByte(byte(exp/10)%10 + '0')
dst.WriteByte(byte(exp%10) + '0')
}
return
}
// %f: -ddddddd.ddddd
func fmtF(dst EncodingBuffer, neg bool, d decimalSlice, prec int) {
// sign
if neg {
dst.WriteByte('-')
}
// integer, padded with zeros as needed.
if d.dp > 0 {
m := min(d.nd, d.dp)
dst.Write(d.d[:m])
for ; m < d.dp; m++ {
dst.WriteByte('0')
}
} else {
dst.WriteByte('0')
}
// fraction
if prec > 0 {
dst.WriteByte('.')
for i := 0; i < prec; i++ {
ch := byte('0')
if j := d.dp + i; 0 <= j && j < d.nd {
ch = d.d[j]
}
dst.WriteByte(ch)
}
}
return
}
// %b: -ddddddddp±ddd
func fmtB(dst EncodingBuffer, neg bool, mant uint64, exp int, flt *floatInfo) {
// sign
if neg {
dst.WriteByte('-')
}
// mantissa
formatBits(dst, mant, 10, false)
// p
dst.WriteByte('p')
// ±exponent
exp -= int(flt.mantbits)
if exp >= 0 {
dst.WriteByte('+')
}
formatBits(dst, uint64(exp), 10, exp < 0)
return
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
// formatBits computes the string representation of u in the given base.
// If neg is set, u is treated as negative int64 value.
func formatBits(dst EncodingBuffer, u uint64, base int, neg bool) {
if base < 2 || base > len(digits) {
panic("strconv: illegal AppendInt/FormatInt base")
}
// 2 <= base && base <= len(digits)
var a [64 + 1]byte // +1 for sign of 64bit value in base 2
i := len(a)
if neg {
u = -u
}
// convert bits
if base == 10 {
// common case: use constants for / because
// the compiler can optimize it into a multiply+shift
if ^uintptr(0)>>32 == 0 {
for u > uint64(^uintptr(0)) {
q := u / 1e9
us := uintptr(u - q*1e9) // us % 1e9 fits into a uintptr
for j := 9; j > 0; j-- {
i--
qs := us / 10
a[i] = byte(us - qs*10 + '0')
us = qs
}
u = q
}
}
// u guaranteed to fit into a uintptr
us := uintptr(u)
for us >= 10 {
i--
q := us / 10
a[i] = byte(us - q*10 + '0')
us = q
}
// u < 10
i--
a[i] = byte(us + '0')
} else if s := shifts[base]; s > 0 {
// base is power of 2: use shifts and masks instead of / and %
b := uint64(base)
m := uintptr(b) - 1 // == 1<<s - 1
for u >= b {
i--
a[i] = digits[uintptr(u)&m]
u >>= s
}
// u < base
i--
a[i] = digits[uintptr(u)]
} else {
// general case
b := uint64(base)
for u >= b {
i--
q := u / b
a[i] = digits[uintptr(u-q*b)]
u = q
}
// u < base
i--
a[i] = digits[uintptr(u)]
}
// add sign, if any
if neg {
i--
a[i] = '-'
}
dst.Write(a[i:])
}