yuzu/externals/ffmpeg/libavcodec/cbs_av1_syntax_template.c

1944 lines
62 KiB
C
Raw Normal View History

2021-02-09 07:25:58 +04:00
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
static int FUNC(obu_header)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawOBUHeader *current)
{
int err;
HEADER("OBU header");
fc(1, obu_forbidden_bit, 0, 0);
fc(4, obu_type, 0, AV1_OBU_PADDING);
flag(obu_extension_flag);
flag(obu_has_size_field);
fc(1, obu_reserved_1bit, 0, 0);
if (current->obu_extension_flag) {
fb(3, temporal_id);
fb(2, spatial_id);
fc(3, extension_header_reserved_3bits, 0, 0);
}
return 0;
}
static int FUNC(trailing_bits)(CodedBitstreamContext *ctx, RWContext *rw, int nb_bits)
{
int err;
av_assert0(nb_bits > 0);
fixed(1, trailing_one_bit, 1);
--nb_bits;
while (nb_bits > 0) {
fixed(1, trailing_zero_bit, 0);
--nb_bits;
}
return 0;
}
static int FUNC(byte_alignment)(CodedBitstreamContext *ctx, RWContext *rw)
{
int err;
while (byte_alignment(rw) != 0)
fixed(1, zero_bit, 0);
return 0;
}
static int FUNC(color_config)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawColorConfig *current, int seq_profile)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
int err;
flag(high_bitdepth);
if (seq_profile == FF_PROFILE_AV1_PROFESSIONAL &&
current->high_bitdepth) {
flag(twelve_bit);
priv->bit_depth = current->twelve_bit ? 12 : 10;
} else {
priv->bit_depth = current->high_bitdepth ? 10 : 8;
}
if (seq_profile == FF_PROFILE_AV1_HIGH)
infer(mono_chrome, 0);
else
flag(mono_chrome);
priv->num_planes = current->mono_chrome ? 1 : 3;
flag(color_description_present_flag);
if (current->color_description_present_flag) {
fb(8, color_primaries);
fb(8, transfer_characteristics);
fb(8, matrix_coefficients);
} else {
infer(color_primaries, AVCOL_PRI_UNSPECIFIED);
infer(transfer_characteristics, AVCOL_TRC_UNSPECIFIED);
infer(matrix_coefficients, AVCOL_SPC_UNSPECIFIED);
}
if (current->mono_chrome) {
flag(color_range);
infer(subsampling_x, 1);
infer(subsampling_y, 1);
infer(chroma_sample_position, AV1_CSP_UNKNOWN);
infer(separate_uv_delta_q, 0);
} else if (current->color_primaries == AVCOL_PRI_BT709 &&
current->transfer_characteristics == AVCOL_TRC_IEC61966_2_1 &&
current->matrix_coefficients == AVCOL_SPC_RGB) {
infer(color_range, 1);
infer(subsampling_x, 0);
infer(subsampling_y, 0);
flag(separate_uv_delta_q);
} else {
flag(color_range);
if (seq_profile == FF_PROFILE_AV1_MAIN) {
infer(subsampling_x, 1);
infer(subsampling_y, 1);
} else if (seq_profile == FF_PROFILE_AV1_HIGH) {
infer(subsampling_x, 0);
infer(subsampling_y, 0);
} else {
if (priv->bit_depth == 12) {
fb(1, subsampling_x);
if (current->subsampling_x)
fb(1, subsampling_y);
else
infer(subsampling_y, 0);
} else {
infer(subsampling_x, 1);
infer(subsampling_y, 0);
}
}
if (current->subsampling_x && current->subsampling_y) {
fc(2, chroma_sample_position, AV1_CSP_UNKNOWN,
AV1_CSP_COLOCATED);
}
flag(separate_uv_delta_q);
}
return 0;
}
static int FUNC(timing_info)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawTimingInfo *current)
{
int err;
fc(32, num_units_in_display_tick, 1, MAX_UINT_BITS(32));
fc(32, time_scale, 1, MAX_UINT_BITS(32));
flag(equal_picture_interval);
if (current->equal_picture_interval)
uvlc(num_ticks_per_picture_minus_1, 0, MAX_UINT_BITS(32) - 1);
return 0;
}
static int FUNC(decoder_model_info)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawDecoderModelInfo *current)
{
int err;
fb(5, buffer_delay_length_minus_1);
fb(32, num_units_in_decoding_tick);
fb(5, buffer_removal_time_length_minus_1);
fb(5, frame_presentation_time_length_minus_1);
return 0;
}
static int FUNC(sequence_header_obu)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawSequenceHeader *current)
{
int i, err;
HEADER("Sequence Header");
fc(3, seq_profile, FF_PROFILE_AV1_MAIN,
FF_PROFILE_AV1_PROFESSIONAL);
flag(still_picture);
flag(reduced_still_picture_header);
if (current->reduced_still_picture_header) {
infer(timing_info_present_flag, 0);
infer(decoder_model_info_present_flag, 0);
infer(initial_display_delay_present_flag, 0);
infer(operating_points_cnt_minus_1, 0);
infer(operating_point_idc[0], 0);
fb(5, seq_level_idx[0]);
infer(seq_tier[0], 0);
infer(decoder_model_present_for_this_op[0], 0);
infer(initial_display_delay_present_for_this_op[0], 0);
} else {
flag(timing_info_present_flag);
if (current->timing_info_present_flag) {
CHECK(FUNC(timing_info)(ctx, rw, &current->timing_info));
flag(decoder_model_info_present_flag);
if (current->decoder_model_info_present_flag) {
CHECK(FUNC(decoder_model_info)
(ctx, rw, &current->decoder_model_info));
}
} else {
infer(decoder_model_info_present_flag, 0);
}
flag(initial_display_delay_present_flag);
fb(5, operating_points_cnt_minus_1);
for (i = 0; i <= current->operating_points_cnt_minus_1; i++) {
fbs(12, operating_point_idc[i], 1, i);
fbs(5, seq_level_idx[i], 1, i);
if (current->seq_level_idx[i] > 7)
flags(seq_tier[i], 1, i);
else
infer(seq_tier[i], 0);
if (current->decoder_model_info_present_flag) {
flags(decoder_model_present_for_this_op[i], 1, i);
if (current->decoder_model_present_for_this_op[i]) {
int n = current->decoder_model_info.buffer_delay_length_minus_1 + 1;
fbs(n, decoder_buffer_delay[i], 1, i);
fbs(n, encoder_buffer_delay[i], 1, i);
flags(low_delay_mode_flag[i], 1, i);
}
} else {
infer(decoder_model_present_for_this_op[i], 0);
}
if (current->initial_display_delay_present_flag) {
flags(initial_display_delay_present_for_this_op[i], 1, i);
if (current->initial_display_delay_present_for_this_op[i])
fbs(4, initial_display_delay_minus_1[i], 1, i);
}
}
}
fb(4, frame_width_bits_minus_1);
fb(4, frame_height_bits_minus_1);
fb(current->frame_width_bits_minus_1 + 1, max_frame_width_minus_1);
fb(current->frame_height_bits_minus_1 + 1, max_frame_height_minus_1);
if (current->reduced_still_picture_header)
infer(frame_id_numbers_present_flag, 0);
else
flag(frame_id_numbers_present_flag);
if (current->frame_id_numbers_present_flag) {
fb(4, delta_frame_id_length_minus_2);
fb(3, additional_frame_id_length_minus_1);
}
flag(use_128x128_superblock);
flag(enable_filter_intra);
flag(enable_intra_edge_filter);
if (current->reduced_still_picture_header) {
infer(enable_interintra_compound, 0);
infer(enable_masked_compound, 0);
infer(enable_warped_motion, 0);
infer(enable_dual_filter, 0);
infer(enable_order_hint, 0);
infer(enable_jnt_comp, 0);
infer(enable_ref_frame_mvs, 0);
infer(seq_force_screen_content_tools,
AV1_SELECT_SCREEN_CONTENT_TOOLS);
infer(seq_force_integer_mv,
AV1_SELECT_INTEGER_MV);
} else {
flag(enable_interintra_compound);
flag(enable_masked_compound);
flag(enable_warped_motion);
flag(enable_dual_filter);
flag(enable_order_hint);
if (current->enable_order_hint) {
flag(enable_jnt_comp);
flag(enable_ref_frame_mvs);
} else {
infer(enable_jnt_comp, 0);
infer(enable_ref_frame_mvs, 0);
}
flag(seq_choose_screen_content_tools);
if (current->seq_choose_screen_content_tools)
infer(seq_force_screen_content_tools,
AV1_SELECT_SCREEN_CONTENT_TOOLS);
else
fb(1, seq_force_screen_content_tools);
if (current->seq_force_screen_content_tools > 0) {
flag(seq_choose_integer_mv);
if (current->seq_choose_integer_mv)
infer(seq_force_integer_mv,
AV1_SELECT_INTEGER_MV);
else
fb(1, seq_force_integer_mv);
} else {
infer(seq_force_integer_mv, AV1_SELECT_INTEGER_MV);
}
if (current->enable_order_hint)
fb(3, order_hint_bits_minus_1);
}
flag(enable_superres);
flag(enable_cdef);
flag(enable_restoration);
CHECK(FUNC(color_config)(ctx, rw, &current->color_config,
current->seq_profile));
flag(film_grain_params_present);
return 0;
}
static int FUNC(temporal_delimiter_obu)(CodedBitstreamContext *ctx, RWContext *rw)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
HEADER("Temporal Delimiter");
priv->seen_frame_header = 0;
return 0;
}
static int FUNC(set_frame_refs)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq = priv->sequence_header;
static const uint8_t ref_frame_list[AV1_NUM_REF_FRAMES - 2] = {
AV1_REF_FRAME_LAST2, AV1_REF_FRAME_LAST3, AV1_REF_FRAME_BWDREF,
AV1_REF_FRAME_ALTREF2, AV1_REF_FRAME_ALTREF
};
int8_t ref_frame_idx[AV1_REFS_PER_FRAME], used_frame[AV1_NUM_REF_FRAMES];
int8_t shifted_order_hints[AV1_NUM_REF_FRAMES];
int cur_frame_hint, latest_order_hint, earliest_order_hint, ref;
int i, j;
for (i = 0; i < AV1_REFS_PER_FRAME; i++)
ref_frame_idx[i] = -1;
ref_frame_idx[AV1_REF_FRAME_LAST - AV1_REF_FRAME_LAST] = current->last_frame_idx;
ref_frame_idx[AV1_REF_FRAME_GOLDEN - AV1_REF_FRAME_LAST] = current->golden_frame_idx;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++)
used_frame[i] = 0;
used_frame[current->last_frame_idx] = 1;
used_frame[current->golden_frame_idx] = 1;
cur_frame_hint = 1 << (seq->order_hint_bits_minus_1);
for (i = 0; i < AV1_NUM_REF_FRAMES; i++)
shifted_order_hints[i] = cur_frame_hint +
cbs_av1_get_relative_dist(seq, priv->ref[i].order_hint,
current->order_hint);
latest_order_hint = shifted_order_hints[current->last_frame_idx];
earliest_order_hint = shifted_order_hints[current->golden_frame_idx];
ref = -1;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
int hint = shifted_order_hints[i];
if (!used_frame[i] && hint >= cur_frame_hint &&
(ref < 0 || hint >= latest_order_hint)) {
ref = i;
latest_order_hint = hint;
}
}
if (ref >= 0) {
ref_frame_idx[AV1_REF_FRAME_ALTREF - AV1_REF_FRAME_LAST] = ref;
used_frame[ref] = 1;
}
ref = -1;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
int hint = shifted_order_hints[i];
if (!used_frame[i] && hint >= cur_frame_hint &&
(ref < 0 || hint < earliest_order_hint)) {
ref = i;
earliest_order_hint = hint;
}
}
if (ref >= 0) {
ref_frame_idx[AV1_REF_FRAME_BWDREF - AV1_REF_FRAME_LAST] = ref;
used_frame[ref] = 1;
}
ref = -1;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
int hint = shifted_order_hints[i];
if (!used_frame[i] && hint >= cur_frame_hint &&
(ref < 0 || hint < earliest_order_hint)) {
ref = i;
earliest_order_hint = hint;
}
}
if (ref >= 0) {
ref_frame_idx[AV1_REF_FRAME_ALTREF2 - AV1_REF_FRAME_LAST] = ref;
used_frame[ref] = 1;
}
for (i = 0; i < AV1_REFS_PER_FRAME - 2; i++) {
int ref_frame = ref_frame_list[i];
if (ref_frame_idx[ref_frame - AV1_REF_FRAME_LAST] < 0 ) {
ref = -1;
for (j = 0; j < AV1_NUM_REF_FRAMES; j++) {
int hint = shifted_order_hints[j];
if (!used_frame[j] && hint < cur_frame_hint &&
(ref < 0 || hint >= latest_order_hint)) {
ref = j;
latest_order_hint = hint;
}
}
if (ref >= 0) {
ref_frame_idx[ref_frame - AV1_REF_FRAME_LAST] = ref;
used_frame[ref] = 1;
}
}
}
ref = -1;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
int hint = shifted_order_hints[i];
if (ref < 0 || hint < earliest_order_hint) {
ref = i;
earliest_order_hint = hint;
}
}
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
if (ref_frame_idx[i] < 0)
ref_frame_idx[i] = ref;
infer(ref_frame_idx[i], ref_frame_idx[i]);
}
return 0;
}
static int FUNC(superres_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq = priv->sequence_header;
int denom, err;
if (seq->enable_superres)
flag(use_superres);
else
infer(use_superres, 0);
if (current->use_superres) {
fb(3, coded_denom);
denom = current->coded_denom + AV1_SUPERRES_DENOM_MIN;
} else {
denom = AV1_SUPERRES_NUM;
}
priv->upscaled_width = priv->frame_width;
priv->frame_width = (priv->upscaled_width * AV1_SUPERRES_NUM +
denom / 2) / denom;
return 0;
}
static int FUNC(frame_size)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq = priv->sequence_header;
int err;
if (current->frame_size_override_flag) {
fb(seq->frame_width_bits_minus_1 + 1, frame_width_minus_1);
fb(seq->frame_height_bits_minus_1 + 1, frame_height_minus_1);
priv->frame_width = current->frame_width_minus_1 + 1;
priv->frame_height = current->frame_height_minus_1 + 1;
} else {
priv->frame_width = seq->max_frame_width_minus_1 + 1;
priv->frame_height = seq->max_frame_height_minus_1 + 1;
}
CHECK(FUNC(superres_params)(ctx, rw, current));
return 0;
}
static int FUNC(render_size)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
int err;
flag(render_and_frame_size_different);
if (current->render_and_frame_size_different) {
fb(16, render_width_minus_1);
fb(16, render_height_minus_1);
priv->render_width = current->render_width_minus_1 + 1;
priv->render_height = current->render_height_minus_1 + 1;
} else {
priv->render_width = priv->upscaled_width;
priv->render_height = priv->frame_height;
}
return 0;
}
static int FUNC(frame_size_with_refs)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
int i, err;
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
flags(found_ref[i], 1, i);
if (current->found_ref[i]) {
AV1ReferenceFrameState *ref =
&priv->ref[current->ref_frame_idx[i]];
if (!ref->valid) {
av_log(ctx->log_ctx, AV_LOG_ERROR,
"Missing reference frame needed for frame size "
"(ref = %d, ref_frame_idx = %d).\n",
i, current->ref_frame_idx[i]);
return AVERROR_INVALIDDATA;
}
priv->upscaled_width = ref->upscaled_width;
priv->frame_width = ref->frame_width;
priv->frame_height = ref->frame_height;
priv->render_width = ref->render_width;
priv->render_height = ref->render_height;
break;
}
}
if (i >= AV1_REFS_PER_FRAME) {
CHECK(FUNC(frame_size)(ctx, rw, current));
CHECK(FUNC(render_size)(ctx, rw, current));
} else {
CHECK(FUNC(superres_params)(ctx, rw, current));
}
return 0;
}
static int FUNC(interpolation_filter)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
int err;
flag(is_filter_switchable);
if (current->is_filter_switchable)
infer(interpolation_filter,
AV1_INTERPOLATION_FILTER_SWITCHABLE);
else
fb(2, interpolation_filter);
return 0;
}
static int FUNC(tile_info)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq = priv->sequence_header;
int mi_cols, mi_rows, sb_cols, sb_rows, sb_shift, sb_size;
int max_tile_width_sb, max_tile_height_sb, max_tile_area_sb;
int min_log2_tile_cols, max_log2_tile_cols, max_log2_tile_rows;
int min_log2_tiles, min_log2_tile_rows;
int i, err;
mi_cols = 2 * ((priv->frame_width + 7) >> 3);
mi_rows = 2 * ((priv->frame_height + 7) >> 3);
sb_cols = seq->use_128x128_superblock ? ((mi_cols + 31) >> 5)
: ((mi_cols + 15) >> 4);
sb_rows = seq->use_128x128_superblock ? ((mi_rows + 31) >> 5)
: ((mi_rows + 15) >> 4);
sb_shift = seq->use_128x128_superblock ? 5 : 4;
sb_size = sb_shift + 2;
max_tile_width_sb = AV1_MAX_TILE_WIDTH >> sb_size;
max_tile_area_sb = AV1_MAX_TILE_AREA >> (2 * sb_size);
min_log2_tile_cols = cbs_av1_tile_log2(max_tile_width_sb, sb_cols);
max_log2_tile_cols = cbs_av1_tile_log2(1, FFMIN(sb_cols, AV1_MAX_TILE_COLS));
max_log2_tile_rows = cbs_av1_tile_log2(1, FFMIN(sb_rows, AV1_MAX_TILE_ROWS));
min_log2_tiles = FFMAX(min_log2_tile_cols,
cbs_av1_tile_log2(max_tile_area_sb, sb_rows * sb_cols));
flag(uniform_tile_spacing_flag);
if (current->uniform_tile_spacing_flag) {
int tile_width_sb, tile_height_sb;
increment(tile_cols_log2, min_log2_tile_cols, max_log2_tile_cols);
tile_width_sb = (sb_cols + (1 << current->tile_cols_log2) - 1) >>
current->tile_cols_log2;
current->tile_cols = (sb_cols + tile_width_sb - 1) / tile_width_sb;
min_log2_tile_rows = FFMAX(min_log2_tiles - current->tile_cols_log2, 0);
increment(tile_rows_log2, min_log2_tile_rows, max_log2_tile_rows);
tile_height_sb = (sb_rows + (1 << current->tile_rows_log2) - 1) >>
current->tile_rows_log2;
current->tile_rows = (sb_rows + tile_height_sb - 1) / tile_height_sb;
} else {
int widest_tile_sb, start_sb, size_sb, max_width, max_height;
widest_tile_sb = 0;
start_sb = 0;
for (i = 0; start_sb < sb_cols && i < AV1_MAX_TILE_COLS; i++) {
max_width = FFMIN(sb_cols - start_sb, max_tile_width_sb);
ns(max_width, width_in_sbs_minus_1[i], 1, i);
size_sb = current->width_in_sbs_minus_1[i] + 1;
widest_tile_sb = FFMAX(size_sb, widest_tile_sb);
start_sb += size_sb;
}
current->tile_cols_log2 = cbs_av1_tile_log2(1, i);
current->tile_cols = i;
if (min_log2_tiles > 0)
max_tile_area_sb = (sb_rows * sb_cols) >> (min_log2_tiles + 1);
else
max_tile_area_sb = sb_rows * sb_cols;
max_tile_height_sb = FFMAX(max_tile_area_sb / widest_tile_sb, 1);
start_sb = 0;
for (i = 0; start_sb < sb_rows && i < AV1_MAX_TILE_ROWS; i++) {
max_height = FFMIN(sb_rows - start_sb, max_tile_height_sb);
ns(max_height, height_in_sbs_minus_1[i], 1, i);
size_sb = current->height_in_sbs_minus_1[i] + 1;
start_sb += size_sb;
}
current->tile_rows_log2 = cbs_av1_tile_log2(1, i);
current->tile_rows = i;
}
if (current->tile_cols_log2 > 0 ||
current->tile_rows_log2 > 0) {
fb(current->tile_cols_log2 + current->tile_rows_log2,
context_update_tile_id);
fb(2, tile_size_bytes_minus1);
} else {
infer(context_update_tile_id, 0);
}
priv->tile_cols = current->tile_cols;
priv->tile_rows = current->tile_rows;
return 0;
}
static int FUNC(quantization_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq = priv->sequence_header;
int err;
fb(8, base_q_idx);
delta_q(delta_q_y_dc);
if (priv->num_planes > 1) {
if (seq->color_config.separate_uv_delta_q)
flag(diff_uv_delta);
else
infer(diff_uv_delta, 0);
delta_q(delta_q_u_dc);
delta_q(delta_q_u_ac);
if (current->diff_uv_delta) {
delta_q(delta_q_v_dc);
delta_q(delta_q_v_ac);
} else {
infer(delta_q_v_dc, current->delta_q_u_dc);
infer(delta_q_v_ac, current->delta_q_u_ac);
}
} else {
infer(delta_q_u_dc, 0);
infer(delta_q_u_ac, 0);
infer(delta_q_v_dc, 0);
infer(delta_q_v_ac, 0);
}
flag(using_qmatrix);
if (current->using_qmatrix) {
fb(4, qm_y);
fb(4, qm_u);
if (seq->color_config.separate_uv_delta_q)
fb(4, qm_v);
else
infer(qm_v, current->qm_u);
}
return 0;
}
static int FUNC(segmentation_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
static const uint8_t bits[AV1_SEG_LVL_MAX] = { 8, 6, 6, 6, 6, 3, 0, 0 };
static const uint8_t sign[AV1_SEG_LVL_MAX] = { 1, 1, 1, 1, 1, 0, 0, 0 };
int i, j, err;
flag(segmentation_enabled);
if (current->segmentation_enabled) {
if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
infer(segmentation_update_map, 1);
infer(segmentation_temporal_update, 0);
infer(segmentation_update_data, 1);
} else {
flag(segmentation_update_map);
if (current->segmentation_update_map)
flag(segmentation_temporal_update);
else
infer(segmentation_temporal_update, 0);
flag(segmentation_update_data);
}
if (current->segmentation_update_data) {
for (i = 0; i < AV1_MAX_SEGMENTS; i++) {
for (j = 0; j < AV1_SEG_LVL_MAX; j++) {
flags(feature_enabled[i][j], 2, i, j);
if (current->feature_enabled[i][j] && bits[j] > 0) {
if (sign[j])
sus(1 + bits[j], feature_value[i][j], 2, i, j);
else
fbs(bits[j], feature_value[i][j], 2, i, j);
} else {
infer(feature_value[i][j], 0);
}
}
}
}
} else {
for (i = 0; i < AV1_MAX_SEGMENTS; i++) {
for (j = 0; j < AV1_SEG_LVL_MAX; j++) {
infer(feature_enabled[i][j], 0);
infer(feature_value[i][j], 0);
}
}
}
return 0;
}
static int FUNC(delta_q_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
int err;
if (current->base_q_idx > 0)
flag(delta_q_present);
else
infer(delta_q_present, 0);
if (current->delta_q_present)
fb(2, delta_q_res);
return 0;
}
static int FUNC(delta_lf_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
int err;
if (current->delta_q_present) {
if (!current->allow_intrabc)
flag(delta_lf_present);
else
infer(delta_lf_present, 0);
if (current->delta_lf_present) {
fb(2, delta_lf_res);
flag(delta_lf_multi);
} else {
infer(delta_lf_res, 0);
infer(delta_lf_multi, 0);
}
} else {
infer(delta_lf_present, 0);
infer(delta_lf_res, 0);
infer(delta_lf_multi, 0);
}
return 0;
}
static int FUNC(loop_filter_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
int i, err;
if (priv->coded_lossless || current->allow_intrabc) {
infer(loop_filter_level[0], 0);
infer(loop_filter_level[1], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_INTRA], 1);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST2], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST3], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_BWDREF], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_GOLDEN], -1);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_ALTREF], -1);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_ALTREF2], -1);
for (i = 0; i < 2; i++)
infer(loop_filter_mode_deltas[i], 0);
return 0;
}
fb(6, loop_filter_level[0]);
fb(6, loop_filter_level[1]);
if (priv->num_planes > 1) {
if (current->loop_filter_level[0] ||
current->loop_filter_level[1]) {
fb(6, loop_filter_level[2]);
fb(6, loop_filter_level[3]);
}
}
fb(3, loop_filter_sharpness);
flag(loop_filter_delta_enabled);
if (current->loop_filter_delta_enabled) {
flag(loop_filter_delta_update);
if (current->loop_filter_delta_update) {
for (i = 0; i < AV1_TOTAL_REFS_PER_FRAME; i++) {
flags(update_ref_delta[i], 1, i);
if (current->update_ref_delta[i])
sus(1 + 6, loop_filter_ref_deltas[i], 1, i);
}
for (i = 0; i < 2; i++) {
flags(update_mode_delta[i], 1, i);
if (current->update_mode_delta[i])
sus(1 + 6, loop_filter_mode_deltas[i], 1, i);
}
}
}
return 0;
}
static int FUNC(cdef_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq = priv->sequence_header;
int i, err;
if (priv->coded_lossless || current->allow_intrabc ||
!seq->enable_cdef) {
infer(cdef_damping_minus_3, 0);
infer(cdef_bits, 0);
infer(cdef_y_pri_strength[0], 0);
infer(cdef_y_sec_strength[0], 0);
infer(cdef_uv_pri_strength[0], 0);
infer(cdef_uv_sec_strength[0], 0);
return 0;
}
fb(2, cdef_damping_minus_3);
fb(2, cdef_bits);
for (i = 0; i < (1 << current->cdef_bits); i++) {
fbs(4, cdef_y_pri_strength[i], 1, i);
fbs(2, cdef_y_sec_strength[i], 1, i);
if (priv->num_planes > 1) {
fbs(4, cdef_uv_pri_strength[i], 1, i);
fbs(2, cdef_uv_sec_strength[i], 1, i);
}
}
return 0;
}
static int FUNC(lr_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq = priv->sequence_header;
int uses_lr, uses_chroma_lr;
int i, err;
if (priv->all_lossless || current->allow_intrabc ||
!seq->enable_restoration) {
return 0;
}
uses_lr = uses_chroma_lr = 0;
for (i = 0; i < priv->num_planes; i++) {
fbs(2, lr_type[i], 1, i);
if (current->lr_type[i] != 0) {
uses_lr = 1;
if (i > 0)
uses_chroma_lr = 1;
}
}
if (uses_lr) {
if (seq->use_128x128_superblock)
increment(lr_unit_shift, 1, 2);
else
increment(lr_unit_shift, 0, 2);
if(seq->color_config.subsampling_x &&
seq->color_config.subsampling_y && uses_chroma_lr) {
fb(1, lr_uv_shift);
} else {
infer(lr_uv_shift, 0);
}
}
return 0;
}
static int FUNC(read_tx_mode)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
int err;
if (priv->coded_lossless)
infer(tx_mode, 0);
else
increment(tx_mode, 1, 2);
return 0;
}
static int FUNC(frame_reference_mode)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
int err;
if (current->frame_type == AV1_FRAME_INTRA_ONLY ||
current->frame_type == AV1_FRAME_KEY)
infer(reference_select, 0);
else
flag(reference_select);
return 0;
}
static int FUNC(skip_mode_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq = priv->sequence_header;
int skip_mode_allowed;
int err;
if (current->frame_type == AV1_FRAME_KEY ||
current->frame_type == AV1_FRAME_INTRA_ONLY ||
!current->reference_select || !seq->enable_order_hint) {
skip_mode_allowed = 0;
} else {
int forward_idx, backward_idx;
int forward_hint, backward_hint;
int ref_hint, dist, i;
forward_idx = -1;
backward_idx = -1;
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
ref_hint = priv->ref[current->ref_frame_idx[i]].order_hint;
dist = cbs_av1_get_relative_dist(seq, ref_hint,
current->order_hint);
if (dist < 0) {
if (forward_idx < 0 ||
cbs_av1_get_relative_dist(seq, ref_hint,
forward_hint) > 0) {
forward_idx = i;
forward_hint = ref_hint;
}
} else if (dist > 0) {
if (backward_idx < 0 ||
cbs_av1_get_relative_dist(seq, ref_hint,
backward_hint) < 0) {
backward_idx = i;
backward_hint = ref_hint;
}
}
}
if (forward_idx < 0) {
skip_mode_allowed = 0;
} else if (backward_idx >= 0) {
skip_mode_allowed = 1;
// Frames for skip mode are forward_idx and backward_idx.
} else {
int second_forward_idx;
int second_forward_hint;
second_forward_idx = -1;
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
ref_hint = priv->ref[current->ref_frame_idx[i]].order_hint;
if (cbs_av1_get_relative_dist(seq, ref_hint,
forward_hint) < 0) {
if (second_forward_idx < 0 ||
cbs_av1_get_relative_dist(seq, ref_hint,
second_forward_hint) > 0) {
second_forward_idx = i;
second_forward_hint = ref_hint;
}
}
}
if (second_forward_idx < 0) {
skip_mode_allowed = 0;
} else {
skip_mode_allowed = 1;
// Frames for skip mode are forward_idx and second_forward_idx.
}
}
}
if (skip_mode_allowed)
flag(skip_mode_present);
else
infer(skip_mode_present, 0);
return 0;
}
static int FUNC(global_motion_param)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current,
int type, int ref, int idx)
{
uint32_t abs_bits, prec_bits, num_syms;
int err;
if (idx < 2) {
if (type == AV1_WARP_MODEL_TRANSLATION) {
abs_bits = AV1_GM_ABS_TRANS_ONLY_BITS - !current->allow_high_precision_mv;
prec_bits = AV1_GM_TRANS_ONLY_PREC_BITS - !current->allow_high_precision_mv;
} else {
abs_bits = AV1_GM_ABS_TRANS_BITS;
prec_bits = AV1_GM_TRANS_PREC_BITS;
}
} else {
abs_bits = AV1_GM_ABS_ALPHA_BITS;
prec_bits = AV1_GM_ALPHA_PREC_BITS;
}
num_syms = 2 * (1 << abs_bits) + 1;
subexp(gm_params[ref][idx], num_syms, 2, ref, idx);
// Actual gm_params value is not reconstructed here.
(void)prec_bits;
return 0;
}
static int FUNC(global_motion_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
int ref, type;
int err;
if (current->frame_type == AV1_FRAME_KEY ||
current->frame_type == AV1_FRAME_INTRA_ONLY)
return 0;
for (ref = AV1_REF_FRAME_LAST; ref <= AV1_REF_FRAME_ALTREF; ref++) {
flags(is_global[ref], 1, ref);
if (current->is_global[ref]) {
flags(is_rot_zoom[ref], 1, ref);
if (current->is_rot_zoom[ref]) {
type = AV1_WARP_MODEL_ROTZOOM;
} else {
flags(is_translation[ref], 1, ref);
type = current->is_translation[ref] ? AV1_WARP_MODEL_TRANSLATION
: AV1_WARP_MODEL_AFFINE;
}
} else {
type = AV1_WARP_MODEL_IDENTITY;
}
if (type >= AV1_WARP_MODEL_ROTZOOM) {
CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 2));
CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 3));
if (type == AV1_WARP_MODEL_AFFINE) {
CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 4));
CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 5));
} else {
// gm_params[ref][4] = -gm_params[ref][3]
// gm_params[ref][5] = gm_params[ref][2]
}
}
if (type >= AV1_WARP_MODEL_TRANSLATION) {
CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 0));
CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 1));
}
}
return 0;
}
static int FUNC(film_grain_params)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq = priv->sequence_header;
int num_pos_luma, num_pos_chroma;
int i, err;
if (!seq->film_grain_params_present ||
(!current->show_frame && !current->showable_frame))
return 0;
flag(apply_grain);
if (!current->apply_grain)
return 0;
fb(16, grain_seed);
if (current->frame_type == AV1_FRAME_INTER)
flag(update_grain);
else
infer(update_grain, 1);
if (!current->update_grain) {
fb(3, film_grain_params_ref_idx);
return 0;
}
fc(4, num_y_points, 0, 14);
for (i = 0; i < current->num_y_points; i++) {
fcs(8, point_y_value[i],
i ? current->point_y_value[i - 1] + 1 : 0,
MAX_UINT_BITS(8) - (current->num_y_points - i - 1),
1, i);
fbs(8, point_y_scaling[i], 1, i);
}
if (seq->color_config.mono_chrome)
infer(chroma_scaling_from_luma, 0);
else
flag(chroma_scaling_from_luma);
if (seq->color_config.mono_chrome ||
current->chroma_scaling_from_luma ||
(seq->color_config.subsampling_x == 1 &&
seq->color_config.subsampling_y == 1 &&
current->num_y_points == 0)) {
infer(num_cb_points, 0);
infer(num_cr_points, 0);
} else {
fc(4, num_cb_points, 0, 10);
for (i = 0; i < current->num_cb_points; i++) {
fcs(8, point_cb_value[i],
i ? current->point_cb_value[i - 1] + 1 : 0,
MAX_UINT_BITS(8) - (current->num_cb_points - i - 1),
1, i);
fbs(8, point_cb_scaling[i], 1, i);
}
fc(4, num_cr_points, 0, 10);
for (i = 0; i < current->num_cr_points; i++) {
fcs(8, point_cr_value[i],
i ? current->point_cr_value[i - 1] + 1 : 0,
MAX_UINT_BITS(8) - (current->num_cr_points - i - 1),
1, i);
fbs(8, point_cr_scaling[i], 1, i);
}
}
fb(2, grain_scaling_minus_8);
fb(2, ar_coeff_lag);
num_pos_luma = 2 * current->ar_coeff_lag * (current->ar_coeff_lag + 1);
if (current->num_y_points) {
num_pos_chroma = num_pos_luma + 1;
for (i = 0; i < num_pos_luma; i++)
fbs(8, ar_coeffs_y_plus_128[i], 1, i);
} else {
num_pos_chroma = num_pos_luma;
}
if (current->chroma_scaling_from_luma || current->num_cb_points) {
for (i = 0; i < num_pos_chroma; i++)
fbs(8, ar_coeffs_cb_plus_128[i], 1, i);
}
if (current->chroma_scaling_from_luma || current->num_cr_points) {
for (i = 0; i < num_pos_chroma; i++)
fbs(8, ar_coeffs_cr_plus_128[i], 1, i);
}
fb(2, ar_coeff_shift_minus_6);
fb(2, grain_scale_shift);
if (current->num_cb_points) {
fb(8, cb_mult);
fb(8, cb_luma_mult);
fb(9, cb_offset);
}
if (current->num_cr_points) {
fb(8, cr_mult);
fb(8, cr_luma_mult);
fb(9, cr_offset);
}
flag(overlap_flag);
flag(clip_to_restricted_range);
return 0;
}
static int FUNC(uncompressed_header)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq;
int id_len, diff_len, all_frames, frame_is_intra, order_hint_bits;
int i, err;
if (!priv->sequence_header) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "No sequence header available: "
"unable to decode frame header.\n");
return AVERROR_INVALIDDATA;
}
seq = priv->sequence_header;
id_len = seq->additional_frame_id_length_minus_1 +
seq->delta_frame_id_length_minus_2 + 3;
all_frames = (1 << AV1_NUM_REF_FRAMES) - 1;
if (seq->reduced_still_picture_header) {
infer(show_existing_frame, 0);
infer(frame_type, AV1_FRAME_KEY);
infer(show_frame, 1);
infer(showable_frame, 0);
frame_is_intra = 1;
} else {
flag(show_existing_frame);
if (current->show_existing_frame) {
AV1ReferenceFrameState *frame;
fb(3, frame_to_show_map_idx);
frame = &priv->ref[current->frame_to_show_map_idx];
if (seq->decoder_model_info_present_flag &&
!seq->timing_info.equal_picture_interval) {
fb(seq->decoder_model_info.frame_presentation_time_length_minus_1 + 1,
frame_presentation_time);
}
if (seq->frame_id_numbers_present_flag)
fb(id_len, display_frame_id);
if (frame->frame_type == AV1_FRAME_KEY)
infer(refresh_frame_flags, all_frames);
else
infer(refresh_frame_flags, 0);
return 0;
}
fb(2, frame_type);
frame_is_intra = (current->frame_type == AV1_FRAME_INTRA_ONLY ||
current->frame_type == AV1_FRAME_KEY);
flag(show_frame);
if (current->show_frame &&
seq->decoder_model_info_present_flag &&
!seq->timing_info.equal_picture_interval) {
fb(seq->decoder_model_info.frame_presentation_time_length_minus_1 + 1,
frame_presentation_time);
}
if (current->show_frame)
infer(showable_frame, current->frame_type != AV1_FRAME_KEY);
else
flag(showable_frame);
if (current->frame_type == AV1_FRAME_SWITCH ||
(current->frame_type == AV1_FRAME_KEY && current->show_frame))
infer(error_resilient_mode, 1);
else
flag(error_resilient_mode);
}
if (current->frame_type == AV1_FRAME_KEY && current->show_frame) {
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
priv->ref[i].valid = 0;
priv->ref[i].order_hint = 0;
}
}
flag(disable_cdf_update);
if (seq->seq_force_screen_content_tools ==
AV1_SELECT_SCREEN_CONTENT_TOOLS) {
flag(allow_screen_content_tools);
} else {
infer(allow_screen_content_tools,
seq->seq_force_screen_content_tools);
}
if (current->allow_screen_content_tools) {
if (seq->seq_force_integer_mv == AV1_SELECT_INTEGER_MV)
flag(force_integer_mv);
else
infer(force_integer_mv, seq->seq_force_integer_mv);
} else {
infer(force_integer_mv, 0);
}
if (seq->frame_id_numbers_present_flag) {
fb(id_len, current_frame_id);
diff_len = seq->delta_frame_id_length_minus_2 + 2;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
if (current->current_frame_id > (1 << diff_len)) {
if (priv->ref[i].frame_id > current->current_frame_id ||
priv->ref[i].frame_id < (current->current_frame_id -
(1 << diff_len)))
priv->ref[i].valid = 0;
} else {
if (priv->ref[i].frame_id > current->current_frame_id &&
priv->ref[i].frame_id < ((1 << id_len) +
current->current_frame_id -
(1 << diff_len)))
priv->ref[i].valid = 0;
}
}
} else {
infer(current_frame_id, 0);
}
if (current->frame_type == AV1_FRAME_SWITCH)
infer(frame_size_override_flag, 1);
else if(seq->reduced_still_picture_header)
infer(frame_size_override_flag, 0);
else
flag(frame_size_override_flag);
order_hint_bits =
seq->enable_order_hint ? seq->order_hint_bits_minus_1 + 1 : 0;
if (order_hint_bits > 0)
fb(order_hint_bits, order_hint);
else
infer(order_hint, 0);
if (frame_is_intra || current->error_resilient_mode)
infer(primary_ref_frame, AV1_PRIMARY_REF_NONE);
else
fb(3, primary_ref_frame);
if (seq->decoder_model_info_present_flag) {
flag(buffer_removal_time_present_flag);
if (current->buffer_removal_time_present_flag) {
for (i = 0; i <= seq->operating_points_cnt_minus_1; i++) {
if (seq->decoder_model_present_for_this_op[i]) {
int op_pt_idc = seq->operating_point_idc[i];
int in_temporal_layer = (op_pt_idc >> priv->temporal_id ) & 1;
int in_spatial_layer = (op_pt_idc >> (priv->spatial_id + 8)) & 1;
if (seq->operating_point_idc[i] == 0 ||
in_temporal_layer || in_spatial_layer) {
fbs(seq->decoder_model_info.buffer_removal_time_length_minus_1 + 1,
buffer_removal_time[i], 1, i);
}
}
}
}
}
if (current->frame_type == AV1_FRAME_SWITCH ||
(current->frame_type == AV1_FRAME_KEY && current->show_frame))
infer(refresh_frame_flags, all_frames);
else
fb(8, refresh_frame_flags);
if (!frame_is_intra || current->refresh_frame_flags != all_frames) {
if (current->error_resilient_mode && seq->enable_order_hint) {
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
fbs(order_hint_bits, ref_order_hint[i], 1, i);
if (current->ref_order_hint[i] != priv->ref[i].order_hint)
priv->ref[i].valid = 0;
}
}
}
if (current->frame_type == AV1_FRAME_KEY ||
current->frame_type == AV1_FRAME_INTRA_ONLY) {
CHECK(FUNC(frame_size)(ctx, rw, current));
CHECK(FUNC(render_size)(ctx, rw, current));
if (current->allow_screen_content_tools &&
priv->upscaled_width == priv->frame_width)
flag(allow_intrabc);
else
infer(allow_intrabc, 0);
} else {
if (!seq->enable_order_hint) {
infer(frame_refs_short_signaling, 0);
} else {
flag(frame_refs_short_signaling);
if (current->frame_refs_short_signaling) {
fb(3, last_frame_idx);
fb(3, golden_frame_idx);
CHECK(FUNC(set_frame_refs)(ctx, rw, current));
}
}
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
if (!current->frame_refs_short_signaling)
fbs(3, ref_frame_idx[i], 1, i);
if (seq->frame_id_numbers_present_flag) {
fbs(seq->delta_frame_id_length_minus_2 + 2,
delta_frame_id_minus1[i], 1, i);
}
}
if (current->frame_size_override_flag &&
!current->error_resilient_mode) {
CHECK(FUNC(frame_size_with_refs)(ctx, rw, current));
} else {
CHECK(FUNC(frame_size)(ctx, rw, current));
CHECK(FUNC(render_size)(ctx, rw, current));
}
if (current->force_integer_mv)
infer(allow_high_precision_mv, 0);
else
flag(allow_high_precision_mv);
CHECK(FUNC(interpolation_filter)(ctx, rw, current));
flag(is_motion_mode_switchable);
if (current->error_resilient_mode ||
!seq->enable_ref_frame_mvs)
infer(use_ref_frame_mvs, 0);
else
flag(use_ref_frame_mvs);
infer(allow_intrabc, 0);
}
if (!frame_is_intra) {
// Derive reference frame sign biases.
}
if (seq->reduced_still_picture_header || current->disable_cdf_update)
infer(disable_frame_end_update_cdf, 1);
else
flag(disable_frame_end_update_cdf);
if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
// Init non-coeff CDFs.
// Setup past independence.
} else {
// Load CDF tables from previous frame.
// Load params from previous frame.
}
if (current->use_ref_frame_mvs) {
// Perform motion field estimation process.
}
CHECK(FUNC(tile_info)(ctx, rw, current));
CHECK(FUNC(quantization_params)(ctx, rw, current));
CHECK(FUNC(segmentation_params)(ctx, rw, current));
CHECK(FUNC(delta_q_params)(ctx, rw, current));
CHECK(FUNC(delta_lf_params)(ctx, rw, current));
// Init coeff CDFs / load previous segments.
priv->coded_lossless = 1;
for (i = 0; i < AV1_MAX_SEGMENTS; i++) {
int qindex;
if (current->feature_enabled[i][AV1_SEG_LVL_ALT_Q]) {
qindex = (current->base_q_idx +
current->feature_value[i][AV1_SEG_LVL_ALT_Q]);
} else {
qindex = current->base_q_idx;
}
qindex = av_clip_uintp2(qindex, 8);
if (qindex || current->delta_q_y_dc ||
current->delta_q_u_ac || current->delta_q_u_dc ||
current->delta_q_v_ac || current->delta_q_v_dc) {
priv->coded_lossless = 0;
}
}
priv->all_lossless = priv->coded_lossless &&
priv->frame_width == priv->upscaled_width;
CHECK(FUNC(loop_filter_params)(ctx, rw, current));
CHECK(FUNC(cdef_params)(ctx, rw, current));
CHECK(FUNC(lr_params)(ctx, rw, current));
CHECK(FUNC(read_tx_mode)(ctx, rw, current));
CHECK(FUNC(frame_reference_mode)(ctx, rw, current));
CHECK(FUNC(skip_mode_params)(ctx, rw, current));
if (frame_is_intra || current->error_resilient_mode ||
!seq->enable_warped_motion)
infer(allow_warped_motion, 0);
else
flag(allow_warped_motion);
flag(reduced_tx_set);
CHECK(FUNC(global_motion_params)(ctx, rw, current));
CHECK(FUNC(film_grain_params)(ctx, rw, current));
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
if (current->refresh_frame_flags & (1 << i)) {
priv->ref[i] = (AV1ReferenceFrameState) {
.valid = 1,
.frame_id = current->current_frame_id,
.upscaled_width = priv->upscaled_width,
.frame_width = priv->frame_width,
.frame_height = priv->frame_height,
.render_width = priv->render_width,
.render_height = priv->render_height,
.frame_type = current->frame_type,
.subsampling_x = seq->color_config.subsampling_x,
.subsampling_y = seq->color_config.subsampling_y,
.bit_depth = priv->bit_depth,
.order_hint = current->order_hint,
};
}
}
av_log(ctx->log_ctx, AV_LOG_DEBUG, "Frame %d: size %dx%d "
"upscaled %d render %dx%d subsample %dx%d "
"bitdepth %d tiles %dx%d.\n", current->order_hint,
priv->frame_width, priv->frame_height, priv->upscaled_width,
priv->render_width, priv->render_height,
seq->color_config.subsampling_x + 1,
seq->color_config.subsampling_y + 1, priv->bit_depth,
priv->tile_rows, priv->tile_cols);
return 0;
}
static int FUNC(frame_header_obu)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrameHeader *current, int redundant,
AVBufferRef *rw_buffer_ref)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
int start_pos, fh_bits, fh_bytes, err;
uint8_t *fh_start;
if (priv->seen_frame_header) {
if (!redundant) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid repeated "
"frame header OBU.\n");
return AVERROR_INVALIDDATA;
} else {
GetBitContext fh;
size_t i, b;
uint32_t val;
HEADER("Redundant Frame Header");
av_assert0(priv->frame_header_ref && priv->frame_header);
init_get_bits(&fh, priv->frame_header,
priv->frame_header_size);
for (i = 0; i < priv->frame_header_size; i += 8) {
b = FFMIN(priv->frame_header_size - i, 8);
val = get_bits(&fh, b);
xf(b, frame_header_copy[i],
val, val, val, 1, i / 8);
}
}
} else {
if (redundant)
HEADER("Redundant Frame Header (used as Frame Header)");
else
HEADER("Frame Header");
#ifdef READ
start_pos = get_bits_count(rw);
#else
start_pos = put_bits_count(rw);
#endif
CHECK(FUNC(uncompressed_header)(ctx, rw, current));
if (current->show_existing_frame) {
priv->seen_frame_header = 0;
} else {
priv->seen_frame_header = 1;
av_buffer_unref(&priv->frame_header_ref);
#ifdef READ
fh_bits = get_bits_count(rw) - start_pos;
fh_start = (uint8_t*)rw->buffer + start_pos / 8;
#else
// Need to flush the bitwriter so that we can copy its output,
// but use a copy so we don't affect the caller's structure.
{
PutBitContext tmp = *rw;
flush_put_bits(&tmp);
}
fh_bits = put_bits_count(rw) - start_pos;
fh_start = rw->buf + start_pos / 8;
#endif
fh_bytes = (fh_bits + 7) / 8;
priv->frame_header_size = fh_bits;
if (rw_buffer_ref) {
priv->frame_header_ref = av_buffer_ref(rw_buffer_ref);
if (!priv->frame_header_ref)
return AVERROR(ENOMEM);
priv->frame_header = fh_start;
} else {
priv->frame_header_ref =
av_buffer_alloc(fh_bytes + AV_INPUT_BUFFER_PADDING_SIZE);
if (!priv->frame_header_ref)
return AVERROR(ENOMEM);
priv->frame_header = priv->frame_header_ref->data;
memcpy(priv->frame_header, fh_start, fh_bytes);
}
}
}
return 0;
}
static int FUNC(tile_group_obu)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawTileGroup *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
int num_tiles, tile_bits;
int err;
HEADER("Tile Group");
num_tiles = priv->tile_cols * priv->tile_rows;
if (num_tiles > 1)
flag(tile_start_and_end_present_flag);
else
infer(tile_start_and_end_present_flag, 0);
if (num_tiles == 1 || !current->tile_start_and_end_present_flag) {
infer(tg_start, 0);
infer(tg_end, num_tiles - 1);
} else {
tile_bits = cbs_av1_tile_log2(1, priv->tile_cols) +
cbs_av1_tile_log2(1, priv->tile_rows);
fb(tile_bits, tg_start);
fb(tile_bits, tg_end);
}
CHECK(FUNC(byte_alignment)(ctx, rw));
// Reset header for next frame.
if (current->tg_end == num_tiles - 1)
priv->seen_frame_header = 0;
// Tile data follows.
return 0;
}
static int FUNC(frame_obu)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawFrame *current,
AVBufferRef *rw_buffer_ref)
{
int err;
CHECK(FUNC(frame_header_obu)(ctx, rw, &current->header,
0, rw_buffer_ref));
CHECK(FUNC(byte_alignment)(ctx, rw));
CHECK(FUNC(tile_group_obu)(ctx, rw, &current->tile_group));
return 0;
}
static int FUNC(tile_list_obu)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawTileList *current)
{
int err;
fb(8, output_frame_width_in_tiles_minus_1);
fb(8, output_frame_height_in_tiles_minus_1);
fb(16, tile_count_minus_1);
// Tile data follows.
return 0;
}
static int FUNC(metadata_hdr_cll)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawMetadataHDRCLL *current)
{
int err;
fb(16, max_cll);
fb(16, max_fall);
return 0;
}
static int FUNC(metadata_hdr_mdcv)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawMetadataHDRMDCV *current)
{
int err, i;
for (i = 0; i < 3; i++) {
fbs(16, primary_chromaticity_x[i], 1, i);
fbs(16, primary_chromaticity_y[i], 1, i);
}
fb(16, white_point_chromaticity_x);
fb(16, white_point_chromaticity_y);
fc(32, luminance_max, 1, MAX_UINT_BITS(32));
// luminance_min must be lower than luminance_max. Convert luminance_max from
// 24.8 fixed point to 18.14 fixed point in order to compare them.
fc(32, luminance_min, 0, FFMIN(((uint64_t)current->luminance_max << 6) - 1,
MAX_UINT_BITS(32)));
return 0;
}
static int FUNC(scalability_structure)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawMetadataScalability *current)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
const AV1RawSequenceHeader *seq;
int err, i, j;
if (!priv->sequence_header) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "No sequence header available: "
"unable to parse scalability metadata.\n");
return AVERROR_INVALIDDATA;
}
seq = priv->sequence_header;
fb(2, spatial_layers_cnt_minus_1);
flag(spatial_layer_dimensions_present_flag);
flag(spatial_layer_description_present_flag);
flag(temporal_group_description_present_flag);
fc(3, scalability_structure_reserved_3bits, 0, 0);
if (current->spatial_layer_dimensions_present_flag) {
for (i = 0; i <= current->spatial_layers_cnt_minus_1; i++) {
fcs(16, spatial_layer_max_width[i],
0, seq->max_frame_width_minus_1 + 1, 1, i);
fcs(16, spatial_layer_max_height[i],
0, seq->max_frame_height_minus_1 + 1, 1, i);
}
}
if (current->spatial_layer_description_present_flag) {
for (i = 0; i <= current->spatial_layers_cnt_minus_1; i++)
fbs(8, spatial_layer_ref_id[i], 1, i);
}
if (current->temporal_group_description_present_flag) {
fb(8, temporal_group_size);
for (i = 0; i < current->temporal_group_size; i++) {
fbs(3, temporal_group_temporal_id[i], 1, i);
flags(temporal_group_temporal_switching_up_point_flag[i], 1, i);
flags(temporal_group_spatial_switching_up_point_flag[i], 1, i);
fbs(3, temporal_group_ref_cnt[i], 1, i);
for (j = 0; j < current->temporal_group_ref_cnt[i]; j++) {
fbs(8, temporal_group_ref_pic_diff[i][j], 2, i, j);
}
}
}
return 0;
}
static int FUNC(metadata_scalability)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawMetadataScalability *current)
{
int err;
fb(8, scalability_mode_idc);
if (current->scalability_mode_idc == AV1_SCALABILITY_SS)
CHECK(FUNC(scalability_structure)(ctx, rw, current));
return 0;
}
static int FUNC(metadata_itut_t35)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawMetadataITUTT35 *current)
{
int err;
size_t i;
fb(8, itu_t_t35_country_code);
if (current->itu_t_t35_country_code == 0xff)
fb(8, itu_t_t35_country_code_extension_byte);
#ifdef READ
// The payload runs up to the start of the trailing bits, but there might
// be arbitrarily many trailing zeroes so we need to read through twice.
current->payload_size = cbs_av1_get_payload_bytes_left(rw);
current->payload_ref = av_buffer_alloc(current->payload_size);
if (!current->payload_ref)
return AVERROR(ENOMEM);
current->payload = current->payload_ref->data;
#endif
for (i = 0; i < current->payload_size; i++)
xf(8, itu_t_t35_payload_bytes[i], current->payload[i],
0x00, 0xff, 1, i);
return 0;
}
static int FUNC(metadata_timecode)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawMetadataTimecode *current)
{
int err;
fb(5, counting_type);
flag(full_timestamp_flag);
flag(discontinuity_flag);
flag(cnt_dropped_flag);
fb(9, n_frames);
if (current->full_timestamp_flag) {
fc(6, seconds_value, 0, 59);
fc(6, minutes_value, 0, 59);
fc(5, hours_value, 0, 23);
} else {
flag(seconds_flag);
if (current->seconds_flag) {
fc(6, seconds_value, 0, 59);
flag(minutes_flag);
if (current->minutes_flag) {
fc(6, minutes_value, 0, 59);
flag(hours_flag);
if (current->hours_flag)
fc(5, hours_value, 0, 23);
}
}
}
fb(5, time_offset_length);
if (current->time_offset_length > 0)
fb(current->time_offset_length, time_offset_value);
else
infer(time_offset_length, 0);
return 0;
}
static int FUNC(metadata_obu)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawMetadata *current)
{
int err;
leb128(metadata_type);
switch (current->metadata_type) {
case AV1_METADATA_TYPE_HDR_CLL:
CHECK(FUNC(metadata_hdr_cll)(ctx, rw, &current->metadata.hdr_cll));
break;
case AV1_METADATA_TYPE_HDR_MDCV:
CHECK(FUNC(metadata_hdr_mdcv)(ctx, rw, &current->metadata.hdr_mdcv));
break;
case AV1_METADATA_TYPE_SCALABILITY:
CHECK(FUNC(metadata_scalability)(ctx, rw, &current->metadata.scalability));
break;
case AV1_METADATA_TYPE_ITUT_T35:
CHECK(FUNC(metadata_itut_t35)(ctx, rw, &current->metadata.itut_t35));
break;
case AV1_METADATA_TYPE_TIMECODE:
CHECK(FUNC(metadata_timecode)(ctx, rw, &current->metadata.timecode));
break;
default:
// Unknown metadata type.
return AVERROR_PATCHWELCOME;
}
return 0;
}
static int FUNC(padding_obu)(CodedBitstreamContext *ctx, RWContext *rw,
AV1RawPadding *current)
{
int i, err;
HEADER("Padding");
#ifdef READ
// The payload runs up to the start of the trailing bits, but there might
// be arbitrarily many trailing zeroes so we need to read through twice.
current->payload_size = cbs_av1_get_payload_bytes_left(rw);
current->payload_ref = av_buffer_alloc(current->payload_size);
if (!current->payload_ref)
return AVERROR(ENOMEM);
current->payload = current->payload_ref->data;
#endif
for (i = 0; i < current->payload_size; i++)
xf(8, obu_padding_byte[i], current->payload[i], 0x00, 0xff, 1, i);
return 0;
}