725 lines
22 KiB
C
725 lines
22 KiB
C
|
/*
|
||
|
* Lagarith lossless decoder
|
||
|
* Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
|
||
|
*
|
||
|
* This file is part of FFmpeg.
|
||
|
*
|
||
|
* FFmpeg is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2.1 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* FFmpeg is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with FFmpeg; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @file
|
||
|
* Lagarith lossless decoder
|
||
|
* @author Nathan Caldwell
|
||
|
*/
|
||
|
|
||
|
#include <inttypes.h>
|
||
|
|
||
|
#include "avcodec.h"
|
||
|
#include "get_bits.h"
|
||
|
#include "mathops.h"
|
||
|
#include "lagarithrac.h"
|
||
|
#include "lossless_videodsp.h"
|
||
|
#include "thread.h"
|
||
|
|
||
|
enum LagarithFrameType {
|
||
|
FRAME_RAW = 1, /**< uncompressed */
|
||
|
FRAME_U_RGB24 = 2, /**< unaligned RGB24 */
|
||
|
FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */
|
||
|
FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */
|
||
|
FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */
|
||
|
FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */
|
||
|
FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
|
||
|
FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */
|
||
|
FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */
|
||
|
FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */
|
||
|
FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */
|
||
|
};
|
||
|
|
||
|
typedef struct LagarithContext {
|
||
|
AVCodecContext *avctx;
|
||
|
LLVidDSPContext llviddsp;
|
||
|
int zeros; /**< number of consecutive zero bytes encountered */
|
||
|
int zeros_rem; /**< number of zero bytes remaining to output */
|
||
|
} LagarithContext;
|
||
|
|
||
|
/**
|
||
|
* Compute the 52-bit mantissa of 1/(double)denom.
|
||
|
* This crazy format uses floats in an entropy coder and we have to match x86
|
||
|
* rounding exactly, thus ordinary floats aren't portable enough.
|
||
|
* @param denom denominator
|
||
|
* @return 52-bit mantissa
|
||
|
* @see softfloat_mul
|
||
|
*/
|
||
|
static uint64_t softfloat_reciprocal(uint32_t denom)
|
||
|
{
|
||
|
int shift = av_log2(denom - 1) + 1;
|
||
|
uint64_t ret = (1ULL << 52) / denom;
|
||
|
uint64_t err = (1ULL << 52) - ret * denom;
|
||
|
ret <<= shift;
|
||
|
err <<= shift;
|
||
|
err += denom / 2;
|
||
|
return ret + err / denom;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* (uint32_t)(x*f), where f has the given mantissa, and exponent 0
|
||
|
* Used in combination with softfloat_reciprocal computes x/(double)denom.
|
||
|
* @param x 32-bit integer factor
|
||
|
* @param mantissa mantissa of f with exponent 0
|
||
|
* @return 32-bit integer value (x*f)
|
||
|
* @see softfloat_reciprocal
|
||
|
*/
|
||
|
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
|
||
|
{
|
||
|
uint64_t l = x * (mantissa & 0xffffffff);
|
||
|
uint64_t h = x * (mantissa >> 32);
|
||
|
h += l >> 32;
|
||
|
l &= 0xffffffff;
|
||
|
l += 1LL << av_log2(h >> 21);
|
||
|
h += l >> 32;
|
||
|
return h >> 20;
|
||
|
}
|
||
|
|
||
|
static uint8_t lag_calc_zero_run(int8_t x)
|
||
|
{
|
||
|
return (x * 2) ^ (x >> 7);
|
||
|
}
|
||
|
|
||
|
static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
|
||
|
{
|
||
|
static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
|
||
|
int i;
|
||
|
int bit = 0;
|
||
|
int bits = 0;
|
||
|
int prevbit = 0;
|
||
|
unsigned val;
|
||
|
|
||
|
for (i = 0; i < 7; i++) {
|
||
|
if (prevbit && bit)
|
||
|
break;
|
||
|
prevbit = bit;
|
||
|
bit = get_bits1(gb);
|
||
|
if (bit && !prevbit)
|
||
|
bits += series[i];
|
||
|
}
|
||
|
bits--;
|
||
|
if (bits < 0 || bits > 31) {
|
||
|
*value = 0;
|
||
|
return -1;
|
||
|
} else if (bits == 0) {
|
||
|
*value = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
val = get_bits_long(gb, bits);
|
||
|
val |= 1U << bits;
|
||
|
|
||
|
*value = val - 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
|
||
|
{
|
||
|
int i, j, scale_factor;
|
||
|
unsigned prob, cumulative_target;
|
||
|
unsigned cumul_prob = 0;
|
||
|
unsigned scaled_cumul_prob = 0;
|
||
|
int nnz = 0;
|
||
|
|
||
|
rac->prob[0] = 0;
|
||
|
rac->prob[257] = UINT_MAX;
|
||
|
/* Read probabilities from bitstream */
|
||
|
for (i = 1; i < 257; i++) {
|
||
|
if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
|
||
|
av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
|
||
|
av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
cumul_prob += rac->prob[i];
|
||
|
if (!rac->prob[i]) {
|
||
|
if (lag_decode_prob(gb, &prob)) {
|
||
|
av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
if (prob > 256 - i)
|
||
|
prob = 256 - i;
|
||
|
for (j = 0; j < prob; j++)
|
||
|
rac->prob[++i] = 0;
|
||
|
}else {
|
||
|
nnz++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!cumul_prob) {
|
||
|
av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (nnz == 1 && (show_bits_long(gb, 32) & 0xFFFFFF)) {
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
|
||
|
/* Scale probabilities so cumulative probability is an even power of 2. */
|
||
|
scale_factor = av_log2(cumul_prob);
|
||
|
|
||
|
if (cumul_prob & (cumul_prob - 1)) {
|
||
|
uint64_t mul = softfloat_reciprocal(cumul_prob);
|
||
|
for (i = 1; i <= 128; i++) {
|
||
|
rac->prob[i] = softfloat_mul(rac->prob[i], mul);
|
||
|
scaled_cumul_prob += rac->prob[i];
|
||
|
}
|
||
|
if (scaled_cumul_prob <= 0) {
|
||
|
av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
for (; i < 257; i++) {
|
||
|
rac->prob[i] = softfloat_mul(rac->prob[i], mul);
|
||
|
scaled_cumul_prob += rac->prob[i];
|
||
|
}
|
||
|
|
||
|
scale_factor++;
|
||
|
if (scale_factor >= 32U)
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
cumulative_target = 1U << scale_factor;
|
||
|
|
||
|
if (scaled_cumul_prob > cumulative_target) {
|
||
|
av_log(rac->avctx, AV_LOG_ERROR,
|
||
|
"Scaled probabilities are larger than target!\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
|
||
|
|
||
|
for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
|
||
|
if (rac->prob[i]) {
|
||
|
rac->prob[i]++;
|
||
|
scaled_cumul_prob--;
|
||
|
}
|
||
|
/* Comment from reference source:
|
||
|
* if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
|
||
|
* // since the compression change is negligible and fixing it
|
||
|
* // breaks backwards compatibility
|
||
|
* b =- (signed int)b;
|
||
|
* b &= 0xFF;
|
||
|
* } else {
|
||
|
* b++;
|
||
|
* b &= 0x7f;
|
||
|
* }
|
||
|
*/
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (scale_factor > 23)
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
|
||
|
rac->scale = scale_factor;
|
||
|
|
||
|
/* Fill probability array with cumulative probability for each symbol. */
|
||
|
for (i = 1; i < 257; i++)
|
||
|
rac->prob[i] += rac->prob[i - 1];
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
|
||
|
uint8_t *diff, int w, int *left,
|
||
|
int *left_top)
|
||
|
{
|
||
|
/* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
|
||
|
* However the &0xFF on the gradient predictor yields incorrect output
|
||
|
* for lagarith.
|
||
|
*/
|
||
|
int i;
|
||
|
uint8_t l, lt;
|
||
|
|
||
|
l = *left;
|
||
|
lt = *left_top;
|
||
|
|
||
|
for (i = 0; i < w; i++) {
|
||
|
l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
|
||
|
lt = src1[i];
|
||
|
dst[i] = l;
|
||
|
}
|
||
|
|
||
|
*left = l;
|
||
|
*left_top = lt;
|
||
|
}
|
||
|
|
||
|
static void lag_pred_line(LagarithContext *l, uint8_t *buf,
|
||
|
int width, int stride, int line)
|
||
|
{
|
||
|
int L, TL;
|
||
|
|
||
|
if (!line) {
|
||
|
/* Left prediction only for first line */
|
||
|
L = l->llviddsp.add_left_pred(buf, buf, width, 0);
|
||
|
} else {
|
||
|
/* Left pixel is actually prev_row[width] */
|
||
|
L = buf[width - stride - 1];
|
||
|
|
||
|
if (line == 1) {
|
||
|
/* Second line, left predict first pixel, the rest of the line is median predicted
|
||
|
* NOTE: In the case of RGB this pixel is top predicted */
|
||
|
TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
|
||
|
} else {
|
||
|
/* Top left is 2 rows back, last pixel */
|
||
|
TL = buf[width - (2 * stride) - 1];
|
||
|
}
|
||
|
|
||
|
add_lag_median_prediction(buf, buf - stride, buf,
|
||
|
width, &L, &TL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
|
||
|
int width, int stride, int line,
|
||
|
int is_luma)
|
||
|
{
|
||
|
int L, TL;
|
||
|
|
||
|
if (!line) {
|
||
|
L= buf[0];
|
||
|
if (is_luma)
|
||
|
buf[0] = 0;
|
||
|
l->llviddsp.add_left_pred(buf, buf, width, 0);
|
||
|
if (is_luma)
|
||
|
buf[0] = L;
|
||
|
return;
|
||
|
}
|
||
|
if (line == 1) {
|
||
|
const int HEAD = is_luma ? 4 : 2;
|
||
|
int i;
|
||
|
|
||
|
L = buf[width - stride - 1];
|
||
|
TL = buf[HEAD - stride - 1];
|
||
|
for (i = 0; i < HEAD; i++) {
|
||
|
L += buf[i];
|
||
|
buf[i] = L;
|
||
|
}
|
||
|
for (; i < width; i++) {
|
||
|
L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
|
||
|
TL = buf[i - stride];
|
||
|
buf[i] = L;
|
||
|
}
|
||
|
} else {
|
||
|
TL = buf[width - (2 * stride) - 1];
|
||
|
L = buf[width - stride - 1];
|
||
|
l->llviddsp.add_median_pred(buf, buf - stride, buf, width, &L, &TL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int lag_decode_line(LagarithContext *l, lag_rac *rac,
|
||
|
uint8_t *dst, int width, int stride,
|
||
|
int esc_count)
|
||
|
{
|
||
|
int i = 0;
|
||
|
int ret = 0;
|
||
|
|
||
|
if (!esc_count)
|
||
|
esc_count = -1;
|
||
|
|
||
|
/* Output any zeros remaining from the previous run */
|
||
|
handle_zeros:
|
||
|
if (l->zeros_rem) {
|
||
|
int count = FFMIN(l->zeros_rem, width - i);
|
||
|
memset(dst + i, 0, count);
|
||
|
i += count;
|
||
|
l->zeros_rem -= count;
|
||
|
}
|
||
|
|
||
|
while (i < width) {
|
||
|
dst[i] = lag_get_rac(rac);
|
||
|
ret++;
|
||
|
|
||
|
if (dst[i])
|
||
|
l->zeros = 0;
|
||
|
else
|
||
|
l->zeros++;
|
||
|
|
||
|
i++;
|
||
|
if (l->zeros == esc_count) {
|
||
|
int index = lag_get_rac(rac);
|
||
|
ret++;
|
||
|
|
||
|
l->zeros = 0;
|
||
|
|
||
|
l->zeros_rem = lag_calc_zero_run(index);
|
||
|
goto handle_zeros;
|
||
|
}
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
|
||
|
const uint8_t *src, const uint8_t *src_end,
|
||
|
int width, int esc_count)
|
||
|
{
|
||
|
int i = 0;
|
||
|
int count;
|
||
|
uint8_t zero_run = 0;
|
||
|
const uint8_t *src_start = src;
|
||
|
uint8_t mask1 = -(esc_count < 2);
|
||
|
uint8_t mask2 = -(esc_count < 3);
|
||
|
uint8_t *end = dst + (width - 2);
|
||
|
|
||
|
avpriv_request_sample(l->avctx, "zero_run_line");
|
||
|
|
||
|
memset(dst, 0, width);
|
||
|
|
||
|
output_zeros:
|
||
|
if (l->zeros_rem) {
|
||
|
count = FFMIN(l->zeros_rem, width - i);
|
||
|
if (end - dst < count) {
|
||
|
av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
|
||
|
memset(dst, 0, count);
|
||
|
l->zeros_rem -= count;
|
||
|
dst += count;
|
||
|
}
|
||
|
|
||
|
while (dst < end) {
|
||
|
i = 0;
|
||
|
while (!zero_run && dst + i < end) {
|
||
|
i++;
|
||
|
if (i+2 >= src_end - src)
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
zero_run =
|
||
|
!(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
|
||
|
}
|
||
|
if (zero_run) {
|
||
|
zero_run = 0;
|
||
|
i += esc_count;
|
||
|
memcpy(dst, src, i);
|
||
|
dst += i;
|
||
|
l->zeros_rem = lag_calc_zero_run(src[i]);
|
||
|
|
||
|
src += i + 1;
|
||
|
goto output_zeros;
|
||
|
} else {
|
||
|
memcpy(dst, src, i);
|
||
|
src += i;
|
||
|
dst += i;
|
||
|
}
|
||
|
}
|
||
|
return src - src_start;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
|
||
|
int width, int height, int stride,
|
||
|
const uint8_t *src, int src_size)
|
||
|
{
|
||
|
int i = 0;
|
||
|
int read = 0;
|
||
|
uint32_t length;
|
||
|
uint32_t offset = 1;
|
||
|
int esc_count;
|
||
|
GetBitContext gb;
|
||
|
lag_rac rac;
|
||
|
const uint8_t *src_end = src + src_size;
|
||
|
int ret;
|
||
|
|
||
|
rac.avctx = l->avctx;
|
||
|
l->zeros = 0;
|
||
|
|
||
|
if(src_size < 2)
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
|
||
|
esc_count = src[0];
|
||
|
if (esc_count < 4) {
|
||
|
length = width * height;
|
||
|
if(src_size < 5)
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
if (esc_count && AV_RL32(src + 1) < length) {
|
||
|
length = AV_RL32(src + 1);
|
||
|
offset += 4;
|
||
|
}
|
||
|
|
||
|
if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
|
||
|
return ret;
|
||
|
|
||
|
if (lag_read_prob_header(&rac, &gb) < 0)
|
||
|
return -1;
|
||
|
|
||
|
ff_lag_rac_init(&rac, &gb, length - stride);
|
||
|
for (i = 0; i < height; i++) {
|
||
|
if (rac.overread > MAX_OVERREAD)
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
read += lag_decode_line(l, &rac, dst + (i * stride), width,
|
||
|
stride, esc_count);
|
||
|
}
|
||
|
|
||
|
if (read > length)
|
||
|
av_log(l->avctx, AV_LOG_WARNING,
|
||
|
"Output more bytes than length (%d of %"PRIu32")\n", read,
|
||
|
length);
|
||
|
} else if (esc_count < 8) {
|
||
|
esc_count -= 4;
|
||
|
src ++;
|
||
|
src_size --;
|
||
|
if (esc_count > 0) {
|
||
|
/* Zero run coding only, no range coding. */
|
||
|
for (i = 0; i < height; i++) {
|
||
|
int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
|
||
|
src_end, width, esc_count);
|
||
|
if (res < 0)
|
||
|
return res;
|
||
|
src += res;
|
||
|
}
|
||
|
} else {
|
||
|
if (src_size < width * height)
|
||
|
return AVERROR_INVALIDDATA; // buffer not big enough
|
||
|
/* Plane is stored uncompressed */
|
||
|
for (i = 0; i < height; i++) {
|
||
|
memcpy(dst + (i * stride), src, width);
|
||
|
src += width;
|
||
|
}
|
||
|
}
|
||
|
} else if (esc_count == 0xff) {
|
||
|
/* Plane is a solid run of given value */
|
||
|
for (i = 0; i < height; i++)
|
||
|
memset(dst + i * stride, src[1], width);
|
||
|
/* Do not apply prediction.
|
||
|
Note: memset to 0 above, setting first value to src[1]
|
||
|
and applying prediction gives the same result. */
|
||
|
return 0;
|
||
|
} else {
|
||
|
av_log(l->avctx, AV_LOG_ERROR,
|
||
|
"Invalid zero run escape code! (%#x)\n", esc_count);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
|
||
|
for (i = 0; i < height; i++) {
|
||
|
lag_pred_line(l, dst, width, stride, i);
|
||
|
dst += stride;
|
||
|
}
|
||
|
} else {
|
||
|
for (i = 0; i < height; i++) {
|
||
|
lag_pred_line_yuy2(l, dst, width, stride, i,
|
||
|
width == l->avctx->width);
|
||
|
dst += stride;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Decode a frame.
|
||
|
* @param avctx codec context
|
||
|
* @param data output AVFrame
|
||
|
* @param data_size size of output data or 0 if no picture is returned
|
||
|
* @param avpkt input packet
|
||
|
* @return number of consumed bytes on success or negative if decode fails
|
||
|
*/
|
||
|
static int lag_decode_frame(AVCodecContext *avctx,
|
||
|
void *data, int *got_frame, AVPacket *avpkt)
|
||
|
{
|
||
|
const uint8_t *buf = avpkt->data;
|
||
|
unsigned int buf_size = avpkt->size;
|
||
|
LagarithContext *l = avctx->priv_data;
|
||
|
ThreadFrame frame = { .f = data };
|
||
|
AVFrame *const p = data;
|
||
|
uint8_t frametype;
|
||
|
uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
|
||
|
uint32_t offs[4];
|
||
|
uint8_t *srcs[4];
|
||
|
int i, j, planes = 3;
|
||
|
int ret;
|
||
|
|
||
|
p->key_frame = 1;
|
||
|
p->pict_type = AV_PICTURE_TYPE_I;
|
||
|
|
||
|
frametype = buf[0];
|
||
|
|
||
|
offset_gu = AV_RL32(buf + 1);
|
||
|
offset_bv = AV_RL32(buf + 5);
|
||
|
|
||
|
switch (frametype) {
|
||
|
case FRAME_SOLID_RGBA:
|
||
|
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
|
||
|
case FRAME_SOLID_GRAY:
|
||
|
if (frametype == FRAME_SOLID_GRAY)
|
||
|
if (avctx->bits_per_coded_sample == 24) {
|
||
|
avctx->pix_fmt = AV_PIX_FMT_GBRP;
|
||
|
} else {
|
||
|
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
|
||
|
planes = 4;
|
||
|
}
|
||
|
|
||
|
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
|
||
|
return ret;
|
||
|
|
||
|
if (frametype == FRAME_SOLID_RGBA) {
|
||
|
for (i = 0; i < avctx->height; i++) {
|
||
|
memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
|
||
|
memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
|
||
|
memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
|
||
|
memset(p->data[3] + i * p->linesize[3], buf[4], avctx->width);
|
||
|
}
|
||
|
} else {
|
||
|
for (i = 0; i < avctx->height; i++) {
|
||
|
for (j = 0; j < planes; j++)
|
||
|
memset(p->data[j] + i * p->linesize[j], buf[1], avctx->width);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case FRAME_SOLID_COLOR:
|
||
|
if (avctx->bits_per_coded_sample == 24) {
|
||
|
avctx->pix_fmt = AV_PIX_FMT_GBRP;
|
||
|
} else {
|
||
|
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
|
||
|
}
|
||
|
|
||
|
if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
|
||
|
return ret;
|
||
|
|
||
|
for (i = 0; i < avctx->height; i++) {
|
||
|
memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
|
||
|
memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
|
||
|
memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
|
||
|
if (avctx->pix_fmt == AV_PIX_FMT_GBRAP)
|
||
|
memset(p->data[3] + i * p->linesize[3], 0xFFu, avctx->width);
|
||
|
}
|
||
|
break;
|
||
|
case FRAME_ARITH_RGBA:
|
||
|
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
|
||
|
planes = 4;
|
||
|
offset_ry += 4;
|
||
|
offs[3] = AV_RL32(buf + 9);
|
||
|
case FRAME_ARITH_RGB24:
|
||
|
case FRAME_U_RGB24:
|
||
|
if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
|
||
|
avctx->pix_fmt = AV_PIX_FMT_GBRP;
|
||
|
|
||
|
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
|
||
|
return ret;
|
||
|
|
||
|
offs[0] = offset_bv;
|
||
|
offs[1] = offset_gu;
|
||
|
offs[2] = offset_ry;
|
||
|
|
||
|
for (i = 0; i < planes; i++)
|
||
|
srcs[i] = p->data[i] + (avctx->height - 1) * p->linesize[i];
|
||
|
for (i = 0; i < planes; i++)
|
||
|
if (buf_size <= offs[i]) {
|
||
|
av_log(avctx, AV_LOG_ERROR,
|
||
|
"Invalid frame offsets\n");
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < planes; i++)
|
||
|
lag_decode_arith_plane(l, srcs[i],
|
||
|
avctx->width, avctx->height,
|
||
|
-p->linesize[i], buf + offs[i],
|
||
|
buf_size - offs[i]);
|
||
|
for (i = 0; i < avctx->height; i++) {
|
||
|
l->llviddsp.add_bytes(p->data[0] + i * p->linesize[0], p->data[1] + i * p->linesize[1], avctx->width);
|
||
|
l->llviddsp.add_bytes(p->data[2] + i * p->linesize[2], p->data[1] + i * p->linesize[1], avctx->width);
|
||
|
}
|
||
|
FFSWAP(uint8_t*, p->data[0], p->data[1]);
|
||
|
FFSWAP(int, p->linesize[0], p->linesize[1]);
|
||
|
FFSWAP(uint8_t*, p->data[2], p->data[1]);
|
||
|
FFSWAP(int, p->linesize[2], p->linesize[1]);
|
||
|
break;
|
||
|
case FRAME_ARITH_YUY2:
|
||
|
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
|
||
|
|
||
|
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
|
||
|
return ret;
|
||
|
|
||
|
if (offset_ry >= buf_size ||
|
||
|
offset_gu >= buf_size ||
|
||
|
offset_bv >= buf_size) {
|
||
|
av_log(avctx, AV_LOG_ERROR,
|
||
|
"Invalid frame offsets\n");
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
|
||
|
lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
|
||
|
p->linesize[0], buf + offset_ry,
|
||
|
buf_size - offset_ry);
|
||
|
lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
|
||
|
avctx->height, p->linesize[1],
|
||
|
buf + offset_gu, buf_size - offset_gu);
|
||
|
lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
|
||
|
avctx->height, p->linesize[2],
|
||
|
buf + offset_bv, buf_size - offset_bv);
|
||
|
break;
|
||
|
case FRAME_ARITH_YV12:
|
||
|
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
|
||
|
|
||
|
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
|
||
|
return ret;
|
||
|
|
||
|
if (offset_ry >= buf_size ||
|
||
|
offset_gu >= buf_size ||
|
||
|
offset_bv >= buf_size) {
|
||
|
av_log(avctx, AV_LOG_ERROR,
|
||
|
"Invalid frame offsets\n");
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
|
||
|
lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
|
||
|
p->linesize[0], buf + offset_ry,
|
||
|
buf_size - offset_ry);
|
||
|
lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
|
||
|
(avctx->height + 1) / 2, p->linesize[2],
|
||
|
buf + offset_gu, buf_size - offset_gu);
|
||
|
lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
|
||
|
(avctx->height + 1) / 2, p->linesize[1],
|
||
|
buf + offset_bv, buf_size - offset_bv);
|
||
|
break;
|
||
|
default:
|
||
|
av_log(avctx, AV_LOG_ERROR,
|
||
|
"Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
|
||
|
return AVERROR_PATCHWELCOME;
|
||
|
}
|
||
|
|
||
|
*got_frame = 1;
|
||
|
|
||
|
return buf_size;
|
||
|
}
|
||
|
|
||
|
static av_cold int lag_decode_init(AVCodecContext *avctx)
|
||
|
{
|
||
|
LagarithContext *l = avctx->priv_data;
|
||
|
l->avctx = avctx;
|
||
|
|
||
|
ff_llviddsp_init(&l->llviddsp);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
AVCodec ff_lagarith_decoder = {
|
||
|
.name = "lagarith",
|
||
|
.long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
|
||
|
.type = AVMEDIA_TYPE_VIDEO,
|
||
|
.id = AV_CODEC_ID_LAGARITH,
|
||
|
.priv_data_size = sizeof(LagarithContext),
|
||
|
.init = lag_decode_init,
|
||
|
.decode = lag_decode_frame,
|
||
|
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
|
||
|
};
|