487 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			487 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | # SAX
 | ||
|  | 
 | ||
|  | The term "SAX" originated from [Simple API for XML](http://en.wikipedia.org/wiki/Simple_API_for_XML). We borrowed this term for JSON parsing and generation. | ||
|  | 
 | ||
|  | In RapidJSON, `Reader` (typedef of `GenericReader<...>`) is the SAX-style parser for JSON, and `Writer` (typedef of `GenericWriter<...>`) is the SAX-style generator for JSON. | ||
|  | 
 | ||
|  | [TOC] | ||
|  | 
 | ||
|  | # Reader {#Reader}
 | ||
|  | 
 | ||
|  | `Reader` parses a JSON from a stream. While it reads characters from the stream, it analyze the characters according to the syntax of JSON, and publish events to a handler. | ||
|  | 
 | ||
|  | For example, here is a JSON. | ||
|  | 
 | ||
|  | ~~~~~~~~~~js | ||
|  | { | ||
|  |     "hello": "world", | ||
|  |     "t": true , | ||
|  |     "f": false, | ||
|  |     "n": null, | ||
|  |     "i": 123, | ||
|  |     "pi": 3.1416, | ||
|  |     "a": [1, 2, 3, 4] | ||
|  | } | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | While a `Reader` parses this JSON, it publishes the following events to the handler sequentially: | ||
|  | 
 | ||
|  | ~~~~~~~~~~ | ||
|  | StartObject() | ||
|  | Key("hello", 5, true) | ||
|  | String("world", 5, true) | ||
|  | Key("t", 1, true) | ||
|  | Bool(true) | ||
|  | Key("f", 1, true) | ||
|  | Bool(false) | ||
|  | Key("n", 1, true) | ||
|  | Null() | ||
|  | Key("i") | ||
|  | UInt(123) | ||
|  | Key("pi") | ||
|  | Double(3.1416) | ||
|  | Key("a") | ||
|  | StartArray() | ||
|  | Uint(1) | ||
|  | Uint(2) | ||
|  | Uint(3) | ||
|  | Uint(4) | ||
|  | EndArray(4) | ||
|  | EndObject(7) | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | These events can be easily matched with the JSON, except some event parameters need further explanation. Let's see the `simplereader` example which produces exactly the same output as above: | ||
|  | 
 | ||
|  | ~~~~~~~~~~cpp | ||
|  | #include "rapidjson/reader.h"
 | ||
|  | #include <iostream>
 | ||
|  | 
 | ||
|  | using namespace rapidjson; | ||
|  | using namespace std; | ||
|  | 
 | ||
|  | struct MyHandler : public BaseReaderHandler<UTF8<>, MyHandler> { | ||
|  |     bool Null() { cout << "Null()" << endl; return true; } | ||
|  |     bool Bool(bool b) { cout << "Bool(" << boolalpha << b << ")" << endl; return true; } | ||
|  |     bool Int(int i) { cout << "Int(" << i << ")" << endl; return true; } | ||
|  |     bool Uint(unsigned u) { cout << "Uint(" << u << ")" << endl; return true; } | ||
|  |     bool Int64(int64_t i) { cout << "Int64(" << i << ")" << endl; return true; } | ||
|  |     bool Uint64(uint64_t u) { cout << "Uint64(" << u << ")" << endl; return true; } | ||
|  |     bool Double(double d) { cout << "Double(" << d << ")" << endl; return true; } | ||
|  |     bool String(const char* str, SizeType length, bool copy) {  | ||
|  |         cout << "String(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl; | ||
|  |         return true; | ||
|  |     } | ||
|  |     bool StartObject() { cout << "StartObject()" << endl; return true; } | ||
|  |     bool Key(const char* str, SizeType length, bool copy) {  | ||
|  |         cout << "Key(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl; | ||
|  |         return true; | ||
|  |     } | ||
|  |     bool EndObject(SizeType memberCount) { cout << "EndObject(" << memberCount << ")" << endl; return true; } | ||
|  |     bool StartArray() { cout << "StartArray()" << endl; return true; } | ||
|  |     bool EndArray(SizeType elementCount) { cout << "EndArray(" << elementCount << ")" << endl; return true; } | ||
|  | }; | ||
|  | 
 | ||
|  | void main() { | ||
|  |     const char json[] = " { \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3, 4] } "; | ||
|  | 
 | ||
|  |     MyHandler handler; | ||
|  |     Reader reader; | ||
|  |     StringStream ss(json); | ||
|  |     reader.Parse(ss, handler); | ||
|  | } | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | Note that, RapidJSON uses template to statically bind the `Reader` type and the handler type, instead of using class with virtual functions. This paradigm can improve the performance by inlining functions. | ||
|  | 
 | ||
|  | ## Handler {#Handler}
 | ||
|  | 
 | ||
|  | As the previous example showed, user needs to implement a handler, which consumes the events (function calls) from `Reader`. The handler must contain the following member functions. | ||
|  | 
 | ||
|  | ~~~~~~~~~~cpp | ||
|  | class Handler { | ||
|  |     bool Null(); | ||
|  |     bool Bool(bool b); | ||
|  |     bool Int(int i); | ||
|  |     bool Uint(unsigned i); | ||
|  |     bool Int64(int64_t i); | ||
|  |     bool Uint64(uint64_t i); | ||
|  |     bool Double(double d); | ||
|  |     bool RawNumber(const Ch* str, SizeType length, bool copy); | ||
|  |     bool String(const Ch* str, SizeType length, bool copy); | ||
|  |     bool StartObject(); | ||
|  |     bool Key(const Ch* str, SizeType length, bool copy); | ||
|  |     bool EndObject(SizeType memberCount); | ||
|  |     bool StartArray(); | ||
|  |     bool EndArray(SizeType elementCount); | ||
|  | }; | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | `Null()` is called when the `Reader` encounters a JSON null value. | ||
|  | 
 | ||
|  | `Bool(bool)` is called when the `Reader` encounters a JSON true or false value. | ||
|  | 
 | ||
|  | When the `Reader` encounters a JSON number, it chooses a suitable C++ type mapping. And then it calls *one* function out of `Int(int)`, `Uint(unsigned)`, `Int64(int64_t)`, `Uint64(uint64_t)` and `Double(double)`. If `kParseNumbersAsStrings` is enabled, `Reader` will always calls `RawNumber()` instead. | ||
|  | 
 | ||
|  | `String(const char* str, SizeType length, bool copy)` is called when the `Reader` encounters a string. The first parameter is pointer to the string. The second parameter is the length of the string (excluding the null terminator). Note that RapidJSON supports null character `'\0'` inside a string. If such situation happens, `strlen(str) < length`. The last `copy` indicates whether the handler needs to make a copy of the string. For normal parsing, `copy = true`. Only when *insitu* parsing is used, `copy = false`. And beware that, the character type depends on the target encoding, which will be explained later. | ||
|  | 
 | ||
|  | When the `Reader` encounters the beginning of an object, it calls `StartObject()`. An object in JSON is a set of name-value pairs. If the object contains members it first calls `Key()` for the name of member, and then calls functions depending on the type of the value. These calls of name-value pairs repeats until calling `EndObject(SizeType memberCount)`. Note that the `memberCount` parameter is just an aid for the handler, user may not need this parameter. | ||
|  | 
 | ||
|  | Array is similar to object but simpler. At the beginning of an array, the `Reader` calls `BeginArary()`. If there is elements, it calls functions according to the types of element. Similarly, in the last call `EndArray(SizeType elementCount)`, the parameter `elementCount` is just an aid for the handler. | ||
|  | 
 | ||
|  | Every handler functions returns a `bool`. Normally it should returns `true`. If the handler encounters an error, it can return `false` to notify event publisher to stop further processing. | ||
|  | 
 | ||
|  | For example, when we parse a JSON with `Reader` and the handler detected that the JSON does not conform to the required schema, then the handler can return `false` and let the `Reader` stop further parsing. And the `Reader` will be in error state with error code `kParseErrorTermination`. | ||
|  | 
 | ||
|  | ## GenericReader {#GenericReader}
 | ||
|  | 
 | ||
|  | As mentioned before, `Reader` is a typedef of a template class `GenericReader`: | ||
|  | 
 | ||
|  | ~~~~~~~~~~cpp | ||
|  | namespace rapidjson { | ||
|  | 
 | ||
|  | template <typename SourceEncoding, typename TargetEncoding, typename Allocator = MemoryPoolAllocator<> > | ||
|  | class GenericReader { | ||
|  |     // ... | ||
|  | }; | ||
|  | 
 | ||
|  | typedef GenericReader<UTF8<>, UTF8<> > Reader; | ||
|  | 
 | ||
|  | } // namespace rapidjson | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | The `Reader` uses UTF-8 as both source and target encoding. The source encoding means the encoding in the JSON stream. The target encoding means the encoding of the `str` parameter in `String()` calls. For example, to parse a UTF-8 stream and outputs UTF-16 string events, you can define a reader by: | ||
|  | 
 | ||
|  | ~~~~~~~~~~cpp | ||
|  | GenericReader<UTF8<>, UTF16<> > reader; | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | Note that, the default character type of `UTF16` is `wchar_t`. So this `reader`needs to call `String(const wchar_t*, SizeType, bool)` of the handler. | ||
|  | 
 | ||
|  | The third template parameter `Allocator` is the allocator type for internal data structure (actually a stack). | ||
|  | 
 | ||
|  | ## Parsing {#SaxParsing}
 | ||
|  | 
 | ||
|  | The one and only one function of `Reader` is to parse JSON.  | ||
|  | 
 | ||
|  | ~~~~~~~~~~cpp | ||
|  | template <unsigned parseFlags, typename InputStream, typename Handler> | ||
|  | bool Parse(InputStream& is, Handler& handler); | ||
|  | 
 | ||
|  | // with parseFlags = kDefaultParseFlags | ||
|  | template <typename InputStream, typename Handler> | ||
|  | bool Parse(InputStream& is, Handler& handler); | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | If an error occurs during parsing, it will return `false`. User can also calls `bool HasParseEror()`, `ParseErrorCode GetParseErrorCode()` and `size_t GetErrorOffset()` to obtain the error states. Actually `Document` uses these `Reader` functions to obtain parse errors. Please refer to [DOM](doc/dom.md) for details about parse error. | ||
|  | 
 | ||
|  | # Writer {#Writer}
 | ||
|  | 
 | ||
|  | `Reader` converts (parses) JSON into events. `Writer` does exactly the opposite. It converts events into JSON.  | ||
|  | 
 | ||
|  | `Writer` is very easy to use. If your application only need to converts some data into JSON, it may be a good choice to use `Writer` directly, instead of building a `Document` and then stringifying it with a `Writer`. | ||
|  | 
 | ||
|  | In `simplewriter` example, we do exactly the reverse of `simplereader`. | ||
|  | 
 | ||
|  | ~~~~~~~~~~cpp | ||
|  | #include "rapidjson/writer.h"
 | ||
|  | #include "rapidjson/stringbuffer.h"
 | ||
|  | #include <iostream>
 | ||
|  | 
 | ||
|  | using namespace rapidjson; | ||
|  | using namespace std; | ||
|  | 
 | ||
|  | void main() { | ||
|  |     StringBuffer s; | ||
|  |     Writer<StringBuffer> writer(s); | ||
|  |      | ||
|  |     writer.StartObject(); | ||
|  |     writer.Key("hello"); | ||
|  |     writer.String("world"); | ||
|  |     writer.Key("t"); | ||
|  |     writer.Bool(true); | ||
|  |     writer.Key("f"); | ||
|  |     writer.Bool(false); | ||
|  |     writer.Key("n"); | ||
|  |     writer.Null(); | ||
|  |     writer.Key("i"); | ||
|  |     writer.Uint(123); | ||
|  |     writer.Key("pi"); | ||
|  |     writer.Double(3.1416); | ||
|  |     writer.Key("a"); | ||
|  |     writer.StartArray(); | ||
|  |     for (unsigned i = 0; i < 4; i++) | ||
|  |         writer.Uint(i); | ||
|  |     writer.EndArray(); | ||
|  |     writer.EndObject(); | ||
|  | 
 | ||
|  |     cout << s.GetString() << endl; | ||
|  | } | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | ~~~~~~~~~~ | ||
|  | {"hello":"world","t":true,"f":false,"n":null,"i":123,"pi":3.1416,"a":[0,1,2,3]} | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | There are two `String()` and `Key()` overloads. One is the same as defined in handler concept with 3 parameters. It can handle string with null characters. Another one is the simpler version used in the above example. | ||
|  | 
 | ||
|  | Note that, the example code does not pass any parameters in `EndArray()` and `EndObject()`. An `SizeType` can be passed but it will be simply ignored by `Writer`. | ||
|  | 
 | ||
|  | You may doubt that, why not just using `sprintf()` or `std::stringstream` to build a JSON? | ||
|  | 
 | ||
|  | There are various reasons: | ||
|  | 1. `Writer` must output a well-formed JSON. If there is incorrect event sequence (e.g. `Int()` just after `StartObject()`), it generates assertion fail in debug mode. | ||
|  | 2. `Writer::String()` can handle string escaping (e.g. converting code point `U+000A` to `\n`) and Unicode transcoding. | ||
|  | 3. `Writer` handles number output consistently. | ||
|  | 4. `Writer` implements the event handler concept. It can be used to handle events from `Reader`, `Document` or other event publisher. | ||
|  | 5. `Writer` can be optimized for different platforms. | ||
|  | 
 | ||
|  | Anyway, using `Writer` API is even simpler than generating a JSON by ad hoc methods. | ||
|  | 
 | ||
|  | ## Template {#WriterTemplate}
 | ||
|  | 
 | ||
|  | `Writer` has a minor design difference to `Reader`. `Writer` is a template class, not a typedef. There is no `GenericWriter`. The following is the declaration. | ||
|  | 
 | ||
|  | ~~~~~~~~~~cpp | ||
|  | namespace rapidjson { | ||
|  | 
 | ||
|  | template<typename OutputStream, typename SourceEncoding = UTF8<>, typename TargetEncoding = UTF8<>, typename Allocator = CrtAllocator<>, unsigned writeFlags = kWriteDefaultFlags> | ||
|  | class Writer { | ||
|  | public: | ||
|  |     Writer(OutputStream& os, Allocator* allocator = 0, size_t levelDepth = kDefaultLevelDepth) | ||
|  | // ... | ||
|  | }; | ||
|  | 
 | ||
|  | } // namespace rapidjson | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | The `OutputStream` template parameter is the type of output stream. It cannot be deduced and must be specified by user. | ||
|  | 
 | ||
|  | The `SourceEncoding` template parameter specifies the encoding to be used in `String(const Ch*, ...)`. | ||
|  | 
 | ||
|  | The `TargetEncoding` template parameter specifies the encoding in the output stream. | ||
|  | 
 | ||
|  | The `Allocator` is the type of allocator, which is used for allocating internal data structure (a stack). | ||
|  | 
 | ||
|  | The `writeFlags` are combination of the following bit-flags: | ||
|  | 
 | ||
|  | Parse flags                   | Meaning | ||
|  | ------------------------------|----------------------------------- | ||
|  | `kWriteNoFlags`               | No flag is set. | ||
|  | `kWriteDefaultFlags`          | Default write flags. It is equal to macro `RAPIDJSON_WRITE_DEFAULT_FLAGS`, which is defined as `kWriteNoFlags`. | ||
|  | `kWriteValidateEncodingFlag`  | Validate encoding of JSON strings. | ||
|  | `kWriteNanAndInfFlag`         | Allow writing of `Infinity`, `-Infinity` and `NaN`. | ||
|  | 
 | ||
|  | Besides, the constructor of `Writer` has a `levelDepth` parameter. This parameter affects the initial memory allocated for storing information per hierarchy level. | ||
|  | 
 | ||
|  | ## PrettyWriter {#PrettyWriter}
 | ||
|  | 
 | ||
|  | While the output of `Writer` is the most condensed JSON without white-spaces, suitable for network transfer or storage, it is not easily readable by human. | ||
|  | 
 | ||
|  | Therefore, RapidJSON provides a `PrettyWriter`, which adds indentation and line feeds in the output. | ||
|  | 
 | ||
|  | The usage of `PrettyWriter` is exactly the same as `Writer`, expect that `PrettyWriter` provides a `SetIndent(Ch indentChar, unsigned indentCharCount)` function. The default is 4 spaces. | ||
|  | 
 | ||
|  | ## Completeness and Reset {#CompletenessReset}
 | ||
|  | 
 | ||
|  | A `Writer` can only output a single JSON, which can be any JSON type at the root. Once the singular event for root (e.g. `String()`), or the last matching `EndObject()` or `EndArray()` event, is handled, the output JSON is well-formed and complete. User can detect this state by calling `Writer::IsComplete()`. | ||
|  | 
 | ||
|  | When a JSON is complete, the `Writer` cannot accept any new events. Otherwise the output will be invalid (i.e. having more than one root). To reuse the `Writer` object, user can call `Writer::Reset(OutputStream& os)` to reset all internal states of the `Writer` with a new output stream. | ||
|  | 
 | ||
|  | # Techniques {#SaxTechniques}
 | ||
|  | 
 | ||
|  | ## Parsing JSON to Custom Data Structure {#CustomDataStructure}
 | ||
|  | 
 | ||
|  | `Document`'s parsing capability is completely based on `Reader`. Actually `Document` is a handler which receives events from a reader to build a DOM during parsing. | ||
|  | 
 | ||
|  | User may uses `Reader` to build other data structures directly. This eliminates building of DOM, thus reducing memory and improving performance. | ||
|  | 
 | ||
|  | In the following `messagereader` example, `ParseMessages()` parses a JSON which should be an object with key-string pairs. | ||
|  | 
 | ||
|  | ~~~~~~~~~~cpp | ||
|  | #include "rapidjson/reader.h"
 | ||
|  | #include "rapidjson/error/en.h"
 | ||
|  | #include <iostream>
 | ||
|  | #include <string>
 | ||
|  | #include <map>
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace rapidjson; | ||
|  | 
 | ||
|  | typedef map<string, string> MessageMap; | ||
|  | 
 | ||
|  | struct MessageHandler | ||
|  |     : public BaseReaderHandler<UTF8<>, MessageHandler> { | ||
|  |     MessageHandler() : state_(kExpectObjectStart) { | ||
|  |     } | ||
|  | 
 | ||
|  |     bool StartObject() { | ||
|  |         switch (state_) { | ||
|  |         case kExpectObjectStart: | ||
|  |             state_ = kExpectNameOrObjectEnd; | ||
|  |             return true; | ||
|  |         default: | ||
|  |             return false; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     bool String(const char* str, SizeType length, bool) { | ||
|  |         switch (state_) { | ||
|  |         case kExpectNameOrObjectEnd: | ||
|  |             name_ = string(str, length); | ||
|  |             state_ = kExpectValue; | ||
|  |             return true; | ||
|  |         case kExpectValue: | ||
|  |             messages_.insert(MessageMap::value_type(name_, string(str, length))); | ||
|  |             state_ = kExpectNameOrObjectEnd; | ||
|  |             return true; | ||
|  |         default: | ||
|  |             return false; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     bool EndObject(SizeType) { return state_ == kExpectNameOrObjectEnd; } | ||
|  | 
 | ||
|  |     bool Default() { return false; } // All other events are invalid. | ||
|  | 
 | ||
|  |     MessageMap messages_; | ||
|  |     enum State { | ||
|  |         kExpectObjectStart, | ||
|  |         kExpectNameOrObjectEnd, | ||
|  |         kExpectValue, | ||
|  |     }state_; | ||
|  |     std::string name_; | ||
|  | }; | ||
|  | 
 | ||
|  | void ParseMessages(const char* json, MessageMap& messages) { | ||
|  |     Reader reader; | ||
|  |     MessageHandler handler; | ||
|  |     StringStream ss(json); | ||
|  |     if (reader.Parse(ss, handler)) | ||
|  |         messages.swap(handler.messages_);   // Only change it if success. | ||
|  |     else { | ||
|  |         ParseErrorCode e = reader.GetParseErrorCode(); | ||
|  |         size_t o = reader.GetErrorOffset(); | ||
|  |         cout << "Error: " << GetParseError_En(e) << endl;; | ||
|  |         cout << " at offset " << o << " near '" << string(json).substr(o, 10) << "...'" << endl; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | int main() { | ||
|  |     MessageMap messages; | ||
|  | 
 | ||
|  |     const char* json1 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\" }"; | ||
|  |     cout << json1 << endl; | ||
|  |     ParseMessages(json1, messages); | ||
|  | 
 | ||
|  |     for (MessageMap::const_iterator itr = messages.begin(); itr != messages.end(); ++itr) | ||
|  |         cout << itr->first << ": " << itr->second << endl; | ||
|  | 
 | ||
|  |     cout << endl << "Parse a JSON with invalid schema." << endl; | ||
|  |     const char* json2 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\", \"foo\" : {} }"; | ||
|  |     cout << json2 << endl; | ||
|  |     ParseMessages(json2, messages); | ||
|  | 
 | ||
|  |     return 0; | ||
|  | } | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | ~~~~~~~~~~ | ||
|  | { "greeting" : "Hello!", "farewell" : "bye-bye!" } | ||
|  | farewell: bye-bye! | ||
|  | greeting: Hello! | ||
|  | 
 | ||
|  | Parse a JSON with invalid schema. | ||
|  | { "greeting" : "Hello!", "farewell" : "bye-bye!", "foo" : {} } | ||
|  | Error: Terminate parsing due to Handler error. | ||
|  |  at offset 59 near '} }...' | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | The first JSON (`json1`) was successfully parsed into `MessageMap`. Since `MessageMap` is a `std::map`, the printing order are sorted by the key. This order is different from the JSON's order. | ||
|  | 
 | ||
|  | In the second JSON (`json2`), `foo`'s value is an empty object. As it is an object, `MessageHandler::StartObject()` will be called. However, at that moment `state_ = kExpectValue`, so that function returns `false` and cause the parsing process be terminated. The error code is `kParseErrorTermination`. | ||
|  | 
 | ||
|  | ## Filtering of JSON {#Filtering}
 | ||
|  | 
 | ||
|  | As mentioned earlier, `Writer` can handle the events published by `Reader`. `condense` example simply set a `Writer` as handler of a `Reader`, so it can remove all white-spaces in JSON. `pretty` example uses the same relationship, but replacing `Writer` by `PrettyWriter`. So `pretty` can be used to reformat a JSON with indentation and line feed. | ||
|  | 
 | ||
|  | Actually, we can add intermediate layer(s) to filter the contents of JSON via these SAX-style API. For example, `capitalize` example capitalize all strings in a JSON. | ||
|  | 
 | ||
|  | ~~~~~~~~~~cpp | ||
|  | #include "rapidjson/reader.h"
 | ||
|  | #include "rapidjson/writer.h"
 | ||
|  | #include "rapidjson/filereadstream.h"
 | ||
|  | #include "rapidjson/filewritestream.h"
 | ||
|  | #include "rapidjson/error/en.h"
 | ||
|  | #include <vector>
 | ||
|  | #include <cctype>
 | ||
|  | 
 | ||
|  | using namespace rapidjson; | ||
|  | 
 | ||
|  | template<typename OutputHandler> | ||
|  | struct CapitalizeFilter { | ||
|  |     CapitalizeFilter(OutputHandler& out) : out_(out), buffer_() { | ||
|  |     } | ||
|  | 
 | ||
|  |     bool Null() { return out_.Null(); } | ||
|  |     bool Bool(bool b) { return out_.Bool(b); } | ||
|  |     bool Int(int i) { return out_.Int(i); } | ||
|  |     bool Uint(unsigned u) { return out_.Uint(u); } | ||
|  |     bool Int64(int64_t i) { return out_.Int64(i); } | ||
|  |     bool Uint64(uint64_t u) { return out_.Uint64(u); } | ||
|  |     bool Double(double d) { return out_.Double(d); } | ||
|  |     bool RawNumber(const char* str, SizeType length, bool copy) { return out_.RawNumber(str, length, copy); } | ||
|  |     bool String(const char* str, SizeType length, bool) {  | ||
|  |         buffer_.clear(); | ||
|  |         for (SizeType i = 0; i < length; i++) | ||
|  |             buffer_.push_back(std::toupper(str[i])); | ||
|  |         return out_.String(&buffer_.front(), length, true); // true = output handler need to copy the string | ||
|  |     } | ||
|  |     bool StartObject() { return out_.StartObject(); } | ||
|  |     bool Key(const char* str, SizeType length, bool copy) { return String(str, length, copy); } | ||
|  |     bool EndObject(SizeType memberCount) { return out_.EndObject(memberCount); } | ||
|  |     bool StartArray() { return out_.StartArray(); } | ||
|  |     bool EndArray(SizeType elementCount) { return out_.EndArray(elementCount); } | ||
|  | 
 | ||
|  |     OutputHandler& out_; | ||
|  |     std::vector<char> buffer_; | ||
|  | }; | ||
|  | 
 | ||
|  | int main(int, char*[]) { | ||
|  |     // Prepare JSON reader and input stream. | ||
|  |     Reader reader; | ||
|  |     char readBuffer[65536]; | ||
|  |     FileReadStream is(stdin, readBuffer, sizeof(readBuffer)); | ||
|  | 
 | ||
|  |     // Prepare JSON writer and output stream. | ||
|  |     char writeBuffer[65536]; | ||
|  |     FileWriteStream os(stdout, writeBuffer, sizeof(writeBuffer)); | ||
|  |     Writer<FileWriteStream> writer(os); | ||
|  | 
 | ||
|  |     // JSON reader parse from the input stream and let writer generate the output. | ||
|  |     CapitalizeFilter<Writer<FileWriteStream> > filter(writer); | ||
|  |     if (!reader.Parse(is, filter)) { | ||
|  |         fprintf(stderr, "\nError(%u): %s\n", (unsigned)reader.GetErrorOffset(), GetParseError_En(reader.GetParseErrorCode())); | ||
|  |         return 1; | ||
|  |     } | ||
|  | 
 | ||
|  |     return 0; | ||
|  | } | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | Note that, it is incorrect to simply capitalize the JSON as a string. For example: | ||
|  | ~~~~~~~~~~ | ||
|  | ["Hello\nWorld"] | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | Simply capitalizing the whole JSON would contain incorrect escape character: | ||
|  | ~~~~~~~~~~ | ||
|  | ["HELLO\NWORLD"] | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | The correct result by `capitalize`: | ||
|  | ~~~~~~~~~~ | ||
|  | ["HELLO\nWORLD"] | ||
|  | ~~~~~~~~~~ | ||
|  | 
 | ||
|  | More complicated filters can be developed. However, since SAX-style API can only provide information about a single event at a time, user may need to book-keeping the contextual information (e.g. the path from root value, storage of other related values). Some processing may be easier to be implemented in DOM than SAX. |