965 lines
40 KiB
C
965 lines
40 KiB
C
|
/*
|
||
|
* AAC coefficients encoder
|
||
|
* Copyright (C) 2008-2009 Konstantin Shishkov
|
||
|
*
|
||
|
* This file is part of FFmpeg.
|
||
|
*
|
||
|
* FFmpeg is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2.1 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* FFmpeg is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with FFmpeg; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @file
|
||
|
* AAC coefficients encoder
|
||
|
*/
|
||
|
|
||
|
/***********************************
|
||
|
* TODOs:
|
||
|
* speedup quantizer selection
|
||
|
* add sane pulse detection
|
||
|
***********************************/
|
||
|
|
||
|
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
|
||
|
|
||
|
#include <float.h>
|
||
|
|
||
|
#include "libavutil/mathematics.h"
|
||
|
#include "mathops.h"
|
||
|
#include "avcodec.h"
|
||
|
#include "put_bits.h"
|
||
|
#include "aac.h"
|
||
|
#include "aacenc.h"
|
||
|
#include "aactab.h"
|
||
|
#include "aacenctab.h"
|
||
|
#include "aacenc_utils.h"
|
||
|
#include "aacenc_quantization.h"
|
||
|
|
||
|
#include "aacenc_is.h"
|
||
|
#include "aacenc_tns.h"
|
||
|
#include "aacenc_ltp.h"
|
||
|
#include "aacenc_pred.h"
|
||
|
|
||
|
#include "libavcodec/aaccoder_twoloop.h"
|
||
|
|
||
|
/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
|
||
|
* beyond which no PNS is used (since the SFBs contain tone rather than noise) */
|
||
|
#define NOISE_SPREAD_THRESHOLD 0.9f
|
||
|
|
||
|
/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
|
||
|
* replace low energy non zero bands */
|
||
|
#define NOISE_LAMBDA_REPLACE 1.948f
|
||
|
|
||
|
#include "libavcodec/aaccoder_trellis.h"
|
||
|
|
||
|
/**
|
||
|
* structure used in optimal codebook search
|
||
|
*/
|
||
|
typedef struct BandCodingPath {
|
||
|
int prev_idx; ///< pointer to the previous path point
|
||
|
float cost; ///< path cost
|
||
|
int run;
|
||
|
} BandCodingPath;
|
||
|
|
||
|
/**
|
||
|
* Encode band info for single window group bands.
|
||
|
*/
|
||
|
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
|
||
|
int win, int group_len, const float lambda)
|
||
|
{
|
||
|
BandCodingPath path[120][CB_TOT_ALL];
|
||
|
int w, swb, cb, start, size;
|
||
|
int i, j;
|
||
|
const int max_sfb = sce->ics.max_sfb;
|
||
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
||
|
const int run_esc = (1 << run_bits) - 1;
|
||
|
int idx, ppos, count;
|
||
|
int stackrun[120], stackcb[120], stack_len;
|
||
|
float next_minrd = INFINITY;
|
||
|
int next_mincb = 0;
|
||
|
|
||
|
s->abs_pow34(s->scoefs, sce->coeffs, 1024);
|
||
|
start = win*128;
|
||
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
||
|
path[0][cb].cost = 0.0f;
|
||
|
path[0][cb].prev_idx = -1;
|
||
|
path[0][cb].run = 0;
|
||
|
}
|
||
|
for (swb = 0; swb < max_sfb; swb++) {
|
||
|
size = sce->ics.swb_sizes[swb];
|
||
|
if (sce->zeroes[win*16 + swb]) {
|
||
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
||
|
path[swb+1][cb].prev_idx = cb;
|
||
|
path[swb+1][cb].cost = path[swb][cb].cost;
|
||
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
||
|
}
|
||
|
} else {
|
||
|
float minrd = next_minrd;
|
||
|
int mincb = next_mincb;
|
||
|
next_minrd = INFINITY;
|
||
|
next_mincb = 0;
|
||
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
||
|
float cost_stay_here, cost_get_here;
|
||
|
float rd = 0.0f;
|
||
|
if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
|
||
|
cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
|
||
|
path[swb+1][cb].prev_idx = -1;
|
||
|
path[swb+1][cb].cost = INFINITY;
|
||
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
||
|
continue;
|
||
|
}
|
||
|
for (w = 0; w < group_len; w++) {
|
||
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
|
||
|
rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
|
||
|
&s->scoefs[start + w*128], size,
|
||
|
sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
|
||
|
lambda / band->threshold, INFINITY, NULL, NULL, 0);
|
||
|
}
|
||
|
cost_stay_here = path[swb][cb].cost + rd;
|
||
|
cost_get_here = minrd + rd + run_bits + 4;
|
||
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
||
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
||
|
cost_stay_here += run_bits;
|
||
|
if (cost_get_here < cost_stay_here) {
|
||
|
path[swb+1][cb].prev_idx = mincb;
|
||
|
path[swb+1][cb].cost = cost_get_here;
|
||
|
path[swb+1][cb].run = 1;
|
||
|
} else {
|
||
|
path[swb+1][cb].prev_idx = cb;
|
||
|
path[swb+1][cb].cost = cost_stay_here;
|
||
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
||
|
}
|
||
|
if (path[swb+1][cb].cost < next_minrd) {
|
||
|
next_minrd = path[swb+1][cb].cost;
|
||
|
next_mincb = cb;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
start += sce->ics.swb_sizes[swb];
|
||
|
}
|
||
|
|
||
|
//convert resulting path from backward-linked list
|
||
|
stack_len = 0;
|
||
|
idx = 0;
|
||
|
for (cb = 1; cb < CB_TOT_ALL; cb++)
|
||
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
||
|
idx = cb;
|
||
|
ppos = max_sfb;
|
||
|
while (ppos > 0) {
|
||
|
av_assert1(idx >= 0);
|
||
|
cb = idx;
|
||
|
stackrun[stack_len] = path[ppos][cb].run;
|
||
|
stackcb [stack_len] = cb;
|
||
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
||
|
ppos -= path[ppos][cb].run;
|
||
|
stack_len++;
|
||
|
}
|
||
|
//perform actual band info encoding
|
||
|
start = 0;
|
||
|
for (i = stack_len - 1; i >= 0; i--) {
|
||
|
cb = aac_cb_out_map[stackcb[i]];
|
||
|
put_bits(&s->pb, 4, cb);
|
||
|
count = stackrun[i];
|
||
|
memset(sce->zeroes + win*16 + start, !cb, count);
|
||
|
//XXX: memset when band_type is also uint8_t
|
||
|
for (j = 0; j < count; j++) {
|
||
|
sce->band_type[win*16 + start] = cb;
|
||
|
start++;
|
||
|
}
|
||
|
while (count >= run_esc) {
|
||
|
put_bits(&s->pb, run_bits, run_esc);
|
||
|
count -= run_esc;
|
||
|
}
|
||
|
put_bits(&s->pb, run_bits, count);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
typedef struct TrellisPath {
|
||
|
float cost;
|
||
|
int prev;
|
||
|
} TrellisPath;
|
||
|
|
||
|
#define TRELLIS_STAGES 121
|
||
|
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
|
||
|
|
||
|
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
|
||
|
{
|
||
|
int w, g;
|
||
|
int prevscaler_n = -255, prevscaler_i = 0;
|
||
|
int bands = 0;
|
||
|
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
if (sce->zeroes[w*16+g])
|
||
|
continue;
|
||
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
|
||
|
sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
|
||
|
bands++;
|
||
|
} else if (sce->band_type[w*16+g] == NOISE_BT) {
|
||
|
sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
|
||
|
if (prevscaler_n == -255)
|
||
|
prevscaler_n = sce->sf_idx[w*16+g];
|
||
|
bands++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!bands)
|
||
|
return;
|
||
|
|
||
|
/* Clip the scalefactor indices */
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
if (sce->zeroes[w*16+g])
|
||
|
continue;
|
||
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
|
||
|
sce->sf_idx[w*16+g] = prevscaler_i = av_clip(sce->sf_idx[w*16+g], prevscaler_i - SCALE_MAX_DIFF, prevscaler_i + SCALE_MAX_DIFF);
|
||
|
} else if (sce->band_type[w*16+g] == NOISE_BT) {
|
||
|
sce->sf_idx[w*16+g] = prevscaler_n = av_clip(sce->sf_idx[w*16+g], prevscaler_n - SCALE_MAX_DIFF, prevscaler_n + SCALE_MAX_DIFF);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
|
||
|
SingleChannelElement *sce,
|
||
|
const float lambda)
|
||
|
{
|
||
|
int q, w, w2, g, start = 0;
|
||
|
int i, j;
|
||
|
int idx;
|
||
|
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
|
||
|
int bandaddr[TRELLIS_STAGES];
|
||
|
int minq;
|
||
|
float mincost;
|
||
|
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
|
||
|
int q0, q1, qcnt = 0;
|
||
|
|
||
|
for (i = 0; i < 1024; i++) {
|
||
|
float t = fabsf(sce->coeffs[i]);
|
||
|
if (t > 0.0f) {
|
||
|
q0f = FFMIN(q0f, t);
|
||
|
q1f = FFMAX(q1f, t);
|
||
|
qnrgf += t*t;
|
||
|
qcnt++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!qcnt) {
|
||
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
||
|
memset(sce->zeroes, 1, sizeof(sce->zeroes));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
||
|
q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1);
|
||
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
||
|
q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS);
|
||
|
if (q1 - q0 > 60) {
|
||
|
int q0low = q0;
|
||
|
int q1high = q1;
|
||
|
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
|
||
|
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
|
||
|
q1 = qnrg + 30;
|
||
|
q0 = qnrg - 30;
|
||
|
if (q0 < q0low) {
|
||
|
q1 += q0low - q0;
|
||
|
q0 = q0low;
|
||
|
} else if (q1 > q1high) {
|
||
|
q0 -= q1 - q1high;
|
||
|
q1 = q1high;
|
||
|
}
|
||
|
}
|
||
|
// q0 == q1 isn't really a legal situation
|
||
|
if (q0 == q1) {
|
||
|
// the following is indirect but guarantees q1 != q0 && q1 near q0
|
||
|
q1 = av_clip(q0+1, 1, SCALE_MAX_POS);
|
||
|
q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
||
|
paths[0][i].cost = 0.0f;
|
||
|
paths[0][i].prev = -1;
|
||
|
}
|
||
|
for (j = 1; j < TRELLIS_STAGES; j++) {
|
||
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
||
|
paths[j][i].cost = INFINITY;
|
||
|
paths[j][i].prev = -2;
|
||
|
}
|
||
|
}
|
||
|
idx = 1;
|
||
|
s->abs_pow34(s->scoefs, sce->coeffs, 1024);
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
start = w*128;
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
const float *coefs = &sce->coeffs[start];
|
||
|
float qmin, qmax;
|
||
|
int nz = 0;
|
||
|
|
||
|
bandaddr[idx] = w * 16 + g;
|
||
|
qmin = INT_MAX;
|
||
|
qmax = 0.0f;
|
||
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
||
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
||
|
sce->zeroes[(w+w2)*16+g] = 1;
|
||
|
continue;
|
||
|
}
|
||
|
sce->zeroes[(w+w2)*16+g] = 0;
|
||
|
nz = 1;
|
||
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
|
||
|
float t = fabsf(coefs[w2*128+i]);
|
||
|
if (t > 0.0f)
|
||
|
qmin = FFMIN(qmin, t);
|
||
|
qmax = FFMAX(qmax, t);
|
||
|
}
|
||
|
}
|
||
|
if (nz) {
|
||
|
int minscale, maxscale;
|
||
|
float minrd = INFINITY;
|
||
|
float maxval;
|
||
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
||
|
minscale = coef2minsf(qmin);
|
||
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
||
|
maxscale = coef2maxsf(qmax);
|
||
|
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
|
||
|
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
|
||
|
if (minscale == maxscale) {
|
||
|
maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
|
||
|
minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
|
||
|
}
|
||
|
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
|
||
|
for (q = minscale; q < maxscale; q++) {
|
||
|
float dist = 0;
|
||
|
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
|
||
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
||
|
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
|
||
|
q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0);
|
||
|
}
|
||
|
minrd = FFMIN(minrd, dist);
|
||
|
|
||
|
for (i = 0; i < q1 - q0; i++) {
|
||
|
float cost;
|
||
|
cost = paths[idx - 1][i].cost + dist
|
||
|
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
|
||
|
if (cost < paths[idx][q].cost) {
|
||
|
paths[idx][q].cost = cost;
|
||
|
paths[idx][q].prev = i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
for (q = 0; q < q1 - q0; q++) {
|
||
|
paths[idx][q].cost = paths[idx - 1][q].cost + 1;
|
||
|
paths[idx][q].prev = q;
|
||
|
}
|
||
|
}
|
||
|
sce->zeroes[w*16+g] = !nz;
|
||
|
start += sce->ics.swb_sizes[g];
|
||
|
idx++;
|
||
|
}
|
||
|
}
|
||
|
idx--;
|
||
|
mincost = paths[idx][0].cost;
|
||
|
minq = 0;
|
||
|
for (i = 1; i < TRELLIS_STATES; i++) {
|
||
|
if (paths[idx][i].cost < mincost) {
|
||
|
mincost = paths[idx][i].cost;
|
||
|
minq = i;
|
||
|
}
|
||
|
}
|
||
|
while (idx) {
|
||
|
sce->sf_idx[bandaddr[idx]] = minq + q0;
|
||
|
minq = FFMAX(paths[idx][minq].prev, 0);
|
||
|
idx--;
|
||
|
}
|
||
|
//set the same quantizers inside window groups
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
||
|
for (g = 0; g < sce->ics.num_swb; g++)
|
||
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
||
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
||
|
}
|
||
|
|
||
|
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
|
||
|
SingleChannelElement *sce,
|
||
|
const float lambda)
|
||
|
{
|
||
|
int start = 0, i, w, w2, g;
|
||
|
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
|
||
|
float dists[128] = { 0 }, uplims[128] = { 0 };
|
||
|
float maxvals[128];
|
||
|
int fflag, minscaler;
|
||
|
int its = 0;
|
||
|
int allz = 0;
|
||
|
float minthr = INFINITY;
|
||
|
|
||
|
// for values above this the decoder might end up in an endless loop
|
||
|
// due to always having more bits than what can be encoded.
|
||
|
destbits = FFMIN(destbits, 5800);
|
||
|
//some heuristic to determine initial quantizers will reduce search time
|
||
|
//determine zero bands and upper limits
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
start = 0;
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
int nz = 0;
|
||
|
float uplim = 0.0f, energy = 0.0f;
|
||
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
||
|
uplim += band->threshold;
|
||
|
energy += band->energy;
|
||
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
||
|
sce->zeroes[(w+w2)*16+g] = 1;
|
||
|
continue;
|
||
|
}
|
||
|
nz = 1;
|
||
|
}
|
||
|
uplims[w*16+g] = uplim *512;
|
||
|
sce->band_type[w*16+g] = 0;
|
||
|
sce->zeroes[w*16+g] = !nz;
|
||
|
if (nz)
|
||
|
minthr = FFMIN(minthr, uplim);
|
||
|
allz |= nz;
|
||
|
start += sce->ics.swb_sizes[g];
|
||
|
}
|
||
|
}
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
if (sce->zeroes[w*16+g]) {
|
||
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
|
||
|
continue;
|
||
|
}
|
||
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!allz)
|
||
|
return;
|
||
|
s->abs_pow34(s->scoefs, sce->coeffs, 1024);
|
||
|
ff_quantize_band_cost_cache_init(s);
|
||
|
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
start = w*128;
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
const float *scaled = s->scoefs + start;
|
||
|
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
|
||
|
start += sce->ics.swb_sizes[g];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//perform two-loop search
|
||
|
//outer loop - improve quality
|
||
|
do {
|
||
|
int tbits, qstep;
|
||
|
minscaler = sce->sf_idx[0];
|
||
|
//inner loop - quantize spectrum to fit into given number of bits
|
||
|
qstep = its ? 1 : 32;
|
||
|
do {
|
||
|
int prev = -1;
|
||
|
tbits = 0;
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
start = w*128;
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
const float *coefs = sce->coeffs + start;
|
||
|
const float *scaled = s->scoefs + start;
|
||
|
int bits = 0;
|
||
|
int cb;
|
||
|
float dist = 0.0f;
|
||
|
|
||
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
||
|
start += sce->ics.swb_sizes[g];
|
||
|
continue;
|
||
|
}
|
||
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
||
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
||
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||
|
int b;
|
||
|
dist += quantize_band_cost_cached(s, w + w2, g,
|
||
|
coefs + w2*128,
|
||
|
scaled + w2*128,
|
||
|
sce->ics.swb_sizes[g],
|
||
|
sce->sf_idx[w*16+g],
|
||
|
cb, 1.0f, INFINITY,
|
||
|
&b, NULL, 0);
|
||
|
bits += b;
|
||
|
}
|
||
|
dists[w*16+g] = dist - bits;
|
||
|
if (prev != -1) {
|
||
|
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
|
||
|
}
|
||
|
tbits += bits;
|
||
|
start += sce->ics.swb_sizes[g];
|
||
|
prev = sce->sf_idx[w*16+g];
|
||
|
}
|
||
|
}
|
||
|
if (tbits > destbits) {
|
||
|
for (i = 0; i < 128; i++)
|
||
|
if (sce->sf_idx[i] < 218 - qstep)
|
||
|
sce->sf_idx[i] += qstep;
|
||
|
} else {
|
||
|
for (i = 0; i < 128; i++)
|
||
|
if (sce->sf_idx[i] > 60 - qstep)
|
||
|
sce->sf_idx[i] -= qstep;
|
||
|
}
|
||
|
qstep >>= 1;
|
||
|
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
|
||
|
qstep = 1;
|
||
|
} while (qstep);
|
||
|
|
||
|
fflag = 0;
|
||
|
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
|
||
|
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
int prevsc = sce->sf_idx[w*16+g];
|
||
|
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
|
||
|
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
|
||
|
sce->sf_idx[w*16+g]--;
|
||
|
else //Try to make sure there is some energy in every band
|
||
|
sce->sf_idx[w*16+g]-=2;
|
||
|
}
|
||
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
|
||
|
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
|
||
|
if (sce->sf_idx[w*16+g] != prevsc)
|
||
|
fflag = 1;
|
||
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
||
|
}
|
||
|
}
|
||
|
its++;
|
||
|
} while (fflag && its < 10);
|
||
|
}
|
||
|
|
||
|
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
|
||
|
{
|
||
|
FFPsyBand *band;
|
||
|
int w, g, w2, i;
|
||
|
int wlen = 1024 / sce->ics.num_windows;
|
||
|
int bandwidth, cutoff;
|
||
|
float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
|
||
|
float *NOR34 = &s->scoefs[3*128];
|
||
|
uint8_t nextband[128];
|
||
|
const float lambda = s->lambda;
|
||
|
const float freq_mult = avctx->sample_rate*0.5f/wlen;
|
||
|
const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
|
||
|
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
|
||
|
const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
|
||
|
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
|
||
|
|
||
|
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
|
||
|
/ ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
|
||
|
* (lambda / 120.f);
|
||
|
|
||
|
/** Keep this in sync with twoloop's cutoff selection */
|
||
|
float rate_bandwidth_multiplier = 1.5f;
|
||
|
int prev = -1000, prev_sf = -1;
|
||
|
int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
|
||
|
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
|
||
|
: (avctx->bit_rate / avctx->channels);
|
||
|
|
||
|
frame_bit_rate *= 1.15f;
|
||
|
|
||
|
if (avctx->cutoff > 0) {
|
||
|
bandwidth = avctx->cutoff;
|
||
|
} else {
|
||
|
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
|
||
|
}
|
||
|
|
||
|
cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
|
||
|
|
||
|
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
|
||
|
ff_init_nextband_map(sce, nextband);
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
int wstart = w*128;
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
int noise_sfi;
|
||
|
float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
|
||
|
float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
|
||
|
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
|
||
|
float min_energy = -1.0f, max_energy = 0.0f;
|
||
|
const int start = wstart+sce->ics.swb_offset[g];
|
||
|
const float freq = (start-wstart)*freq_mult;
|
||
|
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
|
||
|
if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) {
|
||
|
if (!sce->zeroes[w*16+g])
|
||
|
prev_sf = sce->sf_idx[w*16+g];
|
||
|
continue;
|
||
|
}
|
||
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
||
|
sfb_energy += band->energy;
|
||
|
spread = FFMIN(spread, band->spread);
|
||
|
threshold += band->threshold;
|
||
|
if (!w2) {
|
||
|
min_energy = max_energy = band->energy;
|
||
|
} else {
|
||
|
min_energy = FFMIN(min_energy, band->energy);
|
||
|
max_energy = FFMAX(max_energy, band->energy);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Ramps down at ~8000Hz and loosens the dist threshold */
|
||
|
dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
|
||
|
|
||
|
/* PNS is acceptable when all of these are true:
|
||
|
* 1. high spread energy (noise-like band)
|
||
|
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
|
||
|
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
|
||
|
*
|
||
|
* At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
|
||
|
*/
|
||
|
if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) ||
|
||
|
((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
|
||
|
(!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
|
||
|
min_energy < pns_transient_energy_r * max_energy ) {
|
||
|
sce->pns_ener[w*16+g] = sfb_energy;
|
||
|
if (!sce->zeroes[w*16+g])
|
||
|
prev_sf = sce->sf_idx[w*16+g];
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
|
||
|
noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
|
||
|
noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
|
||
|
if (prev != -1000) {
|
||
|
int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO;
|
||
|
if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) {
|
||
|
if (!sce->zeroes[w*16+g])
|
||
|
prev_sf = sce->sf_idx[w*16+g];
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||
|
float band_energy, scale, pns_senergy;
|
||
|
const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
|
||
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
||
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
|
||
|
s->random_state = lcg_random(s->random_state);
|
||
|
PNS[i] = s->random_state;
|
||
|
}
|
||
|
band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
|
||
|
scale = noise_amp/sqrtf(band_energy);
|
||
|
s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
|
||
|
pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
|
||
|
pns_energy += pns_senergy;
|
||
|
s->abs_pow34(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
|
||
|
s->abs_pow34(PNS34, PNS, sce->ics.swb_sizes[g]);
|
||
|
dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
|
||
|
NOR34,
|
||
|
sce->ics.swb_sizes[g],
|
||
|
sce->sf_idx[(w+w2)*16+g],
|
||
|
sce->band_alt[(w+w2)*16+g],
|
||
|
lambda/band->threshold, INFINITY, NULL, NULL, 0);
|
||
|
/* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
|
||
|
dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
|
||
|
}
|
||
|
if (g && sce->band_type[w*16+g-1] == NOISE_BT) {
|
||
|
dist2 += 5;
|
||
|
} else {
|
||
|
dist2 += 9;
|
||
|
}
|
||
|
energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
|
||
|
sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
|
||
|
if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
|
||
|
sce->band_type[w*16+g] = NOISE_BT;
|
||
|
sce->zeroes[w*16+g] = 0;
|
||
|
prev = noise_sfi;
|
||
|
} else {
|
||
|
if (!sce->zeroes[w*16+g])
|
||
|
prev_sf = sce->sf_idx[w*16+g];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
|
||
|
{
|
||
|
FFPsyBand *band;
|
||
|
int w, g, w2;
|
||
|
int wlen = 1024 / sce->ics.num_windows;
|
||
|
int bandwidth, cutoff;
|
||
|
const float lambda = s->lambda;
|
||
|
const float freq_mult = avctx->sample_rate*0.5f/wlen;
|
||
|
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
|
||
|
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
|
||
|
|
||
|
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
|
||
|
/ ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
|
||
|
* (lambda / 120.f);
|
||
|
|
||
|
/** Keep this in sync with twoloop's cutoff selection */
|
||
|
float rate_bandwidth_multiplier = 1.5f;
|
||
|
int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
|
||
|
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
|
||
|
: (avctx->bit_rate / avctx->channels);
|
||
|
|
||
|
frame_bit_rate *= 1.15f;
|
||
|
|
||
|
if (avctx->cutoff > 0) {
|
||
|
bandwidth = avctx->cutoff;
|
||
|
} else {
|
||
|
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
|
||
|
}
|
||
|
|
||
|
cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
|
||
|
|
||
|
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
|
||
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
||
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
||
|
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
|
||
|
float min_energy = -1.0f, max_energy = 0.0f;
|
||
|
const int start = sce->ics.swb_offset[g];
|
||
|
const float freq = start*freq_mult;
|
||
|
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
|
||
|
if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
|
||
|
sce->can_pns[w*16+g] = 0;
|
||
|
continue;
|
||
|
}
|
||
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
||
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
||
|
sfb_energy += band->energy;
|
||
|
spread = FFMIN(spread, band->spread);
|
||
|
threshold += band->threshold;
|
||
|
if (!w2) {
|
||
|
min_energy = max_energy = band->energy;
|
||
|
} else {
|
||
|
min_energy = FFMIN(min_energy, band->energy);
|
||
|
max_energy = FFMAX(max_energy, band->energy);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* PNS is acceptable when all of these are true:
|
||
|
* 1. high spread energy (noise-like band)
|
||
|
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
|
||
|
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
|
||
|
*/
|
||
|
sce->pns_ener[w*16+g] = sfb_energy;
|
||
|
if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
|
||
|
sce->can_pns[w*16+g] = 0;
|
||
|
} else {
|
||
|
sce->can_pns[w*16+g] = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
|
||
|
{
|
||
|
int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
|
||
|
uint8_t nextband0[128], nextband1[128];
|
||
|
float *M = s->scoefs + 128*0, *S = s->scoefs + 128*1;
|
||
|
float *L34 = s->scoefs + 128*2, *R34 = s->scoefs + 128*3;
|
||
|
float *M34 = s->scoefs + 128*4, *S34 = s->scoefs + 128*5;
|
||
|
const float lambda = s->lambda;
|
||
|
const float mslambda = FFMIN(1.0f, lambda / 120.f);
|
||
|
SingleChannelElement *sce0 = &cpe->ch[0];
|
||
|
SingleChannelElement *sce1 = &cpe->ch[1];
|
||
|
if (!cpe->common_window)
|
||
|
return;
|
||
|
|
||
|
/** Scout out next nonzero bands */
|
||
|
ff_init_nextband_map(sce0, nextband0);
|
||
|
ff_init_nextband_map(sce1, nextband1);
|
||
|
|
||
|
prev_mid = sce0->sf_idx[0];
|
||
|
prev_side = sce1->sf_idx[0];
|
||
|
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
|
||
|
start = 0;
|
||
|
for (g = 0; g < sce0->ics.num_swb; g++) {
|
||
|
float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
|
||
|
if (!cpe->is_mask[w*16+g])
|
||
|
cpe->ms_mask[w*16+g] = 0;
|
||
|
if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g]) {
|
||
|
float Mmax = 0.0f, Smax = 0.0f;
|
||
|
|
||
|
/* Must compute mid/side SF and book for the whole window group */
|
||
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
|
||
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
|
||
|
M[i] = (sce0->coeffs[start+(w+w2)*128+i]
|
||
|
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
|
||
|
S[i] = M[i]
|
||
|
- sce1->coeffs[start+(w+w2)*128+i];
|
||
|
}
|
||
|
s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]);
|
||
|
s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]);
|
||
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
|
||
|
Mmax = FFMAX(Mmax, M34[i]);
|
||
|
Smax = FFMAX(Smax, S34[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
|
||
|
float dist1 = 0.0f, dist2 = 0.0f;
|
||
|
int B0 = 0, B1 = 0;
|
||
|
int minidx;
|
||
|
int mididx, sididx;
|
||
|
int midcb, sidcb;
|
||
|
|
||
|
minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
|
||
|
mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
|
||
|
sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
|
||
|
if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
|
||
|
&& ( !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
|
||
|
|| !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
|
||
|
/* scalefactor range violation, bad stuff, will decrease quality unacceptably */
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
midcb = find_min_book(Mmax, mididx);
|
||
|
sidcb = find_min_book(Smax, sididx);
|
||
|
|
||
|
/* No CB can be zero */
|
||
|
midcb = FFMAX(1,midcb);
|
||
|
sidcb = FFMAX(1,sidcb);
|
||
|
|
||
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
|
||
|
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
|
||
|
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
|
||
|
float minthr = FFMIN(band0->threshold, band1->threshold);
|
||
|
int b1,b2,b3,b4;
|
||
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
|
||
|
M[i] = (sce0->coeffs[start+(w+w2)*128+i]
|
||
|
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
|
||
|
S[i] = M[i]
|
||
|
- sce1->coeffs[start+(w+w2)*128+i];
|
||
|
}
|
||
|
|
||
|
s->abs_pow34(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
|
||
|
s->abs_pow34(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
|
||
|
s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]);
|
||
|
s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]);
|
||
|
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
|
||
|
L34,
|
||
|
sce0->ics.swb_sizes[g],
|
||
|
sce0->sf_idx[w*16+g],
|
||
|
sce0->band_type[w*16+g],
|
||
|
lambda / band0->threshold, INFINITY, &b1, NULL, 0);
|
||
|
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
|
||
|
R34,
|
||
|
sce1->ics.swb_sizes[g],
|
||
|
sce1->sf_idx[w*16+g],
|
||
|
sce1->band_type[w*16+g],
|
||
|
lambda / band1->threshold, INFINITY, &b2, NULL, 0);
|
||
|
dist2 += quantize_band_cost(s, M,
|
||
|
M34,
|
||
|
sce0->ics.swb_sizes[g],
|
||
|
mididx,
|
||
|
midcb,
|
||
|
lambda / minthr, INFINITY, &b3, NULL, 0);
|
||
|
dist2 += quantize_band_cost(s, S,
|
||
|
S34,
|
||
|
sce1->ics.swb_sizes[g],
|
||
|
sididx,
|
||
|
sidcb,
|
||
|
mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0);
|
||
|
B0 += b1+b2;
|
||
|
B1 += b3+b4;
|
||
|
dist1 -= b1+b2;
|
||
|
dist2 -= b3+b4;
|
||
|
}
|
||
|
cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
|
||
|
if (cpe->ms_mask[w*16+g]) {
|
||
|
if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
|
||
|
sce0->sf_idx[w*16+g] = mididx;
|
||
|
sce1->sf_idx[w*16+g] = sididx;
|
||
|
sce0->band_type[w*16+g] = midcb;
|
||
|
sce1->band_type[w*16+g] = sidcb;
|
||
|
} else if ((sce0->band_type[w*16+g] != NOISE_BT) ^ (sce1->band_type[w*16+g] != NOISE_BT)) {
|
||
|
/* ms_mask unneeded, and it confuses some decoders */
|
||
|
cpe->ms_mask[w*16+g] = 0;
|
||
|
}
|
||
|
break;
|
||
|
} else if (B1 > B0) {
|
||
|
/* More boost won't fix this */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
|
||
|
prev_mid = sce0->sf_idx[w*16+g];
|
||
|
if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
|
||
|
prev_side = sce1->sf_idx[w*16+g];
|
||
|
start += sce0->ics.swb_sizes[g];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
|
||
|
[AAC_CODER_ANMR] = {
|
||
|
search_for_quantizers_anmr,
|
||
|
encode_window_bands_info,
|
||
|
quantize_and_encode_band,
|
||
|
ff_aac_encode_tns_info,
|
||
|
ff_aac_encode_ltp_info,
|
||
|
ff_aac_encode_main_pred,
|
||
|
ff_aac_adjust_common_pred,
|
||
|
ff_aac_adjust_common_ltp,
|
||
|
ff_aac_apply_main_pred,
|
||
|
ff_aac_apply_tns,
|
||
|
ff_aac_update_ltp,
|
||
|
ff_aac_ltp_insert_new_frame,
|
||
|
set_special_band_scalefactors,
|
||
|
search_for_pns,
|
||
|
mark_pns,
|
||
|
ff_aac_search_for_tns,
|
||
|
ff_aac_search_for_ltp,
|
||
|
search_for_ms,
|
||
|
ff_aac_search_for_is,
|
||
|
ff_aac_search_for_pred,
|
||
|
},
|
||
|
[AAC_CODER_TWOLOOP] = {
|
||
|
search_for_quantizers_twoloop,
|
||
|
codebook_trellis_rate,
|
||
|
quantize_and_encode_band,
|
||
|
ff_aac_encode_tns_info,
|
||
|
ff_aac_encode_ltp_info,
|
||
|
ff_aac_encode_main_pred,
|
||
|
ff_aac_adjust_common_pred,
|
||
|
ff_aac_adjust_common_ltp,
|
||
|
ff_aac_apply_main_pred,
|
||
|
ff_aac_apply_tns,
|
||
|
ff_aac_update_ltp,
|
||
|
ff_aac_ltp_insert_new_frame,
|
||
|
set_special_band_scalefactors,
|
||
|
search_for_pns,
|
||
|
mark_pns,
|
||
|
ff_aac_search_for_tns,
|
||
|
ff_aac_search_for_ltp,
|
||
|
search_for_ms,
|
||
|
ff_aac_search_for_is,
|
||
|
ff_aac_search_for_pred,
|
||
|
},
|
||
|
[AAC_CODER_FAST] = {
|
||
|
search_for_quantizers_fast,
|
||
|
codebook_trellis_rate,
|
||
|
quantize_and_encode_band,
|
||
|
ff_aac_encode_tns_info,
|
||
|
ff_aac_encode_ltp_info,
|
||
|
ff_aac_encode_main_pred,
|
||
|
ff_aac_adjust_common_pred,
|
||
|
ff_aac_adjust_common_ltp,
|
||
|
ff_aac_apply_main_pred,
|
||
|
ff_aac_apply_tns,
|
||
|
ff_aac_update_ltp,
|
||
|
ff_aac_ltp_insert_new_frame,
|
||
|
set_special_band_scalefactors,
|
||
|
search_for_pns,
|
||
|
mark_pns,
|
||
|
ff_aac_search_for_tns,
|
||
|
ff_aac_search_for_ltp,
|
||
|
search_for_ms,
|
||
|
ff_aac_search_for_is,
|
||
|
ff_aac_search_for_pred,
|
||
|
},
|
||
|
};
|