early-access version 2519

This commit is contained in:
pineappleEA
2022-02-27 23:27:57 +01:00
parent e13f73efb6
commit 09cf05ab91
38 changed files with 2107 additions and 1239 deletions

View File

@@ -58,6 +58,7 @@ add_library(dynarmic
common/memory_pool.h
common/safe_ops.h
common/scope_exit.h
common/spin_lock.h
common/string_util.h
common/u128.cpp
common/u128.h
@@ -281,6 +282,7 @@ if (ARCHITECTURE STREQUAL "x86_64")
backend/x64/emit_x64_crc32.cpp
backend/x64/emit_x64_data_processing.cpp
backend/x64/emit_x64_floating_point.cpp
backend/x64/emit_x64_memory.h
backend/x64/emit_x64_packed.cpp
backend/x64/emit_x64_saturation.cpp
backend/x64/emit_x64_sm4.cpp
@@ -289,6 +291,7 @@ if (ARCHITECTURE STREQUAL "x86_64")
backend/x64/emit_x64_vector_saturation.cpp
backend/x64/exception_handler.h
backend/x64/exclusive_monitor.cpp
backend/x64/exclusive_monitor_friend.h
backend/x64/host_feature.h
backend/x64/hostloc.cpp
backend/x64/hostloc.h
@@ -299,12 +302,15 @@ if (ARCHITECTURE STREQUAL "x86_64")
backend/x64/reg_alloc.cpp
backend/x64/reg_alloc.h
backend/x64/stack_layout.h
common/spin_lock_x64.cpp
common/spin_lock_x64.h
)
if ("A32" IN_LIST DYNARMIC_FRONTENDS)
target_sources(dynarmic PRIVATE
backend/x64/a32_emit_x64.cpp
backend/x64/a32_emit_x64.h
backend/x64/a32_emit_x64_memory.cpp
backend/x64/a32_interface.cpp
backend/x64/a32_jitstate.cpp
backend/x64/a32_jitstate.h
@@ -315,6 +321,7 @@ if (ARCHITECTURE STREQUAL "x86_64")
target_sources(dynarmic PRIVATE
backend/x64/a64_emit_x64.cpp
backend/x64/a64_emit_x64.h
backend/x64/a64_emit_x64_memory.cpp
backend/x64/a64_interface.cpp
backend/x64/a64_jitstate.cpp
backend/x64/a64_jitstate.h

View File

@@ -11,7 +11,6 @@
#include <fmt/format.h>
#include <fmt/ostream.h>
#include <mp/traits/integer_of_size.h>
#include "dynarmic/backend/x64/a32_jitstate.h"
#include "dynarmic/backend/x64/abi.h"
@@ -26,11 +25,9 @@
#include "dynarmic/common/common_types.h"
#include "dynarmic/common/scope_exit.h"
#include "dynarmic/common/variant_util.h"
#include "dynarmic/common/x64_disassemble.h"
#include "dynarmic/frontend/A32/a32_location_descriptor.h"
#include "dynarmic/frontend/A32/a32_types.h"
#include "dynarmic/interface/A32/coprocessor.h"
#include "dynarmic/interface/exclusive_monitor.h"
#include "dynarmic/ir/basic_block.h"
#include "dynarmic/ir/microinstruction.h"
#include "dynarmic/ir/opcodes.h"
@@ -198,67 +195,6 @@ void A32EmitX64::ClearFastDispatchTable() {
}
}
void A32EmitX64::GenFastmemFallbacks() {
const std::initializer_list<int> idxes{0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
const std::array<std::pair<size_t, ArgCallback>, 4> read_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryRead8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryRead16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryRead32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryRead64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> write_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryWrite8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryWrite16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryWrite32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryWrite64>(conf.callbacks)},
}};
for (int vaddr_idx : idxes) {
for (int value_idx : idxes) {
for (const auto& [bitsize, callback] : read_callbacks) {
code.align();
read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
callback.EmitCall(code);
if (value_idx != code.ABI_RETURN.getIdx()) {
code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN);
}
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_read_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : write_callbacks) {
code.align();
write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_write_fallback_{}", bitsize));
}
}
}
}
void A32EmitX64::GenTerminalHandlers() {
// PC ends up in ebp, location_descriptor ends up in rbx
const auto calculate_location_descriptor = [this] {
@@ -875,372 +811,6 @@ void A32EmitX64::EmitA32SetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
code.mov(dword[r15 + offsetof(A32JitState, fpsr_nzcv)], value);
}
void A32EmitX64::EmitA32ClearExclusive(A32EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
}
std::optional<A32EmitX64::DoNotFastmemMarker> A32EmitX64::ShouldFastmem(A32EmitContext& ctx, IR::Inst* inst) const {
if (!conf.fastmem_pointer || !exception_handler.SupportsFastmem()) {
return std::nullopt;
}
const auto marker = std::make_tuple(ctx.Location(), ctx.GetInstOffset(inst));
if (do_not_fastmem.count(marker) > 0) {
return std::nullopt;
}
return marker;
}
FakeCall A32EmitX64::FastmemCallback(u64 rip_) {
const auto iter = fastmem_patch_info.find(rip_);
if (iter == fastmem_patch_info.end()) {
fmt::print("dynarmic: Segfault happened within JITted code at rip = {:016x}\n", rip_);
fmt::print("Segfault wasn't at a fastmem patch location!\n");
fmt::print("Now dumping code.......\n\n");
Common::DumpDisassembledX64((void*)(rip_ & ~u64(0xFFF)), 0x1000);
ASSERT_FALSE("iter != fastmem_patch_info.end()");
}
if (conf.recompile_on_fastmem_failure) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
FakeCall ret;
ret.call_rip = iter->second.callback;
ret.ret_rip = iter->second.resume_rip;
return ret;
}
namespace {
constexpr size_t page_bits = 12;
constexpr size_t page_size = 1 << page_bits;
constexpr size_t page_mask = (1 << page_bits) - 1;
void EmitDetectMisaignedVAddr(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg32 vaddr, Xbyak::Reg32 tmp) {
if (bitsize == 8 || (ctx.conf.detect_misaligned_access_via_page_table & bitsize) == 0) {
return;
}
const u32 align_mask = [bitsize]() -> u32 {
switch (bitsize) {
case 16:
return 0b1;
case 32:
return 0b11;
case 64:
return 0b111;
}
UNREACHABLE();
}();
code.test(vaddr, align_mask);
if (!ctx.conf.only_detect_misalignment_via_page_table_on_page_boundary) {
code.jnz(abort, code.T_NEAR);
return;
}
const u32 page_align_mask = static_cast<u32>(page_size - 1) & ~align_mask;
Xbyak::Label detect_boundary, resume;
code.jnz(detect_boundary, code.T_NEAR);
code.L(resume);
code.SwitchToFarCode();
code.L(detect_boundary);
code.mov(tmp, vaddr);
code.and_(tmp, page_align_mask);
code.cmp(tmp, page_align_mask);
code.jne(resume, code.T_NEAR);
// NOTE: We expect to fallthrough into abort code here.
code.SwitchToNearCode();
}
Xbyak::RegExp EmitVAddrLookup(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg64 vaddr) {
const Xbyak::Reg64 page = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg32 tmp = ctx.conf.absolute_offset_page_table ? page.cvt32() : ctx.reg_alloc.ScratchGpr().cvt32();
EmitDetectMisaignedVAddr(code, ctx, bitsize, abort, vaddr.cvt32(), tmp);
// TODO: This code assumes vaddr has been zext from 32-bits to 64-bits.
code.mov(tmp, vaddr.cvt32());
code.shr(tmp, static_cast<int>(page_bits));
code.mov(page, qword[r14 + tmp.cvt64() * sizeof(void*)]);
if (ctx.conf.page_table_pointer_mask_bits == 0) {
code.test(page, page);
} else {
code.and_(page, ~u32(0) << ctx.conf.page_table_pointer_mask_bits);
}
code.jz(abort, code.T_NEAR);
if (ctx.conf.absolute_offset_page_table) {
return page + vaddr;
}
code.mov(tmp, vaddr.cvt32());
code.and_(tmp, static_cast<u32>(page_mask));
return page + tmp.cvt64();
}
template<std::size_t bitsize>
void EmitReadMemoryMov(BlockOfCode& code, const Xbyak::Reg64& value, const Xbyak::RegExp& addr) {
switch (bitsize) {
case 8:
code.movzx(value.cvt32(), code.byte[addr]);
return;
case 16:
code.movzx(value.cvt32(), word[addr]);
return;
case 32:
code.mov(value.cvt32(), dword[addr]);
return;
case 64:
code.mov(value, qword[addr]);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
template<std::size_t bitsize>
void EmitWriteMemoryMov(BlockOfCode& code, const Xbyak::RegExp& addr, const Xbyak::Reg64& value) {
switch (bitsize) {
case 8:
code.mov(code.byte[addr], value.cvt8());
return;
case 16:
code.mov(word[addr], value.cvt16());
return;
case 32:
code.mov(dword[addr], value.cvt32());
return;
case 64:
code.mov(qword[addr], value);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
} // anonymous namespace
template<std::size_t bitsize, auto callback>
void A32EmitX64::EmitMemoryRead(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(inst, {}, args[0]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (fastmem_marker) {
// Use fastmem
const auto src_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
ctx.reg_alloc.DefineValue(inst, value);
return;
}
// Use page table
ASSERT(conf.page_table);
Xbyak::Label abort, end;
const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::EmitMemoryWrite(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const auto wrapped_fn = write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (fastmem_marker) {
// Use fastmem
const auto dest_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
return;
}
// Use page table
ASSERT(conf.page_table);
Xbyak::Label abort, end;
const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
void A32EmitX64::EmitA32ReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<8, &A32::UserCallbacks::MemoryWrite8>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<16, &A32::UserCallbacks::MemoryWrite16>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<32, &A32::UserCallbacks::MemoryWrite32>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<64, &A32::UserCallbacks::MemoryWrite64>(ctx, inst);
}
template<size_t bitsize, auto callback>
void A32EmitX64::ExclusiveReadMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0]);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr) -> T {
return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T {
return (conf.callbacks->*callback)(vaddr);
});
});
}
template<size_t bitsize, auto callback>
void A32EmitX64::ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0], args[1]);
Xbyak::Label end;
code.mov(code.ABI_RETURN, u32(1));
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.je(end);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr, T value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<T>(conf.processor_id, vaddr,
[&](T expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
code.L(end);
}
void A32EmitX64::EmitA32ExclusiveReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<8, &A32::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<16, &A32::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<32, &A32::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<64, &A32::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
}
static void EmitCoprocessorException() {
ASSERT_FALSE("Should raise coproc exception here");
}

View File

@@ -73,6 +73,7 @@ protected:
std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> exclusive_write_fallbacks;
void GenFastmemFallbacks();
const void* terminal_handler_pop_rsb_hint;
@@ -98,6 +99,7 @@ protected:
u64 resume_rip;
u64 callback;
DoNotFastmemMarker marker;
bool compile;
};
tsl::robin_map<u64, FastmemPatchInfo> fastmem_patch_info;
std::set<DoNotFastmemMarker> do_not_fastmem;
@@ -113,6 +115,10 @@ protected:
void ExclusiveReadMemory(A32EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void ExclusiveReadMemoryInline(A32EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void ExclusiveWriteMemoryInline(A32EmitContext& ctx, IR::Inst* inst);
// Terminal instruction emitters
void EmitSetUpperLocationDescriptor(IR::LocationDescriptor new_location, IR::LocationDescriptor old_location);

View File

@@ -0,0 +1,672 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <array>
#include <initializer_list>
#include <tuple>
#include <utility>
#include <fmt/format.h>
#include <fmt/ostream.h>
#include <mp/traits/integer_of_size.h>
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/a32_emit_x64.h"
#include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/devirtualize.h"
#include "dynarmic/backend/x64/emit_x64_memory.h"
#include "dynarmic/backend/x64/exclusive_monitor_friend.h"
#include "dynarmic/backend/x64/perf_map.h"
#include "dynarmic/common/x64_disassemble.h"
#include "dynarmic/interface/exclusive_monitor.h"
namespace Dynarmic::Backend::X64 {
using namespace Xbyak::util;
void A32EmitX64::GenFastmemFallbacks() {
const std::initializer_list<int> idxes{0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
const std::array<std::pair<size_t, ArgCallback>, 4> read_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryRead8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryRead16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryRead32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryRead64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> write_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryWrite8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryWrite16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryWrite32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryWrite64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> exclusive_write_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive64>(conf.callbacks)},
}};
for (int vaddr_idx : idxes) {
for (int value_idx : idxes) {
for (const auto& [bitsize, callback] : read_callbacks) {
code.align();
read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
callback.EmitCall(code);
if (value_idx != code.ABI_RETURN.getIdx()) {
code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN);
}
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_read_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : write_callbacks) {
code.align();
write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_write_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : exclusive_write_callbacks) {
code.align();
exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
code.mov(code.ABI_PARAM4, rax);
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
code.ret();
PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_exclusive_write_fallback_{}", bitsize));
}
}
}
}
std::optional<A32EmitX64::DoNotFastmemMarker> A32EmitX64::ShouldFastmem(A32EmitContext& ctx, IR::Inst* inst) const {
if (!conf.fastmem_pointer || !exception_handler.SupportsFastmem()) {
return std::nullopt;
}
const auto marker = std::make_tuple(ctx.Location(), ctx.GetInstOffset(inst));
if (do_not_fastmem.count(marker) > 0) {
return std::nullopt;
}
return marker;
}
FakeCall A32EmitX64::FastmemCallback(u64 rip_) {
const auto iter = fastmem_patch_info.find(rip_);
if (iter == fastmem_patch_info.end()) {
fmt::print("dynarmic: Segfault happened within JITted code at rip = {:016x}\n", rip_);
fmt::print("Segfault wasn't at a fastmem patch location!\n");
fmt::print("Now dumping code.......\n\n");
Common::DumpDisassembledX64((void*)(rip_ & ~u64(0xFFF)), 0x1000);
ASSERT_FALSE("iter != fastmem_patch_info.end()");
}
if (iter->second.compile) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
return FakeCall{
.call_rip = iter->second.callback,
.ret_rip = iter->second.resume_rip,
};
}
namespace {
constexpr size_t page_bits = 12;
constexpr size_t page_size = 1 << page_bits;
constexpr size_t page_mask = (1 << page_bits) - 1;
void EmitDetectMisaignedVAddr(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg32 vaddr, Xbyak::Reg32 tmp) {
if (bitsize == 8 || (ctx.conf.detect_misaligned_access_via_page_table & bitsize) == 0) {
return;
}
const u32 align_mask = [bitsize]() -> u32 {
switch (bitsize) {
case 16:
return 0b1;
case 32:
return 0b11;
case 64:
return 0b111;
}
UNREACHABLE();
}();
code.test(vaddr, align_mask);
if (!ctx.conf.only_detect_misalignment_via_page_table_on_page_boundary) {
code.jnz(abort, code.T_NEAR);
return;
}
const u32 page_align_mask = static_cast<u32>(page_size - 1) & ~align_mask;
Xbyak::Label detect_boundary, resume;
code.jnz(detect_boundary, code.T_NEAR);
code.L(resume);
code.SwitchToFarCode();
code.L(detect_boundary);
code.mov(tmp, vaddr);
code.and_(tmp, page_align_mask);
code.cmp(tmp, page_align_mask);
code.jne(resume, code.T_NEAR);
// NOTE: We expect to fallthrough into abort code here.
code.SwitchToNearCode();
}
Xbyak::RegExp EmitVAddrLookup(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg64 vaddr) {
const Xbyak::Reg64 page = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg32 tmp = ctx.conf.absolute_offset_page_table ? page.cvt32() : ctx.reg_alloc.ScratchGpr().cvt32();
EmitDetectMisaignedVAddr(code, ctx, bitsize, abort, vaddr.cvt32(), tmp);
// TODO: This code assumes vaddr has been zext from 32-bits to 64-bits.
code.mov(tmp, vaddr.cvt32());
code.shr(tmp, static_cast<int>(page_bits));
code.mov(page, qword[r14 + tmp.cvt64() * sizeof(void*)]);
if (ctx.conf.page_table_pointer_mask_bits == 0) {
code.test(page, page);
} else {
code.and_(page, ~u32(0) << ctx.conf.page_table_pointer_mask_bits);
}
code.jz(abort, code.T_NEAR);
if (ctx.conf.absolute_offset_page_table) {
return page + vaddr;
}
code.mov(tmp, vaddr.cvt32());
code.and_(tmp, static_cast<u32>(page_mask));
return page + tmp.cvt64();
}
template<std::size_t bitsize>
void EmitReadMemoryMov(BlockOfCode& code, const Xbyak::Reg64& value, const Xbyak::RegExp& addr) {
switch (bitsize) {
case 8:
code.movzx(value.cvt32(), code.byte[addr]);
return;
case 16:
code.movzx(value.cvt32(), word[addr]);
return;
case 32:
code.mov(value.cvt32(), dword[addr]);
return;
case 64:
code.mov(value, qword[addr]);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
template<std::size_t bitsize>
void EmitWriteMemoryMov(BlockOfCode& code, const Xbyak::RegExp& addr, const Xbyak::Reg64& value) {
switch (bitsize) {
case 8:
code.mov(code.byte[addr], value.cvt8());
return;
case 16:
code.mov(word[addr], value.cvt16());
return;
case 32:
code.mov(dword[addr], value.cvt32());
return;
case 64:
code.mov(qword[addr], value);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
} // anonymous namespace
template<std::size_t bitsize, auto callback>
void A32EmitX64::EmitMemoryRead(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(inst, {}, args[0]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (fastmem_marker) {
// Use fastmem
const auto src_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
ctx.reg_alloc.DefineValue(inst, value);
return;
}
// Use page table
ASSERT(conf.page_table);
Xbyak::Label abort, end;
const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::EmitMemoryWrite(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const auto wrapped_fn = write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (fastmem_marker) {
// Use fastmem
const auto dest_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
return;
}
// Use page table
ASSERT(conf.page_table);
Xbyak::Label abort, end;
const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
void A32EmitX64::EmitA32ReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<8, &A32::UserCallbacks::MemoryWrite8>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<16, &A32::UserCallbacks::MemoryWrite16>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<32, &A32::UserCallbacks::MemoryWrite32>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<64, &A32::UserCallbacks::MemoryWrite64>(ctx, inst);
}
template<size_t bitsize, auto callback>
void A32EmitX64::ExclusiveReadMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0]);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr) -> T {
return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T {
return (conf.callbacks->*callback)(vaddr);
});
});
}
template<size_t bitsize, auto callback>
void A32EmitX64::ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0], args[1]);
Xbyak::Label end;
code.mov(code.ABI_RETURN, u32(1));
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.je(end);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr, T value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<T>(conf.processor_id, vaddr,
[&](T expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
code.L(end);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::ExclusiveReadMemoryInline(A32EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
ExclusiveReadMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp2 = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
EmitExclusiveLock(code, conf, tmp, tmp2.cvt32());
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(qword[tmp], vaddr);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
Xbyak::Label end;
const auto src_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.L(end);
} else {
code.call(wrapped_fn);
}
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
EmitWriteMemoryMov<bitsize>(code, tmp, value);
EmitExclusiveUnlock(code, conf, tmp, tmp2.cvt32());
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::ExclusiveWriteMemoryInline(A32EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
ExclusiveWriteMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg32 status = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const auto fallback_fn = exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
EmitExclusiveLock(code, conf, tmp, eax);
Xbyak::Label end;
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(status, u32(1));
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.je(end, code.T_NEAR);
code.cmp(qword[tmp], vaddr);
code.jne(end, code.T_NEAR);
EmitExclusiveTestAndClear(code, conf, vaddr, tmp, rax);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
EmitReadMemoryMov<bitsize>(code, rax, tmp);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
const auto dest_ptr = r13 + vaddr;
const auto location = code.getCurr();
switch (bitsize) {
case 8:
code.lock();
code.cmpxchg(code.byte[dest_ptr], value.cvt8());
break;
case 16:
code.lock();
code.cmpxchg(word[dest_ptr], value.cvt16());
break;
case 32:
code.lock();
code.cmpxchg(dword[dest_ptr], value.cvt32());
break;
case 64:
code.lock();
code.cmpxchg(qword[dest_ptr], value.cvt64());
break;
default:
UNREACHABLE();
}
code.setnz(status.cvt8());
code.SwitchToFarCode();
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(fallback_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
} else {
code.call(fallback_fn);
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
}
code.L(end);
EmitExclusiveUnlock(code, conf, tmp, eax);
ctx.reg_alloc.DefineValue(inst, status);
}
void A32EmitX64::EmitA32ClearExclusive(A32EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
}
void A32EmitX64::EmitA32ExclusiveReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
} else {
ExclusiveReadMemory<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
} else {
ExclusiveReadMemory<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
} else {
ExclusiveReadMemory<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
} else {
ExclusiveReadMemory<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<8, &A32::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
} else {
ExclusiveWriteMemory<8, &A32::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<16, &A32::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
} else {
ExclusiveWriteMemory<16, &A32::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<32, &A32::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
} else {
ExclusiveWriteMemory<32, &A32::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<64, &A32::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
} else {
ExclusiveWriteMemory<64, &A32::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
}
}
} // namespace Dynarmic::Backend::X64

View File

@@ -5,8 +5,6 @@
#include "dynarmic/backend/x64/a64_emit_x64.h"
#include <initializer_list>
#include <fmt/format.h>
#include <fmt/ostream.h>
#include <mp/traits/integer_of_size.h>
@@ -23,10 +21,8 @@
#include "dynarmic/common/bit_util.h"
#include "dynarmic/common/common_types.h"
#include "dynarmic/common/scope_exit.h"
#include "dynarmic/common/x64_disassemble.h"
#include "dynarmic/frontend/A64/a64_location_descriptor.h"
#include "dynarmic/frontend/A64/a64_types.h"
#include "dynarmic/interface/exclusive_monitor.h"
#include "dynarmic/ir/basic_block.h"
#include "dynarmic/ir/cond.h"
#include "dynarmic/ir/microinstruction.h"
@@ -156,155 +152,6 @@ void A64EmitX64::ClearFastDispatchTable() {
}
}
void A64EmitX64::GenMemory128Accessors() {
code.align();
memory_read_128 = code.getCurr<void (*)()>();
#ifdef _WIN32
Devirtualize<&A64::UserCallbacks::MemoryRead128>(conf.callbacks).EmitCallWithReturnPointer(code, [&](Xbyak::Reg64 return_value_ptr, [[maybe_unused]] RegList args) {
code.mov(code.ABI_PARAM3, code.ABI_PARAM2);
code.sub(rsp, 8 + 16 + ABI_SHADOW_SPACE);
code.lea(return_value_ptr, ptr[rsp + ABI_SHADOW_SPACE]);
});
code.movups(xmm1, xword[code.ABI_RETURN]);
code.add(rsp, 8 + 16 + ABI_SHADOW_SPACE);
#else
code.sub(rsp, 8);
Devirtualize<&A64::UserCallbacks::MemoryRead128>(conf.callbacks).EmitCall(code);
if (code.HasHostFeature(HostFeature::SSE41)) {
code.movq(xmm1, code.ABI_RETURN);
code.pinsrq(xmm1, code.ABI_RETURN2, 1);
} else {
code.movq(xmm1, code.ABI_RETURN);
code.movq(xmm2, code.ABI_RETURN2);
code.punpcklqdq(xmm1, xmm2);
}
code.add(rsp, 8);
#endif
code.ret();
PerfMapRegister(memory_read_128, code.getCurr(), "a64_memory_read_128");
code.align();
memory_write_128 = code.getCurr<void (*)()>();
#ifdef _WIN32
code.sub(rsp, 8 + 16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
code.movaps(xword[code.ABI_PARAM3], xmm1);
Devirtualize<&A64::UserCallbacks::MemoryWrite128>(conf.callbacks).EmitCall(code);
code.add(rsp, 8 + 16 + ABI_SHADOW_SPACE);
#else
code.sub(rsp, 8);
if (code.HasHostFeature(HostFeature::SSE41)) {
code.movq(code.ABI_PARAM3, xmm1);
code.pextrq(code.ABI_PARAM4, xmm1, 1);
} else {
code.movq(code.ABI_PARAM3, xmm1);
code.punpckhqdq(xmm1, xmm1);
code.movq(code.ABI_PARAM4, xmm1);
}
Devirtualize<&A64::UserCallbacks::MemoryWrite128>(conf.callbacks).EmitCall(code);
code.add(rsp, 8);
#endif
code.ret();
PerfMapRegister(memory_read_128, code.getCurr(), "a64_memory_write_128");
}
void A64EmitX64::GenFastmemFallbacks() {
const std::initializer_list<int> idxes{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
const std::array<std::pair<size_t, ArgCallback>, 4> read_callbacks{{
{8, Devirtualize<&A64::UserCallbacks::MemoryRead8>(conf.callbacks)},
{16, Devirtualize<&A64::UserCallbacks::MemoryRead16>(conf.callbacks)},
{32, Devirtualize<&A64::UserCallbacks::MemoryRead32>(conf.callbacks)},
{64, Devirtualize<&A64::UserCallbacks::MemoryRead64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> write_callbacks{{
{8, Devirtualize<&A64::UserCallbacks::MemoryWrite8>(conf.callbacks)},
{16, Devirtualize<&A64::UserCallbacks::MemoryWrite16>(conf.callbacks)},
{32, Devirtualize<&A64::UserCallbacks::MemoryWrite32>(conf.callbacks)},
{64, Devirtualize<&A64::UserCallbacks::MemoryWrite64>(conf.callbacks)},
}};
for (int vaddr_idx : idxes) {
if (vaddr_idx == 4 || vaddr_idx == 15) {
continue;
}
for (int value_idx : idxes) {
code.align();
read_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
code.call(memory_read_128);
if (value_idx != 1) {
code.movaps(Xbyak::Xmm{value_idx}, xmm1);
}
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(value_idx));
code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)], code.getCurr(), "a64_read_fallback_128");
code.align();
write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
if (value_idx != 1) {
code.movaps(xmm1, Xbyak::Xmm{value_idx});
}
code.call(memory_write_128);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)], code.getCurr(), "a64_write_fallback_128");
if (value_idx == 4 || value_idx == 15) {
continue;
}
for (const auto& [bitsize, callback] : read_callbacks) {
code.align();
read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
callback.EmitCall(code);
if (value_idx != code.ABI_RETURN.getIdx()) {
code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN);
}
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_read_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : write_callbacks) {
code.align();
write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_write_fallback_{}", bitsize));
}
}
}
}
void A64EmitX64::GenTerminalHandlers() {
// PC ends up in rbp, location_descriptor ends up in rbx
const auto calculate_location_descriptor = [this] {
@@ -742,600 +589,6 @@ void A64EmitX64::EmitA64SetTPIDR(A64EmitContext& ctx, IR::Inst* inst) {
}
}
void A64EmitX64::EmitA64ClearExclusive(A64EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(0));
}
std::optional<A64EmitX64::DoNotFastmemMarker> A64EmitX64::ShouldFastmem(A64EmitContext& ctx, IR::Inst* inst) const {
if (!conf.fastmem_pointer || !exception_handler.SupportsFastmem()) {
return std::nullopt;
}
const auto marker = std::make_tuple(ctx.Location(), ctx.GetInstOffset(inst));
if (do_not_fastmem.count(marker) > 0) {
return std::nullopt;
}
return marker;
}
FakeCall A64EmitX64::FastmemCallback(u64 rip_) {
const auto iter = fastmem_patch_info.find(rip_);
if (iter == fastmem_patch_info.end()) {
fmt::print("dynarmic: Segfault happened within JITted code at rip = {:016x}\n", rip_);
fmt::print("Segfault wasn't at a fastmem patch location!\n");
fmt::print("Now dumping code.......\n\n");
Common::DumpDisassembledX64((void*)(rip_ & ~u64(0xFFF)), 0x1000);
ASSERT_FALSE("iter != fastmem_patch_info.end()");
}
if (conf.recompile_on_fastmem_failure) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
FakeCall ret;
ret.call_rip = iter->second.callback;
ret.ret_rip = iter->second.resume_rip;
return ret;
}
namespace {
constexpr size_t page_bits = 12;
constexpr size_t page_size = 1 << page_bits;
constexpr size_t page_mask = (1 << page_bits) - 1;
void EmitDetectMisaignedVAddr(BlockOfCode& code, A64EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg64 vaddr, Xbyak::Reg64 tmp) {
if (bitsize == 8 || (ctx.conf.detect_misaligned_access_via_page_table & bitsize) == 0) {
return;
}
const u32 align_mask = [bitsize]() -> u32 {
switch (bitsize) {
case 16:
return 0b1;
case 32:
return 0b11;
case 64:
return 0b111;
case 128:
return 0b1111;
}
UNREACHABLE();
}();
code.test(vaddr, align_mask);
if (!ctx.conf.only_detect_misalignment_via_page_table_on_page_boundary) {
code.jnz(abort, code.T_NEAR);
return;
}
const u32 page_align_mask = static_cast<u32>(page_size - 1) & ~align_mask;
Xbyak::Label detect_boundary, resume;
code.jnz(detect_boundary, code.T_NEAR);
code.L(resume);
code.SwitchToFarCode();
code.L(detect_boundary);
code.mov(tmp, vaddr);
code.and_(tmp, page_align_mask);
code.cmp(tmp, page_align_mask);
code.jne(resume, code.T_NEAR);
// NOTE: We expect to fallthrough into abort code here.
code.SwitchToNearCode();
}
Xbyak::RegExp EmitVAddrLookup(BlockOfCode& code, A64EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg64 vaddr) {
const size_t valid_page_index_bits = ctx.conf.page_table_address_space_bits - page_bits;
const size_t unused_top_bits = 64 - ctx.conf.page_table_address_space_bits;
const Xbyak::Reg64 page = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp = ctx.conf.absolute_offset_page_table ? page : ctx.reg_alloc.ScratchGpr();
EmitDetectMisaignedVAddr(code, ctx, bitsize, abort, vaddr, tmp);
if (unused_top_bits == 0) {
code.mov(tmp, vaddr);
code.shr(tmp, int(page_bits));
} else if (ctx.conf.silently_mirror_page_table) {
if (valid_page_index_bits >= 32) {
if (code.HasHostFeature(HostFeature::BMI2)) {
const Xbyak::Reg64 bit_count = ctx.reg_alloc.ScratchGpr();
code.mov(bit_count, unused_top_bits);
code.bzhi(tmp, vaddr, bit_count);
code.shr(tmp, int(page_bits));
ctx.reg_alloc.Release(bit_count);
} else {
code.mov(tmp, vaddr);
code.shl(tmp, int(unused_top_bits));
code.shr(tmp, int(unused_top_bits + page_bits));
}
} else {
code.mov(tmp, vaddr);
code.shr(tmp, int(page_bits));
code.and_(tmp, u32((1 << valid_page_index_bits) - 1));
}
} else {
ASSERT(valid_page_index_bits < 32);
code.mov(tmp, vaddr);
code.shr(tmp, int(page_bits));
code.test(tmp, u32(-(1 << valid_page_index_bits)));
code.jnz(abort, code.T_NEAR);
}
code.mov(page, qword[r14 + tmp * sizeof(void*)]);
if (ctx.conf.page_table_pointer_mask_bits == 0) {
code.test(page, page);
} else {
code.and_(page, ~u32(0) << ctx.conf.page_table_pointer_mask_bits);
}
code.jz(abort, code.T_NEAR);
if (ctx.conf.absolute_offset_page_table) {
return page + vaddr;
}
code.mov(tmp, vaddr);
code.and_(tmp, static_cast<u32>(page_mask));
return page + tmp;
}
Xbyak::RegExp EmitFastmemVAddr(BlockOfCode& code, A64EmitContext& ctx, Xbyak::Label& abort, Xbyak::Reg64 vaddr, bool& require_abort_handling) {
const size_t unused_top_bits = 64 - ctx.conf.fastmem_address_space_bits;
if (unused_top_bits == 0) {
return r13 + vaddr;
} else if (ctx.conf.silently_mirror_fastmem) {
Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
if (unused_top_bits < 32) {
code.mov(tmp, vaddr);
code.shl(tmp, int(unused_top_bits));
code.shr(tmp, int(unused_top_bits));
} else if (unused_top_bits == 32) {
code.mov(tmp.cvt32(), vaddr.cvt32());
} else {
code.mov(tmp.cvt32(), vaddr.cvt32());
code.and_(tmp, u32((1 << ctx.conf.fastmem_address_space_bits) - 1));
}
return r13 + tmp;
} else {
if (ctx.conf.fastmem_address_space_bits < 32) {
code.test(vaddr, u32(-(1 << ctx.conf.fastmem_address_space_bits)));
code.jnz(abort, code.T_NEAR);
require_abort_handling = true;
} else {
// TODO: Consider having TEST as above but coalesce 64-bit constant in register allocator
Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
code.mov(tmp, vaddr);
code.shr(tmp, int(ctx.conf.fastmem_address_space_bits));
code.jnz(abort, code.T_NEAR);
require_abort_handling = true;
}
return r13 + vaddr;
}
}
template<std::size_t bitsize>
void EmitReadMemoryMov(BlockOfCode& code, const Xbyak::Reg64& value, const Xbyak::RegExp& addr) {
switch (bitsize) {
case 8:
code.movzx(value.cvt32(), code.byte[addr]);
return;
case 16:
code.movzx(value.cvt32(), word[addr]);
return;
case 32:
code.mov(value.cvt32(), dword[addr]);
return;
case 64:
code.mov(value, qword[addr]);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
template<std::size_t bitsize>
void EmitWriteMemoryMov(BlockOfCode& code, const Xbyak::RegExp& addr, const Xbyak::Reg64& value) {
switch (bitsize) {
case 8:
code.mov(code.byte[addr], value.cvt8());
return;
case 16:
code.mov(word[addr], value.cvt16());
return;
case 32:
code.mov(dword[addr], value.cvt32());
return;
case 64:
code.mov(qword[addr], value);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
} // namespace
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitMemoryRead(A64EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(inst, {}, args[0]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
Xbyak::Label abort, end;
bool require_abort_handling = false;
if (fastmem_marker) {
// Use fastmem
const auto src_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
require_abort_handling = true;
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
}
code.L(end);
if (require_abort_handling) {
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitMemoryWrite(A64EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const auto wrapped_fn = write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
Xbyak::Label abort, end;
bool require_abort_handling = false;
if (fastmem_marker) {
// Use fastmem
const auto dest_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr();
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
require_abort_handling = true;
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
}
code.L(end);
if (require_abort_handling) {
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
}
void A64EmitX64::EmitA64ReadMemory8(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<8, &A64::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A64EmitX64::EmitA64ReadMemory16(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<16, &A64::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A64EmitX64::EmitA64ReadMemory32(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<32, &A64::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A64EmitX64::EmitA64ReadMemory64(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<64, &A64::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A64EmitX64::EmitA64ReadMemory128(A64EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(nullptr, {}, args[0]);
code.CallFunction(memory_read_128);
ctx.reg_alloc.DefineValue(inst, xmm1);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Xmm value = ctx.reg_alloc.ScratchXmm();
const auto wrapped_fn = read_fallbacks[std::make_tuple(128, vaddr.getIdx(), value.getIdx())];
Xbyak::Label abort, end;
bool require_abort_handling = false;
if (fastmem_marker) {
// Use fastmem
const auto src_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr();
code.movups(value, xword[src_ptr]);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto src_ptr = EmitVAddrLookup(code, ctx, 128, abort, vaddr);
require_abort_handling = true;
code.movups(value, xword[src_ptr]);
}
code.L(end);
if (require_abort_handling) {
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
ctx.reg_alloc.DefineValue(inst, value);
}
void A64EmitX64::EmitA64WriteMemory8(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<8, &A64::UserCallbacks::MemoryWrite8>(ctx, inst);
}
void A64EmitX64::EmitA64WriteMemory16(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<16, &A64::UserCallbacks::MemoryWrite16>(ctx, inst);
}
void A64EmitX64::EmitA64WriteMemory32(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<32, &A64::UserCallbacks::MemoryWrite32>(ctx, inst);
}
void A64EmitX64::EmitA64WriteMemory64(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<64, &A64::UserCallbacks::MemoryWrite64>(ctx, inst);
}
void A64EmitX64::EmitA64WriteMemory128(A64EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.Use(args[0], ABI_PARAM2);
ctx.reg_alloc.Use(args[1], HostLoc::XMM1);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
code.CallFunction(memory_write_128);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Xmm value = ctx.reg_alloc.UseXmm(args[1]);
const auto wrapped_fn = write_fallbacks[std::make_tuple(128, vaddr.getIdx(), value.getIdx())];
Xbyak::Label abort, end;
bool require_abort_handling = false;
if (fastmem_marker) {
// Use fastmem
const auto dest_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr();
code.movups(xword[dest_ptr], value);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto dest_ptr = EmitVAddrLookup(code, ctx, 128, abort, vaddr);
require_abort_handling = true;
code.movups(xword[dest_ptr], value);
}
code.L(end);
if (require_abort_handling) {
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
}
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitExclusiveReadMemory(A64EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if constexpr (bitsize != 128) {
using T = mp::unsigned_integer_of_size<bitsize>;
ctx.reg_alloc.HostCall(inst, {}, args[0]);
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A64::UserConfig& conf, u64 vaddr) -> T {
return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T {
return (conf.callbacks->*callback)(vaddr);
});
});
} else {
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
ctx.reg_alloc.Use(args[0], ABI_PARAM2);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
code.CallLambda(
[](A64::UserConfig& conf, u64 vaddr, A64::Vector& ret) {
ret = conf.global_monitor->ReadAndMark<A64::Vector>(conf.processor_id, vaddr, [&]() -> A64::Vector {
return (conf.callbacks->*callback)(vaddr);
});
});
code.movups(result, xword[rsp + ABI_SHADOW_SPACE]);
ctx.reg_alloc.ReleaseStackSpace(16 + ABI_SHADOW_SPACE);
ctx.reg_alloc.DefineValue(inst, result);
}
}
void A64EmitX64::EmitA64ExclusiveReadMemory8(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<8, &A64::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveReadMemory16(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<16, &A64::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveReadMemory32(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<32, &A64::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveReadMemory64(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<64, &A64::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveReadMemory128(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<128, &A64::UserCallbacks::MemoryRead128>(ctx, inst);
}
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitExclusiveWriteMemory(A64EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if constexpr (bitsize != 128) {
ctx.reg_alloc.HostCall(inst, {}, args[0], args[1]);
} else {
ctx.reg_alloc.Use(args[0], ABI_PARAM2);
ctx.reg_alloc.Use(args[1], HostLoc::XMM1);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(inst);
}
Xbyak::Label end;
code.mov(code.ABI_RETURN, u32(1));
code.cmp(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(0));
code.je(end);
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(0));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
if constexpr (bitsize != 128) {
using T = mp::unsigned_integer_of_size<bitsize>;
code.CallLambda(
[](A64::UserConfig& conf, u64 vaddr, T value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<T>(conf.processor_id, vaddr,
[&](T expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
} else {
ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
code.movaps(xword[code.ABI_PARAM3], xmm1);
code.CallLambda(
[](A64::UserConfig& conf, u64 vaddr, A64::Vector& value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<A64::Vector>(conf.processor_id, vaddr,
[&](A64::Vector expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
ctx.reg_alloc.ReleaseStackSpace(16 + ABI_SHADOW_SPACE);
}
code.L(end);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory8(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<8, &A64::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory16(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<16, &A64::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory32(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<32, &A64::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory64(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<64, &A64::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory128(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<128, &A64::UserCallbacks::MemoryWriteExclusive128>(ctx, inst);
}
std::string A64EmitX64::LocationDescriptorToFriendlyName(const IR::LocationDescriptor& ir_descriptor) const {
const A64::LocationDescriptor descriptor{ir_descriptor};
return fmt::format("a64_{:016X}_fpcr{:08X}",

View File

@@ -7,6 +7,7 @@
#include <array>
#include <map>
#include <optional>
#include <tuple>
#include "dynarmic/backend/x64/a64_jitstate.h"
@@ -67,10 +68,12 @@ protected:
void (*memory_read_128)();
void (*memory_write_128)();
void (*memory_exclusive_write_128)();
void GenMemory128Accessors();
std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> exclusive_write_fallbacks;
void GenFastmemFallbacks();
const void* terminal_handler_pop_rsb_hint;
@@ -97,6 +100,7 @@ protected:
u64 resume_rip;
u64 callback;
DoNotFastmemMarker marker;
bool recompile;
};
tsl::robin_map<u64, FastmemPatchInfo> fastmem_patch_info;
std::set<DoNotFastmemMarker> do_not_fastmem;
@@ -112,6 +116,10 @@ protected:
void EmitExclusiveReadMemory(A64EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void EmitExclusiveWriteMemory(A64EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void EmitExclusiveReadMemoryInline(A64EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void EmitExclusiveWriteMemoryInline(A64EmitContext& ctx, IR::Inst* inst);
// Terminal instruction emitters
void EmitTerminalImpl(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location, bool is_single_step) override;

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,62 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/a64_emit_x64.h"
#include "dynarmic/backend/x64/exclusive_monitor_friend.h"
#include "dynarmic/common/spin_lock_x64.h"
#include "dynarmic/interface/exclusive_monitor.h"
namespace Dynarmic::Backend::X64 {
namespace {
using namespace Xbyak::util;
template<typename UserConfig>
void EmitExclusiveLock(BlockOfCode& code, const UserConfig& conf, Xbyak::Reg64 pointer, Xbyak::Reg32 tmp) {
if (conf.HasOptimization(OptimizationFlag::Unsafe_IgnoreGlobalMonitor)) {
return;
}
code.mov(pointer, Common::BitCast<u64>(GetExclusiveMonitorLockPointer(conf.global_monitor)));
EmitSpinLockLock(code, pointer, tmp);
}
template<typename UserConfig>
void EmitExclusiveUnlock(BlockOfCode& code, const UserConfig& conf, Xbyak::Reg64 pointer, Xbyak::Reg32 tmp) {
if (conf.HasOptimization(OptimizationFlag::Unsafe_IgnoreGlobalMonitor)) {
return;
}
code.mov(pointer, Common::BitCast<u64>(GetExclusiveMonitorLockPointer(conf.global_monitor)));
EmitSpinLockUnlock(code, pointer, tmp);
}
template<typename UserConfig>
void EmitExclusiveTestAndClear(BlockOfCode& code, const UserConfig& conf, Xbyak::Reg64 vaddr, Xbyak::Reg64 pointer, Xbyak::Reg64 tmp) {
if (conf.HasOptimization(OptimizationFlag::Unsafe_IgnoreGlobalMonitor)) {
return;
}
code.mov(tmp, 0xDEAD'DEAD'DEAD'DEAD);
const size_t processor_count = GetExclusiveMonitorProcessorCount(conf.global_monitor);
for (size_t processor_index = 0; processor_index < processor_count; processor_index++) {
if (processor_index == conf.processor_id) {
continue;
}
Xbyak::Label ok;
code.mov(pointer, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, processor_index)));
code.cmp(qword[pointer], vaddr);
code.jne(ok);
code.mov(qword[pointer], tmp);
code.L(ok);
}
}
} // namespace
} // namespace Dynarmic::Backend::X64

View File

@@ -21,11 +21,11 @@ size_t ExclusiveMonitor::GetProcessorCount() const {
}
void ExclusiveMonitor::Lock() {
while (is_locked.test_and_set(std::memory_order_acquire)) {}
lock.Lock();
}
void ExclusiveMonitor::Unlock() {
is_locked.clear(std::memory_order_release);
lock.Unlock();
}
bool ExclusiveMonitor::CheckAndClear(size_t processor_id, VAddr address) {

View File

@@ -0,0 +1,28 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#pragma once
#include "dynarmic/interface/exclusive_monitor.h"
namespace Dynarmic {
inline volatile int* GetExclusiveMonitorLockPointer(ExclusiveMonitor* monitor) {
return &monitor->lock.storage;
}
inline size_t GetExclusiveMonitorProcessorCount(ExclusiveMonitor* monitor) {
return monitor->exclusive_addresses.size();
}
inline VAddr* GetExclusiveMonitorAddressPointer(ExclusiveMonitor* monitor, size_t index) {
return monitor->exclusive_addresses.data() + index;
}
inline Vector* GetExclusiveMonitorValuePointer(ExclusiveMonitor* monitor, size_t index) {
return monitor->exclusive_values.data() + index;
}
} // namespace Dynarmic

View File

@@ -0,0 +1,17 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#pragma once
namespace Dynarmic {
struct SpinLock {
void Lock();
void Unlock();
volatile int storage;
};
} // namespace Dynarmic

View File

@@ -0,0 +1,70 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/hostloc.h"
#include "dynarmic/common/spin_lock.h"
namespace Dynarmic {
void EmitSpinLockLock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp) {
Xbyak::Label start, loop;
code.jmp(start);
code.L(loop);
code.pause();
code.L(start);
code.mov(tmp, 1);
code.lock();
code.xchg(code.dword[ptr], tmp);
code.test(tmp, tmp);
code.jnz(loop);
}
void EmitSpinLockUnlock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp) {
code.xor_(tmp, tmp);
code.xchg(code.dword[ptr], tmp);
code.mfence();
}
namespace {
struct SpinLockImpl {
SpinLockImpl();
Xbyak::CodeGenerator code;
void (*lock)(volatile int*);
void (*unlock)(volatile int*);
};
SpinLockImpl impl;
SpinLockImpl::SpinLockImpl() {
const Xbyak::Reg64 ABI_PARAM1 = Backend::X64::HostLocToReg64(Backend::X64::ABI_PARAM1);
code.align();
lock = code.getCurr<void (*)(volatile int*)>();
EmitSpinLockLock(code, ABI_PARAM1, code.eax);
code.ret();
code.align();
unlock = code.getCurr<void (*)(volatile int*)>();
EmitSpinLockUnlock(code, ABI_PARAM1, code.eax);
code.ret();
}
} // namespace
void SpinLock::Lock() {
impl.lock(&storage);
}
void SpinLock::Unlock() {
impl.unlock(&storage);
}
} // namespace Dynarmic

View File

@@ -0,0 +1,15 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#pragma once
#include <xbyak/xbyak.h>
namespace Dynarmic {
void EmitSpinLockLock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp);
void EmitSpinLockUnlock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp);
} // namespace Dynarmic

View File

@@ -177,6 +177,15 @@ struct UserConfig {
/// accesses will hit the memory callbacks.
bool recompile_on_fastmem_failure = true;
/// Determines if we should use the above fastmem_pointer for exclusive reads and
/// writes. On x64, dynarmic currently relies on x64 cmpxchg semantics which may not
/// provide fully accurate emulation.
bool fastmem_exclusive_access = false;
/// Determines if exclusive access instructions that pagefault should cause
/// recompilation of that block with fastmem disabled. Recompiled code will use memory
/// callbacks.
bool recompile_on_exclusive_fastmem_failure = true;
// Coprocessors
std::array<std::shared_ptr<Coprocessor>, 16> coprocessors{};

View File

@@ -254,6 +254,15 @@ struct UserConfig {
/// This is only used if fastmem_pointer is not nullptr.
bool silently_mirror_fastmem = true;
/// Determines if we should use the above fastmem_pointer for exclusive reads and
/// writes. On x64, dynarmic currently relies on x64 cmpxchg semantics which may not
/// provide fully accurate emulation.
bool fastmem_exclusive_access = false;
/// Determines if exclusive access instructions that pagefault should cause
/// recompilation of that block with fastmem disabled. Recompiled code will use memory
/// callbacks.
bool recompile_on_exclusive_fastmem_failure = true;
/// This option relates to translation. Generally when we run into an unpredictable
/// instruction the ExceptionRaised callback is called. If this is true, we define
/// definite behaviour for some unpredictable instructions.

View File

@@ -12,6 +12,8 @@
#include <cstring>
#include <vector>
#include <dynarmic/common/spin_lock.h>
namespace Dynarmic {
using VAddr = std::uint64_t;
@@ -71,9 +73,14 @@ private:
void Lock();
void Unlock();
friend volatile int* GetExclusiveMonitorLockPointer(ExclusiveMonitor*);
friend size_t GetExclusiveMonitorProcessorCount(ExclusiveMonitor*);
friend VAddr* GetExclusiveMonitorAddressPointer(ExclusiveMonitor*, size_t index);
friend Vector* GetExclusiveMonitorValuePointer(ExclusiveMonitor*, size_t index);
static constexpr VAddr RESERVATION_GRANULE_MASK = 0xFFFF'FFFF'FFFF'FFFFull;
static constexpr VAddr INVALID_EXCLUSIVE_ADDRESS = 0xDEAD'DEAD'DEAD'DEADull;
std::atomic_flag is_locked;
SpinLock lock;
std::vector<VAddr> exclusive_addresses;
std::vector<Vector> exclusive_values;
};

View File

@@ -45,6 +45,10 @@ enum class OptimizationFlag : std::uint32_t {
/// This is an UNSAFE optimization that causes ASIMD floating-point instructions to be run with incorrect
/// rounding modes. This may result in inaccurate results with all floating-point ASIMD instructions.
Unsafe_IgnoreStandardFPCRValue = 0x00080000,
/// This is an UNSAFE optimization that causes the global monitor to be ignored. This may
/// result in unexpected behaviour in multithreaded scenarios, including but not limited
/// to data races and deadlocks.
Unsafe_IgnoreGlobalMonitor = 0x00100000,
};
constexpr OptimizationFlag no_optimizations = static_cast<OptimizationFlag>(0);