early-access version 2835

This commit is contained in:
pineappleEA
2022-07-15 04:00:50 +02:00
parent 5c0ee5eba6
commit 0e7aef7e36
1173 changed files with 55320 additions and 18881 deletions

File diff suppressed because it is too large Load Diff

186
externals/SDL/wayland-protocols/viewporter.xml vendored Executable file
View File

@@ -0,0 +1,186 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="viewporter">
<copyright>
Copyright © 2013-2016 Collabora, Ltd.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<interface name="wp_viewporter" version="1">
<description summary="surface cropping and scaling">
The global interface exposing surface cropping and scaling
capabilities is used to instantiate an interface extension for a
wl_surface object. This extended interface will then allow
cropping and scaling the surface contents, effectively
disconnecting the direct relationship between the buffer and the
surface size.
</description>
<request name="destroy" type="destructor">
<description summary="unbind from the cropping and scaling interface">
Informs the server that the client will not be using this
protocol object anymore. This does not affect any other objects,
wp_viewport objects included.
</description>
</request>
<enum name="error">
<entry name="viewport_exists" value="0"
summary="the surface already has a viewport object associated"/>
</enum>
<request name="get_viewport">
<description summary="extend surface interface for crop and scale">
Instantiate an interface extension for the given wl_surface to
crop and scale its content. If the given wl_surface already has
a wp_viewport object associated, the viewport_exists
protocol error is raised.
</description>
<arg name="id" type="new_id" interface="wp_viewport"
summary="the new viewport interface id"/>
<arg name="surface" type="object" interface="wl_surface"
summary="the surface"/>
</request>
</interface>
<interface name="wp_viewport" version="1">
<description summary="crop and scale interface to a wl_surface">
An additional interface to a wl_surface object, which allows the
client to specify the cropping and scaling of the surface
contents.
This interface works with two concepts: the source rectangle (src_x,
src_y, src_width, src_height), and the destination size (dst_width,
dst_height). The contents of the source rectangle are scaled to the
destination size, and content outside the source rectangle is ignored.
This state is double-buffered, and is applied on the next
wl_surface.commit.
The two parts of crop and scale state are independent: the source
rectangle, and the destination size. Initially both are unset, that
is, no scaling is applied. The whole of the current wl_buffer is
used as the source, and the surface size is as defined in
wl_surface.attach.
If the destination size is set, it causes the surface size to become
dst_width, dst_height. The source (rectangle) is scaled to exactly
this size. This overrides whatever the attached wl_buffer size is,
unless the wl_buffer is NULL. If the wl_buffer is NULL, the surface
has no content and therefore no size. Otherwise, the size is always
at least 1x1 in surface local coordinates.
If the source rectangle is set, it defines what area of the wl_buffer is
taken as the source. If the source rectangle is set and the destination
size is not set, then src_width and src_height must be integers, and the
surface size becomes the source rectangle size. This results in cropping
without scaling. If src_width or src_height are not integers and
destination size is not set, the bad_size protocol error is raised when
the surface state is applied.
The coordinate transformations from buffer pixel coordinates up to
the surface-local coordinates happen in the following order:
1. buffer_transform (wl_surface.set_buffer_transform)
2. buffer_scale (wl_surface.set_buffer_scale)
3. crop and scale (wp_viewport.set*)
This means, that the source rectangle coordinates of crop and scale
are given in the coordinates after the buffer transform and scale,
i.e. in the coordinates that would be the surface-local coordinates
if the crop and scale was not applied.
If src_x or src_y are negative, the bad_value protocol error is raised.
Otherwise, if the source rectangle is partially or completely outside of
the non-NULL wl_buffer, then the out_of_buffer protocol error is raised
when the surface state is applied. A NULL wl_buffer does not raise the
out_of_buffer error.
The x, y arguments of wl_surface.attach are applied as normal to
the surface. They indicate how many pixels to remove from the
surface size from the left and the top. In other words, they are
still in the surface-local coordinate system, just like dst_width
and dst_height are.
If the wl_surface associated with the wp_viewport is destroyed,
all wp_viewport requests except 'destroy' raise the protocol error
no_surface.
If the wp_viewport object is destroyed, the crop and scale
state is removed from the wl_surface. The change will be applied
on the next wl_surface.commit.
</description>
<request name="destroy" type="destructor">
<description summary="remove scaling and cropping from the surface">
The associated wl_surface's crop and scale state is removed.
The change is applied on the next wl_surface.commit.
</description>
</request>
<enum name="error">
<entry name="bad_value" value="0"
summary="negative or zero values in width or height"/>
<entry name="bad_size" value="1"
summary="destination size is not integer"/>
<entry name="out_of_buffer" value="2"
summary="source rectangle extends outside of the content area"/>
<entry name="no_surface" value="3"
summary="the wl_surface was destroyed"/>
</enum>
<request name="set_source">
<description summary="set the source rectangle for cropping">
Set the source rectangle of the associated wl_surface. See
wp_viewport for the description, and relation to the wl_buffer
size.
If all of x, y, width and height are -1.0, the source rectangle is
unset instead. Any other set of values where width or height are zero
or negative, or x or y are negative, raise the bad_value protocol
error.
The crop and scale state is double-buffered state, and will be
applied on the next wl_surface.commit.
</description>
<arg name="x" type="fixed" summary="source rectangle x"/>
<arg name="y" type="fixed" summary="source rectangle y"/>
<arg name="width" type="fixed" summary="source rectangle width"/>
<arg name="height" type="fixed" summary="source rectangle height"/>
</request>
<request name="set_destination">
<description summary="set the surface size for scaling">
Set the destination size of the associated wl_surface. See
wp_viewport for the description, and relation to the wl_buffer
size.
If width is -1 and height is -1, the destination size is unset
instead. Any other pair of values for width and height that
contains zero or negative values raises the bad_value protocol
error.
The crop and scale state is double-buffered state, and will be
applied on the next wl_surface.commit.
</description>
<arg name="width" type="int" summary="surface width"/>
<arg name="height" type="int" summary="surface height"/>
</request>
</interface>
</protocol>

View File

@@ -0,0 +1,220 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="xdg_output_unstable_v1">
<copyright>
Copyright © 2017 Red Hat Inc.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<description summary="Protocol to describe output regions">
This protocol aims at describing outputs in a way which is more in line
with the concept of an output on desktop oriented systems.
Some information are more specific to the concept of an output for
a desktop oriented system and may not make sense in other applications,
such as IVI systems for example.
Typically, the global compositor space on a desktop system is made of
a contiguous or overlapping set of rectangular regions.
Some of the information provided in this protocol might be identical
to their counterparts already available from wl_output, in which case
the information provided by this protocol should be preferred to their
equivalent in wl_output. The goal is to move the desktop specific
concepts (such as output location within the global compositor space,
the connector name and types, etc.) out of the core wl_output protocol.
Warning! The protocol described in this file is experimental and
backward incompatible changes may be made. Backward compatible
changes may be added together with the corresponding interface
version bump.
Backward incompatible changes are done by bumping the version
number in the protocol and interface names and resetting the
interface version. Once the protocol is to be declared stable,
the 'z' prefix and the version number in the protocol and
interface names are removed and the interface version number is
reset.
</description>
<interface name="zxdg_output_manager_v1" version="3">
<description summary="manage xdg_output objects">
A global factory interface for xdg_output objects.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the xdg_output_manager object">
Using this request a client can tell the server that it is not
going to use the xdg_output_manager object anymore.
Any objects already created through this instance are not affected.
</description>
</request>
<request name="get_xdg_output">
<description summary="create an xdg output from a wl_output">
This creates a new xdg_output object for the given wl_output.
</description>
<arg name="id" type="new_id" interface="zxdg_output_v1"/>
<arg name="output" type="object" interface="wl_output"/>
</request>
</interface>
<interface name="zxdg_output_v1" version="3">
<description summary="compositor logical output region">
An xdg_output describes part of the compositor geometry.
This typically corresponds to a monitor that displays part of the
compositor space.
For objects version 3 onwards, after all xdg_output properties have been
sent (when the object is created and when properties are updated), a
wl_output.done event is sent. This allows changes to the output
properties to be seen as atomic, even if they happen via multiple events.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the xdg_output object">
Using this request a client can tell the server that it is not
going to use the xdg_output object anymore.
</description>
</request>
<event name="logical_position">
<description summary="position of the output within the global compositor space">
The position event describes the location of the wl_output within
the global compositor space.
The logical_position event is sent after creating an xdg_output
(see xdg_output_manager.get_xdg_output) and whenever the location
of the output changes within the global compositor space.
</description>
<arg name="x" type="int"
summary="x position within the global compositor space"/>
<arg name="y" type="int"
summary="y position within the global compositor space"/>
</event>
<event name="logical_size">
<description summary="size of the output in the global compositor space">
The logical_size event describes the size of the output in the
global compositor space.
For example, a surface without any buffer scale, transformation
nor rotation set, with the size matching the logical_size will
have the same size as the corresponding output when displayed.
Most regular Wayland clients should not pay attention to the
logical size and would rather rely on xdg_shell interfaces.
Some clients such as Xwayland, however, need this to configure
their surfaces in the global compositor space as the compositor
may apply a different scale from what is advertised by the output
scaling property (to achieve fractional scaling, for example).
For example, for a wl_output mode 3840×2160 and a scale factor 2:
- A compositor not scaling the surface buffers will advertise a
logical size of 3840×2160,
- A compositor automatically scaling the surface buffers will
advertise a logical size of 1920×1080,
- A compositor using a fractional scale of 1.5 will advertise a
logical size of 2560×1440.
For example, for a wl_output mode 1920×1080 and a 90 degree rotation,
the compositor will advertise a logical size of 1080x1920.
The logical_size event is sent after creating an xdg_output
(see xdg_output_manager.get_xdg_output) and whenever the logical
size of the output changes, either as a result of a change in the
applied scale or because of a change in the corresponding output
mode(see wl_output.mode) or transform (see wl_output.transform).
</description>
<arg name="width" type="int"
summary="width in global compositor space"/>
<arg name="height" type="int"
summary="height in global compositor space"/>
</event>
<event name="done">
<description summary="all information about the output have been sent">
This event is sent after all other properties of an xdg_output
have been sent.
This allows changes to the xdg_output properties to be seen as
atomic, even if they happen via multiple events.
For objects version 3 onwards, this event is deprecated. Compositors
are not required to send it anymore and must send wl_output.done
instead.
</description>
</event>
<!-- Version 2 additions -->
<event name="name" since="2">
<description summary="name of this output">
Many compositors will assign names to their outputs, show them to the
user, allow them to be configured by name, etc. The client may wish to
know this name as well to offer the user similar behaviors.
The naming convention is compositor defined, but limited to
alphanumeric characters and dashes (-). Each name is unique among all
wl_output globals, but if a wl_output global is destroyed the same name
may be reused later. The names will also remain consistent across
sessions with the same hardware and software configuration.
Examples of names include 'HDMI-A-1', 'WL-1', 'X11-1', etc. However, do
not assume that the name is a reflection of an underlying DRM
connector, X11 connection, etc.
The name event is sent after creating an xdg_output (see
xdg_output_manager.get_xdg_output). This event is only sent once per
xdg_output, and the name does not change over the lifetime of the
wl_output global.
</description>
<arg name="name" type="string" summary="output name"/>
</event>
<event name="description" since="2">
<description summary="human-readable description of this output">
Many compositors can produce human-readable descriptions of their
outputs. The client may wish to know this description as well, to
communicate the user for various purposes.
The description is a UTF-8 string with no convention defined for its
contents. Examples might include 'Foocorp 11" Display' or 'Virtual X11
output via :1'.
The description event is sent after creating an xdg_output (see
xdg_output_manager.get_xdg_output) and whenever the description
changes. The description is optional, and may not be sent at all.
For objects of version 2 and lower, this event is only sent once per
xdg_output, and the description does not change over the lifetime of
the wl_output global.
</description>
<arg name="description" type="string" summary="output description"/>
</event>
</interface>
</protocol>