early-access version 4115

This commit is contained in:
pineappleEA 2024-02-05 15:05:53 +01:00
parent edd2e2886b
commit 3882b7c96c
18 changed files with 782 additions and 453 deletions

View File

@ -1,7 +1,7 @@
yuzu emulator early access
=============
This is the source code for early-access 4114.
This is the source code for early-access 4115.
## Legal Notice

View File

@ -107,6 +107,8 @@ add_library(common STATIC
quaternion.h
range_map.h
range_mutex.h
range_sets.h
range_sets.inc
reader_writer_queue.h
ring_buffer.h
${CMAKE_CURRENT_BINARY_DIR}/scm_rev.cpp
@ -121,6 +123,7 @@ add_library(common STATIC
settings_input.cpp
settings_input.h
settings_setting.h
slot_vector.h
socket_types.h
spin_lock.cpp
spin_lock.h

73
src/common/range_sets.h Executable file
View File

@ -0,0 +1,73 @@
// SPDX-FileCopyrightText: 2024 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory>
#include "common/common_types.h"
namespace Common {
template <typename AddressType>
class RangeSet {
public:
RangeSet();
~RangeSet();
RangeSet(RangeSet const&) = delete;
RangeSet& operator=(RangeSet const&) = delete;
RangeSet(RangeSet&& other);
RangeSet& operator=(RangeSet&& other);
void Add(AddressType base_address, size_t size);
void Subtract(AddressType base_address, size_t size);
void Clear();
bool Empty() const;
template <typename Func>
void ForEach(Func&& func) const;
template <typename Func>
void ForEachInRange(AddressType device_addr, size_t size, Func&& func) const;
private:
struct RangeSetImpl;
std::unique_ptr<RangeSetImpl> m_impl;
};
template <typename AddressType>
class OverlapRangeSet {
public:
OverlapRangeSet();
~OverlapRangeSet();
OverlapRangeSet(OverlapRangeSet const&) = delete;
OverlapRangeSet& operator=(OverlapRangeSet const&) = delete;
OverlapRangeSet(OverlapRangeSet&& other);
OverlapRangeSet& operator=(OverlapRangeSet&& other);
void Add(AddressType base_address, size_t size);
void Subtract(AddressType base_address, size_t size);
template <typename Func>
void Subtract(AddressType base_address, size_t size, Func&& on_delete);
void DeleteAll(AddressType base_address, size_t size);
void Clear();
bool Empty() const;
template <typename Func>
void ForEach(Func&& func) const;
template <typename Func>
void ForEachInRange(AddressType device_addr, size_t size, Func&& func) const;
private:
struct OverlapRangeSetImpl;
std::unique_ptr<OverlapRangeSetImpl> m_impl;
};
} // namespace Common

304
src/common/range_sets.inc Executable file
View File

@ -0,0 +1,304 @@
// SPDX-FileCopyrightText: 2024 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <limits>
#include <utility>
#include <boost/icl/interval.hpp>
#include <boost/icl/interval_base_set.hpp>
#include <boost/icl/interval_map.hpp>
#include <boost/icl/interval_set.hpp>
#include <boost/icl/split_interval_map.hpp>
#include <boost/pool/pool.hpp>
#include <boost/pool/pool_alloc.hpp>
#include <boost/pool/poolfwd.hpp>
#include "common/range_sets.h"
namespace Common {
namespace {
template <class T>
using RangeSetsAllocator =
boost::fast_pool_allocator<T, boost::default_user_allocator_new_delete,
boost::details::pool::default_mutex, 1024, 2048>;
}
template <typename AddressType>
struct RangeSet<AddressType>::RangeSetImpl {
using IntervalSet = boost::icl::interval_set<
AddressType, std::less, ICL_INTERVAL_INSTANCE(ICL_INTERVAL_DEFAULT, AddressType, std::less),
RangeSetsAllocator>;
using IntervalType = typename IntervalSet::interval_type;
RangeSetImpl() = default;
~RangeSetImpl() = default;
void Add(AddressType base_address, size_t size) {
AddressType end_address = base_address + static_cast<AddressType>(size);
IntervalType interval{base_address, end_address};
m_ranges_set.add(interval);
}
void Subtract(AddressType base_address, size_t size) {
AddressType end_address = base_address + static_cast<AddressType>(size);
IntervalType interval{base_address, end_address};
m_ranges_set.subtract(interval);
}
template <typename Func>
void ForEach(Func&& func) const {
if (m_ranges_set.empty()) {
return;
}
auto it = m_ranges_set.begin();
auto end_it = m_ranges_set.end();
for (; it != end_it; it++) {
const AddressType inter_addr_end = it->upper();
const AddressType inter_addr = it->lower();
func(inter_addr, inter_addr_end);
}
}
template <typename Func>
void ForEachInRange(AddressType base_addr, size_t size, Func&& func) const {
if (m_ranges_set.empty()) {
return;
}
const AddressType start_address = base_addr;
const AddressType end_address = start_address + size;
const RangeSetImpl::IntervalType search_interval{start_address, end_address};
auto it = m_ranges_set.lower_bound(search_interval);
if (it == m_ranges_set.end()) {
return;
}
auto end_it = m_ranges_set.upper_bound(search_interval);
for (; it != end_it; it++) {
AddressType inter_addr_end = it->upper();
AddressType inter_addr = it->lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
if (inter_addr < start_address) {
inter_addr = start_address;
}
func(inter_addr, inter_addr_end);
}
}
IntervalSet m_ranges_set;
};
template <typename AddressType>
struct OverlapRangeSet<AddressType>::OverlapRangeSetImpl {
using IntervalSet = boost::icl::split_interval_map<
AddressType, s32, boost::icl::partial_enricher, std::less, boost::icl::inplace_plus,
boost::icl::inter_section,
ICL_INTERVAL_INSTANCE(ICL_INTERVAL_DEFAULT, AddressType, std::less), RangeSetsAllocator>;
using IntervalType = typename IntervalSet::interval_type;
OverlapRangeSetImpl() = default;
~OverlapRangeSetImpl() = default;
void Add(AddressType base_address, size_t size) {
AddressType end_address = base_address + static_cast<AddressType>(size);
IntervalType interval{base_address, end_address};
m_split_ranges_set += std::make_pair(interval, 1);
}
template <bool has_on_delete, typename Func>
void Subtract(AddressType base_address, size_t size, s32 amount,
[[maybe_unused]] Func&& on_delete) {
if (m_split_ranges_set.empty()) {
return;
}
AddressType end_address = base_address + static_cast<AddressType>(size);
IntervalType interval{base_address, end_address};
bool any_removals = false;
m_split_ranges_set += std::make_pair(interval, -amount);
do {
any_removals = false;
auto it = m_split_ranges_set.lower_bound(interval);
if (it == m_split_ranges_set.end()) {
return;
}
auto end_it = m_split_ranges_set.upper_bound(interval);
for (; it != end_it; it++) {
if (it->second <= 0) {
if constexpr (has_on_delete) {
if (it->second == 0) {
on_delete(it->first.lower(), it->first.upper());
}
}
any_removals = true;
m_split_ranges_set.erase(it);
break;
}
}
} while (any_removals);
}
template <typename Func>
void ForEach(Func&& func) const {
if (m_split_ranges_set.empty()) {
return;
}
auto it = m_split_ranges_set.begin();
auto end_it = m_split_ranges_set.end();
for (; it != end_it; it++) {
const AddressType inter_addr_end = it->first.upper();
const AddressType inter_addr = it->first.lower();
func(inter_addr, inter_addr_end, it->second);
}
}
template <typename Func>
void ForEachInRange(AddressType base_address, size_t size, Func&& func) const {
if (m_split_ranges_set.empty()) {
return;
}
const AddressType start_address = base_address;
const AddressType end_address = start_address + size;
const OverlapRangeSetImpl::IntervalType search_interval{start_address, end_address};
auto it = m_split_ranges_set.lower_bound(search_interval);
if (it == m_split_ranges_set.end()) {
return;
}
auto end_it = m_split_ranges_set.upper_bound(search_interval);
for (; it != end_it; it++) {
auto& inter = it->first;
AddressType inter_addr_end = inter.upper();
AddressType inter_addr = inter.lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
if (inter_addr < start_address) {
inter_addr = start_address;
}
func(inter_addr, inter_addr_end, it->second);
}
}
IntervalSet m_split_ranges_set;
};
template <typename AddressType>
RangeSet<AddressType>::RangeSet() {
m_impl = std::make_unique<RangeSet<AddressType>::RangeSetImpl>();
}
template <typename AddressType>
RangeSet<AddressType>::~RangeSet() = default;
template <typename AddressType>
RangeSet<AddressType>::RangeSet(RangeSet&& other) {
m_impl = std::make_unique<RangeSet<AddressType>::RangeSetImpl>();
m_impl->m_ranges_set = std::move(other.m_impl->m_ranges_set);
}
template <typename AddressType>
RangeSet<AddressType>& RangeSet<AddressType>::operator=(RangeSet&& other) {
m_impl->m_ranges_set = std::move(other.m_impl->m_ranges_set);
}
template <typename AddressType>
void RangeSet<AddressType>::Add(AddressType base_address, size_t size) {
m_impl->Add(base_address, size);
}
template <typename AddressType>
void RangeSet<AddressType>::Subtract(AddressType base_address, size_t size) {
m_impl->Subtract(base_address, size);
}
template <typename AddressType>
void RangeSet<AddressType>::Clear() {
m_impl->m_ranges_set.clear();
}
template <typename AddressType>
bool RangeSet<AddressType>::Empty() const {
return m_impl->m_ranges_set.empty();
}
template <typename AddressType>
template <typename Func>
void RangeSet<AddressType>::ForEach(Func&& func) const {
m_impl->ForEach(std::move(func));
}
template <typename AddressType>
template <typename Func>
void RangeSet<AddressType>::ForEachInRange(AddressType base_address, size_t size,
Func&& func) const {
m_impl->ForEachInRange(base_address, size, std::move(func));
}
template <typename AddressType>
OverlapRangeSet<AddressType>::OverlapRangeSet() {
m_impl = std::make_unique<OverlapRangeSet<AddressType>::OverlapRangeSetImpl>();
}
template <typename AddressType>
OverlapRangeSet<AddressType>::~OverlapRangeSet() = default;
template <typename AddressType>
OverlapRangeSet<AddressType>::OverlapRangeSet(OverlapRangeSet&& other) {
m_impl = std::make_unique<OverlapRangeSet<AddressType>::OverlapRangeSetImpl>();
m_impl->m_split_ranges_set = std::move(other.m_impl->m_split_ranges_set);
}
template <typename AddressType>
OverlapRangeSet<AddressType>& OverlapRangeSet<AddressType>::operator=(OverlapRangeSet&& other) {
m_impl->m_split_ranges_set = std::move(other.m_impl->m_split_ranges_set);
}
template <typename AddressType>
void OverlapRangeSet<AddressType>::Add(AddressType base_address, size_t size) {
m_impl->Add(base_address, size);
}
template <typename AddressType>
void OverlapRangeSet<AddressType>::Subtract(AddressType base_address, size_t size) {
m_impl->template Subtract<false>(base_address, size, 1, [](AddressType, AddressType) {});
}
template <typename AddressType>
template <typename Func>
void OverlapRangeSet<AddressType>::Subtract(AddressType base_address, size_t size,
Func&& on_delete) {
m_impl->template Subtract<true, Func>(base_address, size, 1, std::move(on_delete));
}
template <typename AddressType>
void OverlapRangeSet<AddressType>::DeleteAll(AddressType base_address, size_t size) {
m_impl->template Subtract<false>(base_address, size, std::numeric_limits<s32>::max(),
[](AddressType, AddressType) {});
}
template <typename AddressType>
void OverlapRangeSet<AddressType>::Clear() {
m_impl->m_split_ranges_set.clear();
}
template <typename AddressType>
bool OverlapRangeSet<AddressType>::Empty() const {
return m_impl->m_split_ranges_set.empty();
}
template <typename AddressType>
template <typename Func>
void OverlapRangeSet<AddressType>::ForEach(Func&& func) const {
m_impl->ForEach(func);
}
template <typename AddressType>
template <typename Func>
void OverlapRangeSet<AddressType>::ForEachInRange(AddressType base_address, size_t size,
Func&& func) const {
m_impl->ForEachInRange(base_address, size, std::move(func));
}
} // namespace Common

227
src/common/slot_vector.h Executable file
View File

@ -0,0 +1,227 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <algorithm>
#include <bit>
#include <numeric>
#include <type_traits>
#include <utility>
#include <vector>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/polyfill_ranges.h"
namespace Common {
struct SlotId {
static constexpr u32 INVALID_INDEX = std::numeric_limits<u32>::max();
constexpr auto operator<=>(const SlotId&) const noexcept = default;
constexpr explicit operator bool() const noexcept {
return index != INVALID_INDEX;
}
u32 index = INVALID_INDEX;
};
template <class T>
requires std::is_nothrow_move_assignable_v<T> && std::is_nothrow_move_constructible_v<T>
class SlotVector {
public:
class Iterator {
friend SlotVector<T>;
public:
constexpr Iterator() = default;
Iterator& operator++() noexcept {
const u64* const bitset = slot_vector->stored_bitset.data();
const u32 size = static_cast<u32>(slot_vector->stored_bitset.size()) * 64;
if (id.index < size) {
do {
++id.index;
} while (id.index < size && !IsValid(bitset));
if (id.index == size) {
id.index = SlotId::INVALID_INDEX;
}
}
return *this;
}
Iterator operator++(int) noexcept {
const Iterator copy{*this};
++*this;
return copy;
}
bool operator==(const Iterator& other) const noexcept {
return id.index == other.id.index;
}
bool operator!=(const Iterator& other) const noexcept {
return id.index != other.id.index;
}
std::pair<SlotId, T*> operator*() const noexcept {
return {id, std::addressof((*slot_vector)[id])};
}
T* operator->() const noexcept {
return std::addressof((*slot_vector)[id]);
}
private:
Iterator(SlotVector<T>* slot_vector_, SlotId id_) noexcept
: slot_vector{slot_vector_}, id{id_} {}
bool IsValid(const u64* bitset) const noexcept {
return ((bitset[id.index / 64] >> (id.index % 64)) & 1) != 0;
}
SlotVector<T>* slot_vector;
SlotId id;
};
~SlotVector() noexcept {
size_t index = 0;
for (u64 bits : stored_bitset) {
for (size_t bit = 0; bits; ++bit, bits >>= 1) {
if ((bits & 1) != 0) {
values[index + bit].object.~T();
}
}
index += 64;
}
delete[] values;
}
[[nodiscard]] T& operator[](SlotId id) noexcept {
ValidateIndex(id);
return values[id.index].object;
}
[[nodiscard]] const T& operator[](SlotId id) const noexcept {
ValidateIndex(id);
return values[id.index].object;
}
template <typename... Args>
[[nodiscard]] SlotId insert(Args&&... args) noexcept {
const u32 index = FreeValueIndex();
new (&values[index].object) T(std::forward<Args>(args)...);
SetStorageBit(index);
return SlotId{index};
}
void erase(SlotId id) noexcept {
values[id.index].object.~T();
free_list.push_back(id.index);
ResetStorageBit(id.index);
}
[[nodiscard]] Iterator begin() noexcept {
const auto it = std::ranges::find_if(stored_bitset, [](u64 value) { return value != 0; });
if (it == stored_bitset.end()) {
return end();
}
const u32 word_index = static_cast<u32>(std::distance(it, stored_bitset.begin()));
const SlotId first_id{word_index * 64 + static_cast<u32>(std::countr_zero(*it))};
return Iterator(this, first_id);
}
[[nodiscard]] Iterator end() noexcept {
return Iterator(this, SlotId{SlotId::INVALID_INDEX});
}
[[nodiscard]] size_t size() const noexcept {
return values_capacity - free_list.size();
}
private:
struct NonTrivialDummy {
NonTrivialDummy() noexcept {}
};
union Entry {
Entry() noexcept : dummy{} {}
~Entry() noexcept {}
NonTrivialDummy dummy;
T object;
};
void SetStorageBit(u32 index) noexcept {
stored_bitset[index / 64] |= u64(1) << (index % 64);
}
void ResetStorageBit(u32 index) noexcept {
stored_bitset[index / 64] &= ~(u64(1) << (index % 64));
}
bool ReadStorageBit(u32 index) noexcept {
return ((stored_bitset[index / 64] >> (index % 64)) & 1) != 0;
}
void ValidateIndex(SlotId id) const noexcept {
DEBUG_ASSERT(id);
DEBUG_ASSERT(id.index / 64 < stored_bitset.size());
DEBUG_ASSERT(((stored_bitset[id.index / 64] >> (id.index % 64)) & 1) != 0);
}
[[nodiscard]] u32 FreeValueIndex() noexcept {
if (free_list.empty()) {
Reserve(values_capacity ? (values_capacity << 1) : 1);
}
const u32 free_index = free_list.back();
free_list.pop_back();
return free_index;
}
void Reserve(size_t new_capacity) noexcept {
Entry* const new_values = new Entry[new_capacity];
size_t index = 0;
for (u64 bits : stored_bitset) {
for (size_t bit = 0; bits; ++bit, bits >>= 1) {
const size_t i = index + bit;
if ((bits & 1) == 0) {
continue;
}
T& old_value = values[i].object;
new (&new_values[i].object) T(std::move(old_value));
old_value.~T();
}
index += 64;
}
stored_bitset.resize((new_capacity + 63) / 64);
const size_t old_free_size = free_list.size();
free_list.resize(old_free_size + (new_capacity - values_capacity));
std::iota(free_list.begin() + old_free_size, free_list.end(),
static_cast<u32>(values_capacity));
delete[] values;
values = new_values;
values_capacity = new_capacity;
}
Entry* values = nullptr;
size_t values_capacity = 0;
std::vector<u64> stored_bitset;
std::vector<u32> free_list;
};
} // namespace Common
template <>
struct std::hash<Common::SlotId> {
size_t operator()(const Common::SlotId& id) const noexcept {
return std::hash<u32>{}(id.index);
}
};

View File

@ -3,110 +3,21 @@
#include <mutex>
#include <boost/container/small_vector.hpp>
#define BOOST_NO_MT
#include <boost/pool/detail/mutex.hpp>
#undef BOOST_NO_MT
#include <boost/icl/interval.hpp>
#include <boost/icl/interval_base_set.hpp>
#include <boost/icl/interval_set.hpp>
#include <boost/icl/split_interval_map.hpp>
#include <boost/pool/pool.hpp>
#include <boost/pool/pool_alloc.hpp>
#include <boost/pool/poolfwd.hpp>
#include "common/range_sets.h"
#include "common/range_sets.inc"
#include "core/hle/service/nvdrv/core/heap_mapper.h"
#include "video_core/host1x/host1x.h"
namespace boost {
template <typename T>
class fast_pool_allocator<T, default_user_allocator_new_delete, details::pool::null_mutex, 4096, 0>;
}
namespace Service::Nvidia::NvCore {
using IntervalCompare = std::less<DAddr>;
using IntervalInstance = boost::icl::interval_type_default<DAddr, std::less>;
using IntervalAllocator = boost::fast_pool_allocator<DAddr>;
using IntervalSet = boost::icl::interval_set<DAddr>;
using IntervalType = typename IntervalSet::interval_type;
template <typename Type>
struct counter_add_functor : public boost::icl::identity_based_inplace_combine<Type> {
// types
typedef counter_add_functor<Type> type;
typedef boost::icl::identity_based_inplace_combine<Type> base_type;
// public member functions
void operator()(Type& current, const Type& added) const {
current += added;
if (current < base_type::identity_element()) {
current = base_type::identity_element();
}
}
// public static functions
static void version(Type&){};
};
using OverlapCombine = counter_add_functor<int>;
using OverlapSection = boost::icl::inter_section<int>;
using OverlapCounter = boost::icl::split_interval_map<DAddr, int>;
struct HeapMapper::HeapMapperInternal {
HeapMapperInternal(Tegra::Host1x::Host1x& host1x) : device_memory{host1x.MemoryManager()} {}
HeapMapperInternal(Tegra::Host1x::Host1x& host1x) : m_device_memory{host1x.MemoryManager()} {}
~HeapMapperInternal() = default;
template <typename Func>
void ForEachInOverlapCounter(OverlapCounter& current_range, VAddr cpu_addr, u64 size,
Func&& func) {
const DAddr start_address = cpu_addr;
const DAddr end_address = start_address + size;
const IntervalType search_interval{start_address, end_address};
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
auto& inter = it->first;
DAddr inter_addr_end = inter.upper();
DAddr inter_addr = inter.lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
if (inter_addr < start_address) {
inter_addr = start_address;
}
func(inter_addr, inter_addr_end, it->second);
}
}
void RemoveEachInOverlapCounter(OverlapCounter& current_range,
const IntervalType search_interval, int subtract_value) {
bool any_removals = false;
current_range.add(std::make_pair(search_interval, subtract_value));
do {
any_removals = false;
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
if (it->second <= 0) {
any_removals = true;
current_range.erase(it);
break;
}
}
} while (any_removals);
}
IntervalSet base_set;
OverlapCounter mapping_overlaps;
Tegra::MaxwellDeviceMemoryManager& device_memory;
std::mutex guard;
Common::RangeSet<VAddr> m_temporary_set;
Common::OverlapRangeSet<VAddr> m_mapped_ranges;
Tegra::MaxwellDeviceMemoryManager& m_device_memory;
std::mutex m_guard;
};
HeapMapper::HeapMapper(VAddr start_vaddress, DAddr start_daddress, size_t size, Core::Asid asid,
@ -116,60 +27,48 @@ HeapMapper::HeapMapper(VAddr start_vaddress, DAddr start_daddress, size_t size,
}
HeapMapper::~HeapMapper() {
m_internal->device_memory.Unmap(m_daddress, m_size);
// Unmap whatever has been mapped.
m_internal->m_mapped_ranges.ForEach([this](VAddr start_addr, VAddr end_addr, s32 count) {
const size_t sub_size = end_addr - start_addr;
const size_t offset = start_addr - m_vaddress;
m_internal->m_device_memory.Unmap(m_daddress + offset, sub_size);
});
}
DAddr HeapMapper::Map(VAddr start, size_t size) {
std::scoped_lock lk(m_internal->guard);
m_internal->base_set.clear();
const IntervalType interval{start, start + size};
m_internal->base_set.insert(interval);
m_internal->ForEachInOverlapCounter(m_internal->mapping_overlaps, start, size,
[this](VAddr start_addr, VAddr end_addr, int) {
const IntervalType other{start_addr, end_addr};
m_internal->base_set.subtract(other);
std::scoped_lock lk(m_internal->m_guard);
// Add the mapping range to a temporary range set.
m_internal->m_temporary_set.Clear();
m_internal->m_temporary_set.Add(start, size);
// Remove anything that's already mapped from the temporary range set.
m_internal->m_mapped_ranges.ForEachInRange(
start, size, [this](VAddr start_addr, VAddr end_addr, s32) {
m_internal->m_temporary_set.Subtract(start_addr, end_addr - start_addr);
});
if (!m_internal->base_set.empty()) {
auto it = m_internal->base_set.begin();
auto end_it = m_internal->base_set.end();
for (; it != end_it; it++) {
const VAddr inter_addr_end = it->upper();
const VAddr inter_addr = it->lower();
const size_t offset = inter_addr - m_vaddress;
const size_t sub_size = inter_addr_end - inter_addr;
m_internal->device_memory.Map(m_daddress + offset, m_vaddress + offset, sub_size,
m_asid);
}
}
m_internal->mapping_overlaps += std::make_pair(interval, 1);
m_internal->base_set.clear();
return m_daddress + (start - m_vaddress);
// Map anything that has not been mapped yet.
m_internal->m_temporary_set.ForEach([this](VAddr start_addr, VAddr end_addr) {
const size_t sub_size = end_addr - start_addr;
const size_t offset = start_addr - m_vaddress;
m_internal->m_device_memory.Map(m_daddress + offset, m_vaddress + offset, sub_size, m_asid);
});
// Add the mapping range to the split map, to register the map and overlaps.
m_internal->m_mapped_ranges.Add(start, size);
m_internal->m_temporary_set.Clear();
return m_daddress + static_cast<DAddr>(start - m_vaddress);
}
void HeapMapper::Unmap(VAddr start, size_t size) {
std::scoped_lock lk(m_internal->guard);
m_internal->base_set.clear();
m_internal->ForEachInOverlapCounter(m_internal->mapping_overlaps, start, size,
[this](VAddr start_addr, VAddr end_addr, int value) {
if (value <= 1) {
const IntervalType other{start_addr, end_addr};
m_internal->base_set.insert(other);
}
std::scoped_lock lk(m_internal->m_guard);
// Just subtract the range and whatever is deleted, unmap it.
m_internal->m_mapped_ranges.Subtract(start, size, [this](VAddr start_addr, VAddr end_addr) {
const size_t sub_size = end_addr - start_addr;
const size_t offset = start_addr - m_vaddress;
m_internal->m_device_memory.Unmap(m_daddress + offset, sub_size);
});
if (!m_internal->base_set.empty()) {
auto it = m_internal->base_set.begin();
auto end_it = m_internal->base_set.end();
for (; it != end_it; it++) {
const VAddr inter_addr_end = it->upper();
const VAddr inter_addr = it->lower();
const size_t offset = inter_addr - m_vaddress;
const size_t sub_size = inter_addr_end - inter_addr;
m_internal->device_memory.Unmap(m_daddress + offset, sub_size);
}
}
const IntervalType to_remove{start, start + size};
m_internal->RemoveEachInOverlapCounter(m_internal->mapping_overlaps, to_remove, -1);
m_internal->base_set.clear();
}
} // namespace Service::Nvidia::NvCore

View File

@ -274,7 +274,6 @@ add_library(video_core STATIC
texture_cache/image_view_info.h
texture_cache/render_targets.h
texture_cache/samples_helper.h
texture_cache/slot_vector.h
texture_cache/texture_cache.cpp
texture_cache/texture_cache.h
texture_cache/texture_cache_base.h

View File

@ -7,6 +7,7 @@
#include <memory>
#include <numeric>
#include "common/range_sets.inc"
#include "video_core/buffer_cache/buffer_cache_base.h"
#include "video_core/guest_memory.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
@ -20,7 +21,7 @@ BufferCache<P>::BufferCache(Tegra::MaxwellDeviceMemoryManager& device_memory_, R
: runtime{runtime_}, device_memory{device_memory_}, memory_tracker{device_memory} {
// Ensure the first slot is used for the null buffer
void(slot_buffers.insert(runtime, NullBufferParams{}));
common_ranges.clear();
gpu_modified_ranges.Clear();
inline_buffer_id = NULL_BUFFER_ID;
if (!runtime.CanReportMemoryUsage()) {
@ -43,6 +44,9 @@ BufferCache<P>::BufferCache(Tegra::MaxwellDeviceMemoryManager& device_memory_, R
DEFAULT_CRITICAL_MEMORY));
}
template <class P>
BufferCache<P>::~BufferCache() = default;
template <class P>
void BufferCache<P>::RunGarbageCollector() {
const bool aggressive_gc = total_used_memory >= critical_memory;
@ -96,20 +100,17 @@ void BufferCache<P>::TickFrame() {
++frame_tick;
delayed_destruction_ring.Tick();
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
for (auto& buffer : async_buffers_death_ring) {
runtime.FreeDeferredStagingBuffer(buffer);
}
async_buffers_death_ring.clear();
}
}
template <class P>
void BufferCache<P>::WriteMemory(DAddr device_addr, u64 size) {
if (memory_tracker.IsRegionGpuModified(device_addr, size)) {
const IntervalType subtract_interval{device_addr, device_addr + size};
ClearDownload(subtract_interval);
common_ranges.subtract(subtract_interval);
ClearDownload(device_addr, size);
gpu_modified_ranges.Subtract(device_addr, size);
}
memory_tracker.MarkRegionAsCpuModified(device_addr, size);
}
@ -174,11 +175,11 @@ void BufferCache<P>::DownloadMemory(DAddr device_addr, u64 size) {
}
template <class P>
void BufferCache<P>::ClearDownload(IntervalType subtract_interval) {
RemoveEachInOverlapCounter(async_downloads, subtract_interval, -1024);
uncommitted_ranges.subtract(subtract_interval);
for (auto& interval_set : committed_ranges) {
interval_set.subtract(subtract_interval);
void BufferCache<P>::ClearDownload(DAddr device_addr, u64 size) {
async_downloads.DeleteAll(device_addr, size);
uncommitted_gpu_modified_ranges.Subtract(device_addr, size);
for (auto& interval_set : committed_gpu_modified_ranges) {
interval_set.Subtract(device_addr, size);
}
}
@ -195,8 +196,7 @@ bool BufferCache<P>::DMACopy(GPUVAddr src_address, GPUVAddr dest_address, u64 am
return false;
}
const IntervalType subtract_interval{*cpu_dest_address, *cpu_dest_address + amount};
ClearDownload(subtract_interval);
ClearDownload(*cpu_dest_address, amount);
BufferId buffer_a;
BufferId buffer_b;
@ -215,21 +215,20 @@ bool BufferCache<P>::DMACopy(GPUVAddr src_address, GPUVAddr dest_address, u64 am
.size = amount,
}};
boost::container::small_vector<IntervalType, 4> tmp_intervals;
boost::container::small_vector<std::pair<DAddr, size_t>, 4> tmp_intervals;
auto mirror = [&](DAddr base_address, DAddr base_address_end) {
const u64 size = base_address_end - base_address;
const DAddr diff = base_address - *cpu_src_address;
const DAddr new_base_address = *cpu_dest_address + diff;
const IntervalType add_interval{new_base_address, new_base_address + size};
tmp_intervals.push_back(add_interval);
uncommitted_ranges.add(add_interval);
tmp_intervals.push_back({new_base_address, size});
uncommitted_gpu_modified_ranges.Add(new_base_address, size);
};
ForEachInRangeSet(common_ranges, *cpu_src_address, amount, mirror);
gpu_modified_ranges.ForEachInRange(*cpu_src_address, amount, mirror);
// This subtraction in this order is important for overlapping copies.
common_ranges.subtract(subtract_interval);
gpu_modified_ranges.Subtract(*cpu_dest_address, amount);
const bool has_new_downloads = tmp_intervals.size() != 0;
for (const IntervalType& add_interval : tmp_intervals) {
common_ranges.add(add_interval);
for (const auto& pair : tmp_intervals) {
gpu_modified_ranges.Add(pair.first, pair.second);
}
const auto& copy = copies[0];
src_buffer.MarkUsage(copy.src_offset, copy.size);
@ -257,9 +256,8 @@ bool BufferCache<P>::DMAClear(GPUVAddr dst_address, u64 amount, u32 value) {
}
const size_t size = amount * sizeof(u32);
const IntervalType subtract_interval{*cpu_dst_address, *cpu_dst_address + size};
ClearDownload(subtract_interval);
common_ranges.subtract(subtract_interval);
ClearDownload(*cpu_dst_address, size);
gpu_modified_ranges.Subtract(*cpu_dst_address, size);
const BufferId buffer = FindBuffer(*cpu_dst_address, static_cast<u32>(size));
Buffer& dest_buffer = slot_buffers[buffer];
@ -300,11 +298,11 @@ std::pair<typename P::Buffer*, u32> BufferCache<P>::ObtainCPUBuffer(
MarkWrittenBuffer(buffer_id, device_addr, size);
break;
case ObtainBufferOperation::DiscardWrite: {
DAddr device_addr_start = Common::AlignDown(device_addr, 64);
DAddr device_addr_end = Common::AlignUp(device_addr + size, 64);
IntervalType interval{device_addr_start, device_addr_end};
ClearDownload(interval);
common_ranges.subtract(interval);
const DAddr device_addr_start = Common::AlignDown(device_addr, 64);
const DAddr device_addr_end = Common::AlignUp(device_addr + size, 64);
const size_t new_size = device_addr_end - device_addr_start;
ClearDownload(device_addr_start, new_size);
gpu_modified_ranges.Subtract(device_addr_start, new_size);
break;
}
default:
@ -504,46 +502,40 @@ void BufferCache<P>::FlushCachedWrites() {
template <class P>
bool BufferCache<P>::HasUncommittedFlushes() const noexcept {
return !uncommitted_ranges.empty() || !committed_ranges.empty();
return !uncommitted_gpu_modified_ranges.Empty() || !committed_gpu_modified_ranges.empty();
}
template <class P>
void BufferCache<P>::AccumulateFlushes() {
if (uncommitted_ranges.empty()) {
if (uncommitted_gpu_modified_ranges.Empty()) {
return;
}
committed_ranges.emplace_back(std::move(uncommitted_ranges));
committed_gpu_modified_ranges.emplace_back(std::move(uncommitted_gpu_modified_ranges));
}
template <class P>
bool BufferCache<P>::ShouldWaitAsyncFlushes() const noexcept {
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
return (!async_buffers.empty() && async_buffers.front().has_value());
} else {
return false;
}
}
template <class P>
void BufferCache<P>::CommitAsyncFlushesHigh() {
AccumulateFlushes();
if (committed_ranges.empty()) {
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
if (committed_gpu_modified_ranges.empty()) {
async_buffers.emplace_back(std::optional<Async_Buffer>{});
}
return;
}
MICROPROFILE_SCOPE(GPU_DownloadMemory);
auto it = committed_ranges.begin();
while (it != committed_ranges.end()) {
auto it = committed_gpu_modified_ranges.begin();
while (it != committed_gpu_modified_ranges.end()) {
auto& current_intervals = *it;
auto next_it = std::next(it);
while (next_it != committed_ranges.end()) {
for (auto& interval : *next_it) {
current_intervals.subtract(interval);
}
while (next_it != committed_gpu_modified_ranges.end()) {
next_it->ForEach([&current_intervals](DAddr start, DAddr end) {
current_intervals.Subtract(start, end - start);
});
next_it++;
}
it++;
@ -552,10 +544,10 @@ void BufferCache<P>::CommitAsyncFlushesHigh() {
boost::container::small_vector<std::pair<BufferCopy, BufferId>, 16> downloads;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
for (const IntervalSet& intervals : committed_ranges) {
for (auto& interval : intervals) {
const std::size_t size = interval.upper() - interval.lower();
const DAddr device_addr = interval.lower();
for (const Common::RangeSet<DAddr>& range_set : committed_gpu_modified_ranges) {
range_set.ForEach([&](DAddr interval_lower, DAddr interval_upper) {
const std::size_t size = interval_upper - interval_lower;
const DAddr device_addr = interval_lower;
ForEachBufferInRange(device_addr, size, [&](BufferId buffer_id, Buffer& buffer) {
const DAddr buffer_start = buffer.CpuAddr();
const DAddr buffer_end = buffer_start + buffer.SizeBytes();
@ -583,22 +575,19 @@ void BufferCache<P>::CommitAsyncFlushesHigh() {
largest_copy = std::max(largest_copy, new_size);
};
ForEachInRangeSet(common_ranges, device_addr_out, range_size, add_download);
gpu_modified_ranges.ForEachInRange(device_addr_out, range_size,
add_download);
});
});
});
}
}
committed_ranges.clear();
committed_gpu_modified_ranges.clear();
if (downloads.empty()) {
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
async_buffers.emplace_back(std::optional<Async_Buffer>{});
}
return;
}
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
auto download_staging = runtime.DownloadStagingBuffer(total_size_bytes, true);
boost::container::small_vector<BufferCopy, 4> normalized_copies;
IntervalSet new_async_range{};
runtime.PreCopyBarrier();
for (auto& [copy, buffer_id] : downloads) {
copy.dst_offset += download_staging.offset;
@ -606,9 +595,8 @@ void BufferCache<P>::CommitAsyncFlushesHigh() {
BufferCopy second_copy{copy};
Buffer& buffer = slot_buffers[buffer_id];
second_copy.src_offset = static_cast<size_t>(buffer.CpuAddr()) + copy.src_offset;
DAddr orig_device_addr = static_cast<DAddr>(second_copy.src_offset);
const IntervalType base_interval{orig_device_addr, orig_device_addr + copy.size};
async_downloads += std::make_pair(base_interval, 1);
const DAddr orig_device_addr = static_cast<DAddr>(second_copy.src_offset);
async_downloads.Add(orig_device_addr, copy.size);
buffer.MarkUsage(copy.src_offset, copy.size);
runtime.CopyBuffer(download_staging.buffer, buffer, copies, false);
normalized_copies.push_back(second_copy);
@ -616,44 +604,6 @@ void BufferCache<P>::CommitAsyncFlushesHigh() {
runtime.PostCopyBarrier();
pending_downloads.emplace_back(std::move(normalized_copies));
async_buffers.emplace_back(download_staging);
} else {
if (!Settings::IsGPULevelHigh()) {
committed_ranges.clear();
uncommitted_ranges.clear();
} else {
if constexpr (USE_MEMORY_MAPS) {
auto download_staging = runtime.DownloadStagingBuffer(total_size_bytes);
runtime.PreCopyBarrier();
for (auto& [copy, buffer_id] : downloads) {
// Have in mind the staging buffer offset for the copy
copy.dst_offset += download_staging.offset;
const std::array copies{copy};
Buffer& buffer = slot_buffers[buffer_id];
buffer.MarkUsage(copy.src_offset, copy.size);
runtime.CopyBuffer(download_staging.buffer, buffer, copies, false);
}
runtime.PostCopyBarrier();
runtime.Finish();
for (const auto& [copy, buffer_id] : downloads) {
const Buffer& buffer = slot_buffers[buffer_id];
const DAddr device_addr = buffer.CpuAddr() + copy.src_offset;
// Undo the modified offset
const u64 dst_offset = copy.dst_offset - download_staging.offset;
const u8* read_mapped_memory = download_staging.mapped_span.data() + dst_offset;
device_memory.WriteBlockUnsafe(device_addr, read_mapped_memory, copy.size);
}
} else {
const std::span<u8> immediate_buffer = ImmediateBuffer(largest_copy);
for (const auto& [copy, buffer_id] : downloads) {
Buffer& buffer = slot_buffers[buffer_id];
buffer.ImmediateDownload(copy.src_offset,
immediate_buffer.subspan(0, copy.size));
const DAddr device_addr = buffer.CpuAddr() + copy.src_offset;
device_memory.WriteBlockUnsafe(device_addr, immediate_buffer.data(), copy.size);
}
}
}
}
}
template <class P>
@ -676,7 +626,6 @@ void BufferCache<P>::PopAsyncBuffers() {
async_buffers.pop_front();
return;
}
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
auto& downloads = pending_downloads.front();
auto& async_buffer = async_buffers.front();
u8* base = async_buffer->mapped_span.data();
@ -685,28 +634,23 @@ void BufferCache<P>::PopAsyncBuffers() {
const DAddr device_addr = static_cast<DAddr>(copy.src_offset);
const u64 dst_offset = copy.dst_offset - base_offset;
const u8* read_mapped_memory = base + dst_offset;
ForEachInOverlapCounter(
async_downloads, device_addr, copy.size, [&](DAddr start, DAddr end, int count) {
async_downloads.ForEachInRange(device_addr, copy.size, [&](DAddr start, DAddr end, s32) {
device_memory.WriteBlockUnsafe(start, &read_mapped_memory[start - device_addr],
end - start);
if (count == 1) {
const IntervalType base_interval{start, end};
common_ranges.subtract(base_interval);
}
});
const IntervalType subtract_interval{device_addr, device_addr + copy.size};
RemoveEachInOverlapCounter(async_downloads, subtract_interval, -1);
async_downloads.Subtract(device_addr, copy.size, [&](DAddr start, DAddr end) {
gpu_modified_ranges.Subtract(start, end - start);
});
}
async_buffers_death_ring.emplace_back(*async_buffer);
async_buffers.pop_front();
pending_downloads.pop_front();
}
}
template <class P>
bool BufferCache<P>::IsRegionGpuModified(DAddr addr, size_t size) {
bool is_dirty = false;
ForEachInRangeSet(common_ranges, addr, size, [&](DAddr, DAddr) { is_dirty = true; });
gpu_modified_ranges.ForEachInRange(addr, size, [&](DAddr, DAddr) { is_dirty = true; });
return is_dirty;
}
@ -1320,10 +1264,8 @@ void BufferCache<P>::UpdateComputeTextureBuffers() {
template <class P>
void BufferCache<P>::MarkWrittenBuffer(BufferId buffer_id, DAddr device_addr, u32 size) {
memory_tracker.MarkRegionAsGpuModified(device_addr, size);
const IntervalType base_interval{device_addr, device_addr + size};
common_ranges.add(base_interval);
uncommitted_ranges.add(base_interval);
gpu_modified_ranges.Add(device_addr, size);
uncommitted_gpu_modified_ranges.Add(device_addr, size);
}
template <class P>
@ -1603,9 +1545,8 @@ bool BufferCache<P>::InlineMemory(DAddr dest_address, size_t copy_size,
template <class P>
void BufferCache<P>::InlineMemoryImplementation(DAddr dest_address, size_t copy_size,
std::span<const u8> inlined_buffer) {
const IntervalType subtract_interval{dest_address, dest_address + copy_size};
ClearDownload(subtract_interval);
common_ranges.subtract(subtract_interval);
ClearDownload(dest_address, copy_size);
gpu_modified_ranges.Subtract(dest_address, copy_size);
BufferId buffer_id = FindBuffer(dest_address, static_cast<u32>(copy_size));
auto& buffer = slot_buffers[buffer_id];
@ -1655,12 +1596,9 @@ void BufferCache<P>::DownloadBufferMemory(Buffer& buffer, DAddr device_addr, u64
largest_copy = std::max(largest_copy, new_size);
};
const DAddr start_address = device_addr_out;
const DAddr end_address = start_address + range_size;
ForEachInRangeSet(common_ranges, start_address, range_size, add_download);
const IntervalType subtract_interval{start_address, end_address};
ClearDownload(subtract_interval);
common_ranges.subtract(subtract_interval);
gpu_modified_ranges.ForEachInRange(device_addr_out, range_size, add_download);
ClearDownload(device_addr_out, range_size);
gpu_modified_ranges.Subtract(device_addr_out, range_size);
});
if (total_size_bytes == 0) {
return;

View File

@ -13,25 +13,15 @@
#include <unordered_map>
#include <vector>
#include <boost/container/small_vector.hpp>
#define BOOST_NO_MT
#include <boost/pool/detail/mutex.hpp>
#undef BOOST_NO_MT
#include <boost/icl/interval.hpp>
#include <boost/icl/interval_base_set.hpp>
#include <boost/icl/interval_set.hpp>
#include <boost/icl/split_interval_map.hpp>
#include <boost/pool/pool.hpp>
#include <boost/pool/pool_alloc.hpp>
#include <boost/pool/poolfwd.hpp>
#include "common/common_types.h"
#include "common/div_ceil.h"
#include "common/literals.h"
#include "common/lru_cache.h"
#include "common/microprofile.h"
#include "common/range_sets.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "common/slot_vector.h"
#include "video_core/buffer_cache/buffer_base.h"
#include "video_core/control/channel_state_cache.h"
#include "video_core/delayed_destruction_ring.h"
@ -41,21 +31,15 @@
#include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/slot_vector.h"
#include "video_core/texture_cache/types.h"
namespace boost {
template <typename T>
class fast_pool_allocator<T, default_user_allocator_new_delete, details::pool::null_mutex, 4096, 0>;
}
namespace VideoCommon {
MICROPROFILE_DECLARE(GPU_PrepareBuffers);
MICROPROFILE_DECLARE(GPU_BindUploadBuffers);
MICROPROFILE_DECLARE(GPU_DownloadMemory);
using BufferId = SlotId;
using BufferId = Common::SlotId;
using VideoCore::Surface::PixelFormat;
using namespace Common::Literals;
@ -184,7 +168,6 @@ class BufferCache : public VideoCommon::ChannelSetupCaches<BufferCacheChannelInf
static constexpr bool NEEDS_BIND_STORAGE_INDEX = P::NEEDS_BIND_STORAGE_INDEX;
static constexpr bool USE_MEMORY_MAPS = P::USE_MEMORY_MAPS;
static constexpr bool SEPARATE_IMAGE_BUFFERS_BINDINGS = P::SEPARATE_IMAGE_BUFFER_BINDINGS;
static constexpr bool IMPLEMENTS_ASYNC_DOWNLOADS = P::IMPLEMENTS_ASYNC_DOWNLOADS;
static constexpr bool USE_MEMORY_MAPS_FOR_UPLOADS = P::USE_MEMORY_MAPS_FOR_UPLOADS;
static constexpr s64 DEFAULT_EXPECTED_MEMORY = 512_MiB;
@ -202,34 +185,6 @@ class BufferCache : public VideoCommon::ChannelSetupCaches<BufferCacheChannelInf
using Async_Buffer = typename P::Async_Buffer;
using MemoryTracker = typename P::MemoryTracker;
using IntervalCompare = std::less<DAddr>;
using IntervalInstance = boost::icl::interval_type_default<DAddr, std::less>;
using IntervalAllocator = boost::fast_pool_allocator<DAddr>;
using IntervalSet = boost::icl::interval_set<DAddr>;
using IntervalType = typename IntervalSet::interval_type;
template <typename Type>
struct counter_add_functor : public boost::icl::identity_based_inplace_combine<Type> {
// types
typedef counter_add_functor<Type> type;
typedef boost::icl::identity_based_inplace_combine<Type> base_type;
// public member functions
void operator()(Type& current, const Type& added) const {
current += added;
if (current < base_type::identity_element()) {
current = base_type::identity_element();
}
}
// public static functions
static void version(Type&){};
};
using OverlapCombine = counter_add_functor<int>;
using OverlapSection = boost::icl::inter_section<int>;
using OverlapCounter = boost::icl::split_interval_map<DAddr, int>;
struct OverlapResult {
boost::container::small_vector<BufferId, 16> ids;
DAddr begin;
@ -240,6 +195,8 @@ class BufferCache : public VideoCommon::ChannelSetupCaches<BufferCacheChannelInf
public:
explicit BufferCache(Tegra::MaxwellDeviceMemoryManager& device_memory_, Runtime& runtime_);
~BufferCache();
void TickFrame();
void WriteMemory(DAddr device_addr, u64 size);
@ -379,75 +336,6 @@ private:
}
}
template <typename Func>
void ForEachInRangeSet(IntervalSet& current_range, DAddr device_addr, u64 size, Func&& func) {
const DAddr start_address = device_addr;
const DAddr end_address = start_address + size;
const IntervalType search_interval{start_address, end_address};
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
DAddr inter_addr_end = it->upper();
DAddr inter_addr = it->lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
if (inter_addr < start_address) {
inter_addr = start_address;
}
func(inter_addr, inter_addr_end);
}
}
template <typename Func>
void ForEachInOverlapCounter(OverlapCounter& current_range, DAddr device_addr, u64 size,
Func&& func) {
const DAddr start_address = device_addr;
const DAddr end_address = start_address + size;
const IntervalType search_interval{start_address, end_address};
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
auto& inter = it->first;
DAddr inter_addr_end = inter.upper();
DAddr inter_addr = inter.lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
if (inter_addr < start_address) {
inter_addr = start_address;
}
func(inter_addr, inter_addr_end, it->second);
}
}
void RemoveEachInOverlapCounter(OverlapCounter& current_range,
const IntervalType search_interval, int subtract_value) {
bool any_removals = false;
current_range.add(std::make_pair(search_interval, subtract_value));
do {
any_removals = false;
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
if (it->second <= 0) {
any_removals = true;
current_range.erase(it);
break;
}
}
} while (any_removals);
}
static bool IsRangeGranular(DAddr device_addr, size_t size) {
return (device_addr & ~Core::DEVICE_PAGEMASK) ==
((device_addr + size) & ~Core::DEVICE_PAGEMASK);
@ -552,14 +440,14 @@ private:
[[nodiscard]] bool HasFastUniformBufferBound(size_t stage, u32 binding_index) const noexcept;
void ClearDownload(IntervalType subtract_interval);
void ClearDownload(DAddr base_addr, u64 size);
void InlineMemoryImplementation(DAddr dest_address, size_t copy_size,
std::span<const u8> inlined_buffer);
Tegra::MaxwellDeviceMemoryManager& device_memory;
SlotVector<Buffer> slot_buffers;
Common::SlotVector<Buffer> slot_buffers;
DelayedDestructionRing<Buffer, 8> delayed_destruction_ring;
const Tegra::Engines::DrawManager::IndirectParams* current_draw_indirect{};
@ -567,13 +455,12 @@ private:
u32 last_index_count = 0;
MemoryTracker memory_tracker;
IntervalSet uncommitted_ranges;
IntervalSet common_ranges;
IntervalSet cached_ranges;
std::deque<IntervalSet> committed_ranges;
Common::RangeSet<DAddr> uncommitted_gpu_modified_ranges;
Common::RangeSet<DAddr> gpu_modified_ranges;
std::deque<Common::RangeSet<DAddr>> committed_gpu_modified_ranges;
// Async Buffers
OverlapCounter async_downloads;
Common::OverlapRangeSet<DAddr> async_downloads;
std::deque<std::optional<Async_Buffer>> async_buffers;
std::deque<boost::container::small_vector<BufferCopy, 4>> pending_downloads;
std::optional<Async_Buffer> current_buffer;

View File

@ -50,6 +50,7 @@ void Scheduler::Resume() {
void Scheduler::Yield() {
ASSERT(current_fifo != nullptr);
Common::Fiber::YieldTo(current_fifo->context, *master_control);
gpu.BindChannel(current_fifo->bind_id);
}
void Scheduler::Push(s32 channel, CommandList&& entries) {

View File

@ -18,12 +18,12 @@
#include "common/assert.h"
#include "common/settings.h"
#include "common/slot_vector.h"
#include "video_core/control/channel_state_cache.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/texture_cache/slot_vector.h"
namespace VideoCore {
enum class QueryType {
@ -37,7 +37,7 @@ constexpr std::size_t NumQueryTypes = static_cast<size_t>(QueryType::Count);
namespace VideoCommon {
using AsyncJobId = SlotId;
using AsyncJobId = Common::SlotId;
static constexpr AsyncJobId NULL_ASYNC_JOB_ID{0};
@ -341,7 +341,7 @@ private:
static constexpr std::uintptr_t YUZU_PAGESIZE = 4096;
static constexpr unsigned YUZU_PAGEBITS = 12;
SlotVector<AsyncJob> slot_async_jobs;
Common::SlotVector<AsyncJob> slot_async_jobs;
VideoCore::RasterizerInterface& rasterizer;
Tegra::MaxwellDeviceMemoryManager& device_memory;

View File

@ -90,7 +90,7 @@ public:
void PostCopyBarrier();
void Finish();
void TickFrame(VideoCommon::SlotVector<Buffer>&) noexcept {}
void TickFrame(Common::SlotVector<Buffer>&) noexcept {}
void ClearBuffer(Buffer& dest_buffer, u32 offset, size_t size, u32 value);
@ -251,7 +251,6 @@ struct BufferCacheParams {
static constexpr bool NEEDS_BIND_STORAGE_INDEX = true;
static constexpr bool USE_MEMORY_MAPS = true;
static constexpr bool SEPARATE_IMAGE_BUFFER_BINDINGS = true;
static constexpr bool IMPLEMENTS_ASYNC_DOWNLOADS = true;
// TODO: Investigate why OpenGL seems to perform worse with persistently mapped buffer uploads
static constexpr bool USE_MEMORY_MAPS_FOR_UPLOADS = false;

View File

@ -30,13 +30,13 @@ class Image;
class ImageView;
class Sampler;
using Common::SlotVector;
using VideoCommon::ImageId;
using VideoCommon::ImageViewId;
using VideoCommon::ImageViewType;
using VideoCommon::NUM_RT;
using VideoCommon::Region2D;
using VideoCommon::RenderTargets;
using VideoCommon::SlotVector;
struct FormatProperties {
GLenum compatibility_class;

View File

@ -368,7 +368,7 @@ u32 BufferCacheRuntime::GetStorageBufferAlignment() const {
return static_cast<u32>(device.GetStorageBufferAlignment());
}
void BufferCacheRuntime::TickFrame(VideoCommon::SlotVector<Buffer>& slot_buffers) noexcept {
void BufferCacheRuntime::TickFrame(Common::SlotVector<Buffer>& slot_buffers) noexcept {
for (auto it = slot_buffers.begin(); it != slot_buffers.end(); it++) {
it->ResetUsageTracking();
}

View File

@ -81,7 +81,7 @@ public:
ComputePassDescriptorQueue& compute_pass_descriptor_queue,
DescriptorPool& descriptor_pool);
void TickFrame(VideoCommon::SlotVector<Buffer>& slot_buffers) noexcept;
void TickFrame(Common::SlotVector<Buffer>& slot_buffers) noexcept;
void Finish();
@ -181,7 +181,6 @@ struct BufferCacheParams {
static constexpr bool NEEDS_BIND_STORAGE_INDEX = false;
static constexpr bool USE_MEMORY_MAPS = true;
static constexpr bool SEPARATE_IMAGE_BUFFER_BINDINGS = false;
static constexpr bool IMPLEMENTS_ASYNC_DOWNLOADS = true;
static constexpr bool USE_MEMORY_MAPS_FOR_UPLOADS = true;
};

View File

@ -20,11 +20,11 @@ struct ResolutionScalingInfo;
namespace Vulkan {
using Common::SlotVector;
using VideoCommon::ImageId;
using VideoCommon::NUM_RT;
using VideoCommon::Region2D;
using VideoCommon::RenderTargets;
using VideoCommon::SlotVector;
using VideoCore::Surface::PixelFormat;
class BlitImageHelper;

View File

@ -21,6 +21,7 @@
#include "common/lru_cache.h"
#include "common/polyfill_ranges.h"
#include "common/scratch_buffer.h"
#include "common/slot_vector.h"
#include "common/thread_worker.h"
#include "video_core/compatible_formats.h"
#include "video_core/control/channel_state_cache.h"
@ -32,7 +33,6 @@
#include "video_core/texture_cache/image_info.h"
#include "video_core/texture_cache/image_view_base.h"
#include "video_core/texture_cache/render_targets.h"
#include "video_core/texture_cache/slot_vector.h"
#include "video_core/texture_cache/types.h"
#include "video_core/textures/texture.h"
@ -451,16 +451,16 @@ private:
struct PendingDownload {
bool is_swizzle;
size_t async_buffer_id;
SlotId object_id;
Common::SlotId object_id;
};
SlotVector<Image> slot_images;
SlotVector<ImageMapView> slot_map_views;
SlotVector<ImageView> slot_image_views;
SlotVector<ImageAlloc> slot_image_allocs;
SlotVector<Sampler> slot_samplers;
SlotVector<Framebuffer> slot_framebuffers;
SlotVector<BufferDownload> slot_buffer_downloads;
Common::SlotVector<Image> slot_images;
Common::SlotVector<ImageMapView> slot_map_views;
Common::SlotVector<ImageView> slot_image_views;
Common::SlotVector<ImageAlloc> slot_image_allocs;
Common::SlotVector<Sampler> slot_samplers;
Common::SlotVector<Framebuffer> slot_framebuffers;
Common::SlotVector<BufferDownload> slot_buffer_downloads;
// TODO: This data structure is not optimal and it should be reworked

View File

@ -5,21 +5,21 @@
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "video_core/texture_cache/slot_vector.h"
#include "common/slot_vector.h"
namespace VideoCommon {
constexpr size_t NUM_RT = 8;
constexpr size_t MAX_MIP_LEVELS = 14;
constexpr SlotId CORRUPT_ID{0xfffffffe};
constexpr Common::SlotId CORRUPT_ID{0xfffffffe};
using ImageId = SlotId;
using ImageMapId = SlotId;
using ImageViewId = SlotId;
using ImageAllocId = SlotId;
using SamplerId = SlotId;
using FramebufferId = SlotId;
using ImageId = Common::SlotId;
using ImageMapId = Common::SlotId;
using ImageViewId = Common::SlotId;
using ImageAllocId = Common::SlotId;
using SamplerId = Common::SlotId;
using FramebufferId = Common::SlotId;
/// Fake image ID for null image views
constexpr ImageId NULL_IMAGE_ID{0};