early-access version 2519

This commit is contained in:
pineappleEA
2022-02-27 23:27:57 +01:00
parent e13f73efb6
commit 09cf05ab91
38 changed files with 2107 additions and 1239 deletions

View File

@@ -137,6 +137,8 @@ std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable*
config.page_table_pointer_mask_bits = Common::PageTable::ATTRIBUTE_BITS;
config.detect_misaligned_access_via_page_table = 16 | 32 | 64 | 128;
config.only_detect_misalignment_via_page_table_on_page_boundary = true;
config.fastmem_exclusive_access = true;
config.recompile_on_exclusive_fastmem_failure = true;
// Multi-process state
config.processor_id = core_index;
@@ -178,6 +180,12 @@ std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable*
if (!Settings::values.cpuopt_fastmem) {
config.fastmem_pointer = nullptr;
}
if (!Settings::values.cpuopt_fastmem_exclusives) {
config.fastmem_exclusive_access = false;
}
if (!Settings::values.cpuopt_recompile_exclusives) {
config.recompile_on_exclusive_fastmem_failure = false;
}
}
// Unsafe optimizations
@@ -195,6 +203,9 @@ std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable*
if (Settings::values.cpuopt_unsafe_inaccurate_nan) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN;
}
if (Settings::values.cpuopt_unsafe_ignore_global_monitor) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
}
}
// Curated optimizations
@@ -203,6 +214,7 @@ std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable*
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreStandardFPCRValue;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
}
return std::make_unique<Dynarmic::A32::Jit>(config);

View File

@@ -185,6 +185,9 @@ std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable*
config.fastmem_pointer = page_table->fastmem_arena;
config.fastmem_address_space_bits = address_space_bits;
config.silently_mirror_fastmem = false;
config.fastmem_exclusive_access = true;
config.recompile_on_exclusive_fastmem_failure = true;
}
// Multi-process state
@@ -237,6 +240,12 @@ std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable*
if (!Settings::values.cpuopt_fastmem) {
config.fastmem_pointer = nullptr;
}
if (!Settings::values.cpuopt_fastmem_exclusives) {
config.fastmem_exclusive_access = false;
}
if (!Settings::values.cpuopt_recompile_exclusives) {
config.recompile_on_exclusive_fastmem_failure = false;
}
}
// Unsafe optimizations
@@ -254,6 +263,9 @@ std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable*
if (Settings::values.cpuopt_unsafe_fastmem_check) {
config.fastmem_address_space_bits = 64;
}
if (Settings::values.cpuopt_unsafe_ignore_global_monitor) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
}
}
// Curated optimizations
@@ -262,6 +274,7 @@ std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable*
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN;
config.fastmem_address_space_bits = 64;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
}
return std::make_shared<Dynarmic::A64::Jit>(config);

View File

@@ -37,8 +37,8 @@ u128 DynarmicExclusiveMonitor::ExclusiveRead128(std::size_t core_index, VAddr ad
});
}
void DynarmicExclusiveMonitor::ClearExclusive() {
monitor.Clear();
void DynarmicExclusiveMonitor::ClearExclusive(std::size_t core_index) {
monitor.ClearProcessor(core_index);
}
bool DynarmicExclusiveMonitor::ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) {

View File

@@ -29,7 +29,7 @@ public:
u32 ExclusiveRead32(std::size_t core_index, VAddr addr) override;
u64 ExclusiveRead64(std::size_t core_index, VAddr addr) override;
u128 ExclusiveRead128(std::size_t core_index, VAddr addr) override;
void ClearExclusive() override;
void ClearExclusive(std::size_t core_index) override;
bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) override;
bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) override;

View File

@@ -23,7 +23,7 @@ public:
virtual u32 ExclusiveRead32(std::size_t core_index, VAddr addr) = 0;
virtual u64 ExclusiveRead64(std::size_t core_index, VAddr addr) = 0;
virtual u128 ExclusiveRead128(std::size_t core_index, VAddr addr) = 0;
virtual void ClearExclusive() = 0;
virtual void ClearExclusive(std::size_t core_index) = 0;
virtual bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) = 0;
virtual bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) = 0;

View File

@@ -49,7 +49,7 @@ bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 valu
}
} else {
// Otherwise, clear our exclusive hold and finish
monitor.ClearExclusive();
monitor.ClearExclusive(current_core);
}
// We're done.
@@ -78,7 +78,7 @@ bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32
}
} else {
// Otherwise, clear our exclusive hold and finish.
monitor.ClearExclusive();
monitor.ClearExclusive(current_core);
}
// We're done.

View File

@@ -31,7 +31,7 @@ constexpr KMemoryManager::Pool GetPoolFromMemoryRegionType(u32 type) {
} else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) {
return KMemoryManager::Pool::SystemNonSecure;
} else {
ASSERT("InvalidMemoryRegionType for conversion to Pool");
ASSERT_MSG("InvalidMemoryRegionType for conversion to Pool");
return {};
}
}
@@ -102,9 +102,8 @@ void KMemoryManager::Initialize(VAddr management_region, size_t management_regio
Impl* manager = std::addressof(managers[num_managers++]);
ASSERT(num_managers <= managers.size());
const size_t cur_size =
manager->Initialize(system, region_address, region_size, management_region,
management_region_end, region_pool);
const size_t cur_size = manager->Initialize(region_address, region_size, management_region,
management_region_end, region_pool);
management_region += cur_size;
ASSERT(management_region <= management_region_end);
@@ -384,9 +383,8 @@ void KMemoryManager::Open(const KPageLinkedList& pg) {
}
}
size_t KMemoryManager::Impl::Initialize([[maybe_unused]] Core::System& system, PAddr address,
size_t size, VAddr management, VAddr management_end,
Pool p) {
size_t KMemoryManager::Impl::Initialize(PAddr address, size_t size, VAddr management,
VAddr management_end, Pool p) {
// Calculate management sizes.
const size_t ref_count_size = (size / PageSize) * sizeof(u16);
const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size);

View File

@@ -112,8 +112,8 @@ private:
Impl() = default;
~Impl() = default;
size_t Initialize(Core::System& system, PAddr address, size_t size, VAddr management,
VAddr management_end, Pool p);
size_t Initialize(PAddr address, size_t size, VAddr management, VAddr management_end,
Pool p);
VAddr AllocateBlock(s32 index, bool random) {
return heap.AllocateBlock(index, random);

View File

@@ -241,7 +241,7 @@ static_assert(KMemoryRegionType_VirtualDramKernelPtHeap.GetValue() == 0x2A);
static_assert(KMemoryRegionType_VirtualDramKernelTraceBuffer.GetValue() == 0x4A);
// UNUSED: .DeriveSparse(2, 2, 0);
constexpr inline const auto KMemoryRegionType_VirtualDramUnknownDebug =
constexpr auto KMemoryRegionType_VirtualDramUnknownDebug =
KMemoryRegionType_Dram.DeriveSparse(2, 2, 1);
static_assert(KMemoryRegionType_VirtualDramUnknownDebug.GetValue() == (0x52));

View File

@@ -71,7 +71,7 @@ struct KernelCore::Impl {
// Derive the initial memory layout from the emulated board
Init::InitializeSlabResourceCounts(kernel);
DeriveInitialMemoryLayout();
Init::InitializeSlabHeaps(system, memory_layout);
Init::InitializeSlabHeaps(system, *memory_layout);
// Initialize kernel memory and resources.
InitializeSystemResourceLimit(kernel, system.CoreTiming());
@@ -223,7 +223,7 @@ struct KernelCore::Impl {
system_resource_limit = KResourceLimit::Create(system.Kernel());
system_resource_limit->Initialize(&core_timing);
const auto [total_size, kernel_size] = memory_layout.GetTotalAndKernelMemorySizes();
const auto [total_size, kernel_size] = memory_layout->GetTotalAndKernelMemorySizes();
// If setting the default system values fails, then something seriously wrong has occurred.
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::PhysicalMemory, total_size)
@@ -353,15 +353,17 @@ struct KernelCore::Impl {
}
void DeriveInitialMemoryLayout() {
memory_layout = std::make_unique<KMemoryLayout>();
// Insert the root region for the virtual memory tree, from which all other regions will
// derive.
memory_layout.GetVirtualMemoryRegionTree().InsertDirectly(
memory_layout->GetVirtualMemoryRegionTree().InsertDirectly(
KernelVirtualAddressSpaceBase,
KernelVirtualAddressSpaceBase + KernelVirtualAddressSpaceSize - 1);
// Insert the root region for the physical memory tree, from which all other regions will
// derive.
memory_layout.GetPhysicalMemoryRegionTree().InsertDirectly(
memory_layout->GetPhysicalMemoryRegionTree().InsertDirectly(
KernelPhysicalAddressSpaceBase,
KernelPhysicalAddressSpaceBase + KernelPhysicalAddressSpaceSize - 1);
@@ -378,7 +380,7 @@ struct KernelCore::Impl {
if (!(kernel_region_start + KernelRegionSize - 1 <= KernelVirtualAddressSpaceLast)) {
kernel_region_size = KernelVirtualAddressSpaceEnd - kernel_region_start;
}
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
kernel_region_start, kernel_region_size, KMemoryRegionType_Kernel));
// Setup the code region.
@@ -387,11 +389,11 @@ struct KernelCore::Impl {
Common::AlignDown(code_start_virt_addr, CodeRegionAlign);
constexpr VAddr code_region_end = Common::AlignUp(code_end_virt_addr, CodeRegionAlign);
constexpr size_t code_region_size = code_region_end - code_region_start;
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
code_region_start, code_region_size, KMemoryRegionType_KernelCode));
// Setup board-specific device physical regions.
Init::SetupDevicePhysicalMemoryRegions(memory_layout);
Init::SetupDevicePhysicalMemoryRegions(*memory_layout);
// Determine the amount of space needed for the misc region.
size_t misc_region_needed_size;
@@ -400,7 +402,7 @@ struct KernelCore::Impl {
misc_region_needed_size = Core::Hardware::NUM_CPU_CORES * (3 * (PageSize + PageSize));
// Account for each auto-map device.
for (const auto& region : memory_layout.GetPhysicalMemoryRegionTree()) {
for (const auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (region.HasTypeAttribute(KMemoryRegionAttr_ShouldKernelMap)) {
// Check that the region is valid.
ASSERT(region.GetEndAddress() != 0);
@@ -425,22 +427,22 @@ struct KernelCore::Impl {
// Setup the misc region.
const VAddr misc_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
misc_region_size, MiscRegionAlign, KMemoryRegionType_Kernel);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
misc_region_start, misc_region_size, KMemoryRegionType_KernelMisc));
// Setup the stack region.
constexpr size_t StackRegionSize = 14_MiB;
constexpr size_t StackRegionAlign = KernelAslrAlignment;
const VAddr stack_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
StackRegionSize, StackRegionAlign, KMemoryRegionType_Kernel);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
stack_region_start, StackRegionSize, KMemoryRegionType_KernelStack));
// Determine the size of the resource region.
const size_t resource_region_size = memory_layout.GetResourceRegionSizeForInit();
const size_t resource_region_size = memory_layout->GetResourceRegionSizeForInit();
// Determine the size of the slab region.
const size_t slab_region_size =
@@ -457,23 +459,23 @@ struct KernelCore::Impl {
Common::AlignUp(code_end_phys_addr + slab_region_size, SlabRegionAlign) -
Common::AlignDown(code_end_phys_addr, SlabRegionAlign);
const VAddr slab_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
slab_region_needed_size, SlabRegionAlign, KMemoryRegionType_Kernel) +
(code_end_phys_addr % SlabRegionAlign);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
slab_region_start, slab_region_size, KMemoryRegionType_KernelSlab));
// Setup the temp region.
constexpr size_t TempRegionSize = 128_MiB;
constexpr size_t TempRegionAlign = KernelAslrAlignment;
const VAddr temp_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
TempRegionSize, TempRegionAlign, KMemoryRegionType_Kernel);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(temp_region_start, TempRegionSize,
KMemoryRegionType_KernelTemp));
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(temp_region_start, TempRegionSize,
KMemoryRegionType_KernelTemp));
// Automatically map in devices that have auto-map attributes.
for (auto& region : memory_layout.GetPhysicalMemoryRegionTree()) {
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
// We only care about kernel regions.
if (!region.IsDerivedFrom(KMemoryRegionType_Kernel)) {
continue;
@@ -500,21 +502,21 @@ struct KernelCore::Impl {
const size_t map_size =
Common::AlignUp(region.GetEndAddress(), PageSize) - map_phys_addr;
const VAddr map_virt_addr =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
map_size, PageSize, KMemoryRegionType_KernelMisc, PageSize);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
map_virt_addr, map_size, KMemoryRegionType_KernelMiscMappedDevice));
region.SetPairAddress(map_virt_addr + region.GetAddress() - map_phys_addr);
}
Init::SetupDramPhysicalMemoryRegions(memory_layout);
Init::SetupDramPhysicalMemoryRegions(*memory_layout);
// Insert a physical region for the kernel code region.
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
code_start_phys_addr, code_region_size, KMemoryRegionType_DramKernelCode));
// Insert a physical region for the kernel slab region.
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
slab_start_phys_addr, slab_region_size, KMemoryRegionType_DramKernelSlab));
// Determine size available for kernel page table heaps, requiring > 8 MB.
@@ -523,12 +525,12 @@ struct KernelCore::Impl {
ASSERT(page_table_heap_size / 4_MiB > 2);
// Insert a physical region for the kernel page table heap region
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
slab_end_phys_addr, page_table_heap_size, KMemoryRegionType_DramKernelPtHeap));
// All DRAM regions that we haven't tagged by this point will be mapped under the linear
// mapping. Tag them.
for (auto& region : memory_layout.GetPhysicalMemoryRegionTree()) {
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (region.GetType() == KMemoryRegionType_Dram) {
// Check that the region is valid.
ASSERT(region.GetEndAddress() != 0);
@@ -540,7 +542,7 @@ struct KernelCore::Impl {
// Get the linear region extents.
const auto linear_extents =
memory_layout.GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
memory_layout->GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
KMemoryRegionAttr_LinearMapped);
ASSERT(linear_extents.GetEndAddress() != 0);
@@ -552,7 +554,7 @@ struct KernelCore::Impl {
Common::AlignUp(linear_extents.GetEndAddress(), LinearRegionAlign) -
aligned_linear_phys_start;
const VAddr linear_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
linear_region_size, LinearRegionAlign, KMemoryRegionType_None, LinearRegionAlign);
const u64 linear_region_phys_to_virt_diff = linear_region_start - aligned_linear_phys_start;
@@ -561,7 +563,7 @@ struct KernelCore::Impl {
{
PAddr cur_phys_addr = 0;
u64 cur_size = 0;
for (auto& region : memory_layout.GetPhysicalMemoryRegionTree()) {
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (!region.HasTypeAttribute(KMemoryRegionAttr_LinearMapped)) {
continue;
}
@@ -580,47 +582,47 @@ struct KernelCore::Impl {
const VAddr region_virt_addr =
region.GetAddress() + linear_region_phys_to_virt_diff;
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
region_virt_addr, region.GetSize(),
GetTypeForVirtualLinearMapping(region.GetType())));
region.SetPairAddress(region_virt_addr);
KMemoryRegion* virt_region =
memory_layout.GetVirtualMemoryRegionTree().FindModifiable(region_virt_addr);
memory_layout->GetVirtualMemoryRegionTree().FindModifiable(region_virt_addr);
ASSERT(virt_region != nullptr);
virt_region->SetPairAddress(region.GetAddress());
}
}
// Insert regions for the initial page table region.
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
resource_end_phys_addr, KernelPageTableHeapSize, KMemoryRegionType_DramKernelInitPt));
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
resource_end_phys_addr + linear_region_phys_to_virt_diff, KernelPageTableHeapSize,
KMemoryRegionType_VirtualDramKernelInitPt));
// All linear-mapped DRAM regions that we haven't tagged by this point will be allocated to
// some pool partition. Tag them.
for (auto& region : memory_layout.GetPhysicalMemoryRegionTree()) {
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (region.GetType() == (KMemoryRegionType_Dram | KMemoryRegionAttr_LinearMapped)) {
region.SetType(KMemoryRegionType_DramPoolPartition);
}
}
// Setup all other memory regions needed to arrange the pool partitions.
Init::SetupPoolPartitionMemoryRegions(memory_layout);
Init::SetupPoolPartitionMemoryRegions(*memory_layout);
// Cache all linear regions in their own trees for faster access, later.
memory_layout.InitializeLinearMemoryRegionTrees(aligned_linear_phys_start,
linear_region_start);
memory_layout->InitializeLinearMemoryRegionTrees(aligned_linear_phys_start,
linear_region_start);
}
void InitializeMemoryLayout() {
const auto system_pool = memory_layout.GetKernelSystemPoolRegionPhysicalExtents();
const auto system_pool = memory_layout->GetKernelSystemPoolRegionPhysicalExtents();
// Initialize the memory manager.
memory_manager = std::make_unique<KMemoryManager>(system);
const auto& management_region = memory_layout.GetPoolManagementRegion();
const auto& management_region = memory_layout->GetPoolManagementRegion();
ASSERT(management_region.GetEndAddress() != 0);
memory_manager->Initialize(management_region.GetAddress(), management_region.GetSize());
@@ -773,7 +775,7 @@ struct KernelCore::Impl {
Kernel::KSharedMemory* hidbus_shared_mem{};
// Memory layout
KMemoryLayout memory_layout;
std::unique_ptr<KMemoryLayout> memory_layout;
// Threads used for services
std::unordered_set<std::shared_ptr<Kernel::ServiceThread>> service_threads;
@@ -1149,7 +1151,7 @@ const KWorkerTaskManager& KernelCore::WorkerTaskManager() const {
}
const KMemoryLayout& KernelCore::MemoryLayout() const {
return impl->memory_layout;
return *impl->memory_layout;
}
bool KernelCore::IsPhantomModeForSingleCore() const {