yuzu/externals/cubeb/tools/cubeb-test.cpp

579 lines
17 KiB
C++
Raw Normal View History

2020-12-28 19:15:37 +04:00
#define __STDC_FORMAT_MACROS
#include "cubeb/cubeb.h"
#include <atomic>
#include <cassert>
#include <cmath>
#include <cstdarg>
#include <cstring>
#include <inttypes.h>
#include <iostream>
#ifdef _WIN32
#include <objbase.h> // Used by CoInitialize()
#endif
#ifndef M_PI
#define M_PI 3.14159263
#endif
// Default values if none specified
#define DEFAULT_RATE 44100
#define DEFAULT_OUTPUT_CHANNELS 2
#define DEFAULT_INPUT_CHANNELS 1
static const char* state_to_string(cubeb_state state) {
switch (state) {
case CUBEB_STATE_STARTED:
return "CUBEB_STATE_STARTED";
case CUBEB_STATE_STOPPED:
return "CUBEB_STATE_STOPPED";
case CUBEB_STATE_DRAINED:
return "CUBEB_STATE_DRAINED";
case CUBEB_STATE_ERROR:
return "CUBEB_STATE_ERROR";
default:
return "Undefined state";
}
}
void print_log(const char* msg, ...) {
va_list args;
va_start(args, msg);
vprintf(msg, args);
va_end(args);
}
class cubeb_client final {
public:
cubeb_client() {}
~cubeb_client() {}
bool init(char const * backend_name = nullptr);
bool init_stream();
bool start_stream();
bool stop_stream();
bool destroy_stream() const;
bool destroy();
bool activate_log(cubeb_log_level log_level) const;
void set_latency_testing(bool on);
void set_latency_frames(uint32_t latency_frames);
uint64_t get_stream_position() const;
uint32_t get_stream_output_latency() const;
uint32_t get_stream_input_latency() const;
uint32_t get_max_channel_count() const;
long user_data_cb(cubeb_stream* stm, void* user, const void* input_buffer,
void* output_buffer, long nframes);
void user_state_cb(cubeb_stream* stm, void* user, cubeb_state state);
bool register_device_collection_changed(cubeb_device_type devtype) const;
bool unregister_device_collection_changed(cubeb_device_type devtype) const;
cubeb_stream_params output_params = {};
cubeb_stream_params input_params = {};
void force_drain() { _force_drain = true; }
private:
bool has_input() { return input_params.rate != 0; }
bool has_output() { return output_params.rate != 0; }
cubeb* context = nullptr;
cubeb_stream* stream = nullptr;
2022-07-17 11:10:25 +04:00
cubeb_devid output_device = nullptr;
cubeb_devid input_device = nullptr;
2020-12-28 19:15:37 +04:00
/* Accessed only from client and audio thread. */
std::atomic<uint32_t> _rate = {0};
std::atomic<uint32_t> _channels = {0};
std::atomic<bool> _latency_testing = {false};
std::atomic<uint32_t> _latency_frames = {0}; // if !0, override. Else, use min.
std::atomic<bool> _force_drain = {false};
/* Accessed only from audio thread. */
uint32_t _total_frames = 0;
};
bool cubeb_client::init(char const * backend_name) {
int rv = cubeb_init(&context, "Cubeb Test Application", backend_name);
if (rv != CUBEB_OK) {
fprintf(stderr, "Could not init cubeb\n");
return false;
}
fprintf(stderr, "Init cubeb backend: %s\n", cubeb_get_backend_id(context));
return true;
}
static long user_data_cb_s(cubeb_stream* stm, void* user,
const void* input_buffer, void* output_buffer,
long nframes) {
assert(user);
return static_cast<cubeb_client*>(user)->user_data_cb(stm, user, input_buffer,
output_buffer, nframes);
}
static void user_state_cb_s(cubeb_stream* stm, void* user, cubeb_state state) {
assert(user);
return static_cast<cubeb_client*>(user)->user_state_cb(stm, user, state);
}
void input_device_changed_callback_s(cubeb* context, void* user) {
fprintf(stderr, "input_device_changed_callback_s\n");
}
void output_device_changed_callback_s(cubeb* context, void* user) {
fprintf(stderr, "output_device_changed_callback_s\n");
}
void io_device_changed_callback_s(cubeb* context, void* user) {
fprintf(stderr, "io_device_changed_callback\n");
}
bool cubeb_client::init_stream() {
assert(has_input() || has_output());
_rate = has_output() ? output_params.rate : input_params.rate;
_channels = has_output() ? output_params.channels : input_params.channels;
cubeb_stream_params params;
params.rate = _rate;
params.channels = 2;
params.format = CUBEB_SAMPLE_FLOAT32NE;
uint32_t latency = 0;
int rv = cubeb_get_min_latency(context, &params, &latency);
if (rv != CUBEB_OK) {
fprintf(stderr, "Could not get min latency.");
return false;
}
if (_latency_frames) {
latency = _latency_frames.load();
printf("Opening a stream with a forced latency of %d frames\n", latency);
}
rv =
cubeb_stream_init(context, &stream, "Stream", input_device,
has_input() ? &input_params : nullptr, output_device,
has_output() ? &output_params : nullptr, latency, user_data_cb_s, user_state_cb_s, this);
if (rv != CUBEB_OK) {
fprintf(stderr, "Could not open the stream\n");
return false;
}
return true;
}
bool cubeb_client::start_stream() {
_force_drain = false;
int rv = cubeb_stream_start(stream);
if (rv != CUBEB_OK) {
fprintf(stderr, "Could not start the stream\n");
return false;
}
return true;
}
bool cubeb_client::stop_stream() {
_force_drain = false;
int rv = cubeb_stream_stop(stream);
if (rv != CUBEB_OK) {
fprintf(stderr, "Could not stop the stream\n");
return false;
}
return true;
}
uint64_t cubeb_client::get_stream_position() const {
uint64_t pos = 0;
int rv = cubeb_stream_get_position(stream, &pos);
if (rv != CUBEB_OK) {
fprintf(stderr, "Could not get the position of the stream\n");
return 0;
}
return pos;
}
uint32_t cubeb_client::get_stream_output_latency() const {
uint32_t latency = 0;
int rv = cubeb_stream_get_latency(stream, &latency);
if (rv != CUBEB_OK) {
fprintf(stderr, "Could not get the latency of the stream\n");
return 0;
}
return latency;
}
uint32_t cubeb_client::get_stream_input_latency() const {
uint32_t latency = 0;
int rv = cubeb_stream_get_input_latency(stream, &latency);
if (rv != CUBEB_OK) {
fprintf(stderr, "Could not get the latency of the input stream\n");
return 0;
}
return latency;
}
uint32_t cubeb_client::get_max_channel_count() const {
uint32_t channels = 0;
int rv = cubeb_get_max_channel_count(context, &channels);
if (rv != CUBEB_OK) {
fprintf(stderr, "Could not get max channel count\n");
return 0;
}
return channels;
}
bool cubeb_client::destroy_stream() const {
cubeb_stream_destroy(stream);
return true;
}
bool cubeb_client::destroy() {
cubeb_destroy(context);
return true;
}
bool cubeb_client::activate_log(cubeb_log_level log_level) const {
cubeb_log_callback log_callback = nullptr;
if (log_level != CUBEB_LOG_DISABLED) {
log_callback = print_log;
}
if (cubeb_set_log_callback(log_level, log_callback) != CUBEB_OK) {
fprintf(stderr, "Set log callback failed\n");
return false;
}
return true;
}
void cubeb_client::set_latency_testing(bool on) {
_latency_testing = on;
}
void cubeb_client::set_latency_frames(uint32_t latency_frames) {
_latency_frames = latency_frames;
}
static void fill_with_sine_tone(float* buf, uint32_t num_of_frames,
uint32_t num_of_channels, uint32_t frame_rate,
uint32_t position) {
for (uint32_t i = 0; i < num_of_frames; ++i) {
for (uint32_t c = 0; c < num_of_channels; ++c) {
buf[i * num_of_channels + c] =
0.2 * sin(2 * M_PI * (i + position) * 350 / frame_rate);
buf[i * num_of_channels + c] +=
0.2 * sin(2 * M_PI * (i + position) * 440 / frame_rate);
}
}
}
long cubeb_client::user_data_cb(cubeb_stream* stm, void* user,
const void* input_buffer, void* output_buffer,
long nframes) {
if (input_buffer && output_buffer) {
const float* in = static_cast<const float*>(input_buffer);
float* out = static_cast<float*>(output_buffer);
if (_latency_testing) {
for (int32_t i = 0; i < nframes; i++) {
// Impulses every second, mixed with the input signal fed back at half
// gain, to measure the input-to-output latency via feedback.
uint32_t clock = ((_total_frames + i) % _rate);
if (!clock) {
for (uint32_t j = 0; j < _channels; j++) {
out[i * _channels + j] = 1.0 + in[i] * 0.5;
}
} else {
for (uint32_t j = 0; j < _channels; j++) {
out[i * _channels + j] = 0.0 + in[i] * 0.5;
}
}
}
} else {
for (int32_t i = 0; i < nframes; i++) {
for (uint32_t j = 0; j < _channels; j++) {
out[i * _channels + j] = in[i];
}
}
}
} else if (output_buffer && !input_buffer) {
fill_with_sine_tone(static_cast<float*>(output_buffer), nframes, _channels,
_rate, _total_frames);
}
_total_frames += nframes;
if (_force_drain) {
return nframes - 1;
}
return nframes;
}
void cubeb_client::user_state_cb(cubeb_stream* stm, void* user,
cubeb_state state) {
fprintf(stderr, "state is %s\n", state_to_string(state));
}
bool cubeb_client::register_device_collection_changed(
cubeb_device_type devtype) const {
cubeb_device_collection_changed_callback callback = nullptr;
if (devtype == static_cast<cubeb_device_type>(CUBEB_DEVICE_TYPE_INPUT |
CUBEB_DEVICE_TYPE_OUTPUT)) {
callback = io_device_changed_callback_s;
} else if (devtype & CUBEB_DEVICE_TYPE_OUTPUT) {
callback = output_device_changed_callback_s;
} else if (devtype & CUBEB_DEVICE_TYPE_INPUT) {
callback = input_device_changed_callback_s;
}
int r = cubeb_register_device_collection_changed(
context, devtype, callback, nullptr);
if (r != CUBEB_OK) {
return false;
}
return true;
}
bool cubeb_client::unregister_device_collection_changed(
cubeb_device_type devtype) const {
int r = cubeb_register_device_collection_changed(
context, devtype, nullptr, nullptr);
if (r != CUBEB_OK) {
return false;
}
return true;
}
enum play_mode {
RECORD,
PLAYBACK,
DUPLEX,
LATENCY_TESTING,
COLLECTION_CHANGE,
};
struct operation_data {
play_mode pm;
uint32_t rate;
cubeb_device_type collection_device_type;
};
void print_help() {
const char * msg =
"0: change log level to disabled\n"
"1: change log level to normal\n"
"2: change log level to verbose\n"
"c: get max number of channels\n"
"p: start a initialized stream\n"
"s: stop a started stream\n"
"d: destroy stream\n"
"e: force stream to drain\n"
"f: get stream position (client thread)\n"
"i: change device type to input\n"
"o: change device type to output\n"
"a: change device type to input and output\n"
"k: change device type to unknown\n"
"r: register device collection changed callback for the current device type\n"
"u: unregister device collection changed callback for the current device type\n"
"q: quit\n"
"h: print this message\n";
fprintf(stderr, "%s\n", msg);
}
bool choose_action(cubeb_client& cl, operation_data * op, int c) {
// Consume "enter" and "space"
while (c == 10 || c == 32) {
c = getchar();
}
if (c == EOF) {
c = 'q';
}
if (c == 'q') {
if (op->pm == PLAYBACK || op->pm == RECORD || op->pm == DUPLEX || op->pm == LATENCY_TESTING) {
bool res = cl.stop_stream();
if (!res) {
fprintf(stderr, "stop_stream failed\n");
}
res = cl.destroy_stream();
if (!res) {
fprintf(stderr, "destroy_stream failed\n");
}
} else if (op->pm == COLLECTION_CHANGE) {
bool res = cl.unregister_device_collection_changed(op->collection_device_type);
if (!res) {
fprintf(stderr, "unregister_device_collection_changed failed\n");
}
}
return false; // exit the loop
} else if (c == 'h') {
print_help();
} else if (c == '0') {
cl.activate_log(CUBEB_LOG_DISABLED);
fprintf(stderr, "Log level changed to DISABLED\n");
} else if (c == '1') {
cl.activate_log(CUBEB_LOG_DISABLED);
cl.activate_log(CUBEB_LOG_NORMAL);
fprintf(stderr, "Log level changed to NORMAL\n");
} else if (c == '2') {
cl.activate_log(CUBEB_LOG_DISABLED);
cl.activate_log(CUBEB_LOG_VERBOSE);
fprintf(stderr, "Log level changed to VERBOSE\n");
} else if (c == 'p') {
bool res = cl.start_stream();
if (res) {
fprintf(stderr, "start_stream succeed\n");
} else {
fprintf(stderr, "start_stream failed\n");
}
} else if (c == 's') {
bool res = cl.stop_stream();
if (res) {
fprintf(stderr, "stop_stream succeed\n");
} else {
fprintf(stderr, "stop_stream failed\n");
}
} else if (c == 'd') {
bool res = cl.destroy_stream();
if (res) {
fprintf(stderr, "destroy_stream succeed\n");
} else {
fprintf(stderr, "destroy_stream failed\n");
}
} else if (c == 'e') {
cl.force_drain();
} else if (c == 'c') {
uint32_t channel_count = cl.get_max_channel_count();
fprintf(stderr, "max channel count (default output device): %u\n", channel_count);
} else if (c == 'f') {
uint64_t pos = cl.get_stream_position();
uint32_t latency;
fprintf(stderr, "stream position %" PRIu64 ".", pos);
if(op->pm == PLAYBACK || op->pm == DUPLEX) {
latency = cl.get_stream_output_latency();
fprintf(stderr, " (output latency %" PRIu32 ")", latency);
}
if(op->pm == RECORD || op->pm == DUPLEX) {
latency = cl.get_stream_input_latency();
fprintf(stderr, " (input latency %" PRIu32 ")", latency);
}
fprintf(stderr, "\n");
} else if (c == 'i') {
op->collection_device_type = CUBEB_DEVICE_TYPE_INPUT;
fprintf(stderr, "collection device type changed to INPUT\n");
} else if (c == 'o') {
op->collection_device_type = CUBEB_DEVICE_TYPE_OUTPUT;
fprintf(stderr, "collection device type changed to OUTPUT\n");
} else if (c == 'a') {
op->collection_device_type = static_cast<cubeb_device_type>(CUBEB_DEVICE_TYPE_INPUT | CUBEB_DEVICE_TYPE_OUTPUT);
fprintf(stderr, "collection device type changed to INPUT | OUTPUT\n");
} else if (c == 'k') {
op->collection_device_type = CUBEB_DEVICE_TYPE_UNKNOWN;
fprintf(stderr, "collection device type changed to UNKNOWN\n");
} else if (c == 'r') {
bool res = cl.register_device_collection_changed(op->collection_device_type);
if (res) {
fprintf(stderr, "register_device_collection_changed succeed\n");
} else {
fprintf(stderr, "register_device_collection_changed failed\n");
}
} else if (c == 'u') {
bool res = cl.unregister_device_collection_changed(op->collection_device_type);
if (res) {
fprintf(stderr, "unregister_device_collection_changed succeed\n");
} else {
fprintf(stderr, "unregister_device_collection_changed failed\n");
}
} else {
fprintf(stderr, "Error: '%c' is not a valid entry\n", c);
}
return true; // Loop up
}
int main(int argc, char* argv[]) {
#ifdef _WIN32
CoInitialize(nullptr);
#endif
operation_data op;
op.pm = PLAYBACK;
if (argc > 1) {
if ('r' == argv[1][0]) {
op.pm = RECORD;
} else if ('p' == argv[1][0]) {
op.pm = PLAYBACK;
} else if ('d' == argv[1][0]) {
op.pm = DUPLEX;
} else if ('l' == argv[1][0]) {
op.pm = LATENCY_TESTING;
} else if ('c' == argv[1][0]) {
op.pm = COLLECTION_CHANGE;
}
}
op.rate = DEFAULT_RATE;
uint32_t latency_override = 0;
if (op.pm == LATENCY_TESTING && argc > 2) {
latency_override = strtoul(argv[2], NULL, 10);
printf("LATENCY_TESTING %d\n", latency_override);
} else if (argc > 2) {
op.rate = strtoul(argv[2], NULL, 0);
}
bool res = false;
cubeb_client cl;
2022-07-17 11:10:25 +04:00
cl.activate_log(CUBEB_LOG_DISABLED);
2020-12-28 19:15:37 +04:00
fprintf(stderr, "Log level is DISABLED\n");
cl.init(/* default backend */);
op.collection_device_type = CUBEB_DEVICE_TYPE_UNKNOWN;
fprintf(stderr, "collection device type is UNKNOWN\n");
if (op.pm == COLLECTION_CHANGE) {
op.collection_device_type = CUBEB_DEVICE_TYPE_OUTPUT;
fprintf(stderr, "collection device type changed to OUTPUT\n");
res = cl.register_device_collection_changed(op.collection_device_type);
if (res) {
fprintf(stderr, "register_device_collection_changed succeed\n");
} else {
fprintf(stderr, "register_device_collection_changed failed\n");
}
} else {
if (op.pm == PLAYBACK || op.pm == DUPLEX || op.pm == LATENCY_TESTING) {
cl.output_params = {CUBEB_SAMPLE_FLOAT32NE, op.rate, DEFAULT_OUTPUT_CHANNELS,
CUBEB_LAYOUT_STEREO, CUBEB_STREAM_PREF_NONE};
}
if (op.pm == RECORD || op.pm == DUPLEX || op.pm == LATENCY_TESTING) {
cl.input_params = {CUBEB_SAMPLE_FLOAT32NE, op.rate, DEFAULT_INPUT_CHANNELS, CUBEB_LAYOUT_UNDEFINED, CUBEB_STREAM_PREF_NONE};
}
if (op.pm == LATENCY_TESTING) {
cl.set_latency_testing(true);
if (latency_override) {
cl.set_latency_frames(latency_override);
}
}
res = cl.init_stream();
if (!res) {
fprintf(stderr, "stream_init failed\n");
return -1;
}
fprintf(stderr, "stream_init succeed\n");
res = cl.start_stream();
if (res) {
fprintf(stderr, "stream_start succeed\n");
} else {
fprintf(stderr, "stream_init failed\n");
}
}
// User input
do {
fprintf(stderr, "press `q` to abort or `h` for help\n");
} while (choose_action(cl, &op, getchar()));
cl.destroy();
return 0;
}