early-access version 3893

This commit is contained in:
pineappleEA 2023-09-24 01:13:17 +02:00
parent 5a08ba07f0
commit 07f3b52de2
4 changed files with 53 additions and 39 deletions

View File

@ -1,7 +1,7 @@
yuzu emulator early access yuzu emulator early access
============= =============
This is the source code for early-access 3891. This is the source code for early-access 3893.
## Legal Notice ## Legal Notice

View File

@ -32,6 +32,7 @@ struct CoreTiming::Event {
std::uintptr_t user_data; std::uintptr_t user_data;
std::weak_ptr<EventType> type; std::weak_ptr<EventType> type;
s64 reschedule_time; s64 reschedule_time;
heap_t::handle_type handle{};
// Sort by time, unless the times are the same, in which case sort by // Sort by time, unless the times are the same, in which case sort by
// the order added to the queue // the order added to the queue
@ -122,9 +123,9 @@ void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
std::scoped_lock scope{basic_lock}; std::scoped_lock scope{basic_lock};
const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future}; const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future};
event_queue.emplace_back( auto h{event_queue.emplace(
Event{next_time.count(), event_fifo_id++, user_data, event_type, 0}); Event{next_time.count(), event_fifo_id++, user_data, event_type, 0})};
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); (*h).handle = h;
} }
event.Set(); event.Set();
@ -138,10 +139,9 @@ void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
std::scoped_lock scope{basic_lock}; std::scoped_lock scope{basic_lock};
const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time}; const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time};
event_queue.emplace_back( auto h{event_queue.emplace(Event{next_time.count(), event_fifo_id++, user_data, event_type,
Event{next_time.count(), event_fifo_id++, user_data, event_type, resched_time.count()}); resched_time.count()})};
(*h).handle = h;
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
} }
event.Set(); event.Set();
@ -151,15 +151,17 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data, bool wait) { std::uintptr_t user_data, bool wait) {
{ {
std::scoped_lock lk{basic_lock}; std::scoped_lock lk{basic_lock};
const auto itr =
std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
});
// Removing random items breaks the invariant so we have to re-establish it. std::vector<heap_t::handle_type> to_remove;
if (itr != event_queue.end()) { for (auto itr = event_queue.begin(); itr != event_queue.end(); itr++) {
event_queue.erase(itr, event_queue.end()); const Event& e = *itr;
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); if (e.type.lock().get() == event_type.get() && e.user_data == user_data) {
to_remove.push_back(itr->handle);
}
}
for (auto h : to_remove) {
event_queue.erase(h);
} }
} }
@ -200,35 +202,45 @@ std::optional<s64> CoreTiming::Advance() {
std::scoped_lock lock{advance_lock, basic_lock}; std::scoped_lock lock{advance_lock, basic_lock};
global_timer = GetGlobalTimeNs().count(); global_timer = GetGlobalTimeNs().count();
while (!event_queue.empty() && event_queue.front().time <= global_timer) { while (!event_queue.empty() && event_queue.top().time <= global_timer) {
Event evt = std::move(event_queue.front()); const Event& evt = event_queue.top();
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
if (const auto event_type{evt.type.lock()}) { if (const auto event_type{evt.type.lock()}) {
basic_lock.unlock(); if (evt.reschedule_time == 0) {
const auto evt_user_data = evt.user_data;
const auto evt_time = evt.time;
const auto new_schedule_time{event_type->callback( event_queue.pop();
evt.user_data, evt.time,
std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt.time})};
basic_lock.lock(); basic_lock.unlock();
event_type->callback(
evt_user_data, evt_time,
std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time});
basic_lock.lock();
} else {
basic_lock.unlock();
const auto new_schedule_time{event_type->callback(
evt.user_data, evt.time,
std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt.time})};
basic_lock.lock();
if (evt.reschedule_time != 0) {
const auto next_schedule_time{new_schedule_time.has_value() const auto next_schedule_time{new_schedule_time.has_value()
? new_schedule_time.value().count() ? new_schedule_time.value().count()
: evt.reschedule_time}; : evt.reschedule_time};
// If this event was scheduled into a pause, its time now is going to be way behind. // If this event was scheduled into a pause, its time now is going to be way
// Re-set this event to continue from the end of the pause. // behind. Re-set this event to continue from the end of the pause.
auto next_time{evt.time + next_schedule_time}; auto next_time{evt.time + next_schedule_time};
if (evt.time < pause_end_time) { if (evt.time < pause_end_time) {
next_time = pause_end_time + next_schedule_time; next_time = pause_end_time + next_schedule_time;
} }
event_queue.emplace_back( event_queue.update(evt.handle, Event{next_time, event_fifo_id++, evt.user_data,
Event{next_time, event_fifo_id++, evt.user_data, evt.type, next_schedule_time}); evt.type, next_schedule_time, evt.handle});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
} }
} }
@ -236,7 +248,7 @@ std::optional<s64> CoreTiming::Advance() {
} }
if (!event_queue.empty()) { if (!event_queue.empty()) {
return event_queue.front().time; return event_queue.top().time;
} else { } else {
return std::nullopt; return std::nullopt;
} }
@ -274,7 +286,8 @@ void CoreTiming::ThreadLoop() {
#endif #endif
} }
} else { } else {
// Queue is empty, wait until another event is scheduled and signals us to continue. // Queue is empty, wait until another event is scheduled and signals us to
// continue.
wait_set = true; wait_set = true;
event.Wait(); event.Wait();
} }

View File

@ -11,7 +11,8 @@
#include <optional> #include <optional>
#include <string> #include <string>
#include <thread> #include <thread>
#include <vector>
#include <boost/heap/fibonacci_heap.hpp>
#include "common/common_types.h" #include "common/common_types.h"
#include "common/thread.h" #include "common/thread.h"
@ -151,11 +152,10 @@ private:
s64 timer_resolution_ns; s64 timer_resolution_ns;
#endif #endif
// The queue is a min-heap using std::make_heap/push_heap/pop_heap. using heap_t =
// We don't use std::priority_queue because we need to be able to serialize, unserialize and boost::heap::fibonacci_heap<CoreTiming::Event, boost::heap::compare<std::greater<>>>;
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accommodated by the standard adaptor class. heap_t event_queue;
std::vector<Event> event_queue;
u64 event_fifo_id = 0; u64 event_fifo_id = 0;
std::shared_ptr<EventType> ev_lost; std::shared_ptr<EventType> ev_lost;

View File

@ -12,6 +12,7 @@
"boost-context", "boost-context",
"boost-crc", "boost-crc",
"boost-functional", "boost-functional",
"boost-heap",
"boost-icl", "boost-icl",
"boost-intrusive", "boost-intrusive",
"boost-mpl", "boost-mpl",