early-access version 1432
This commit is contained in:
68
externals/ffmpeg/doc/multithreading.txt
vendored
Executable file
68
externals/ffmpeg/doc/multithreading.txt
vendored
Executable file
@@ -0,0 +1,68 @@
|
||||
FFmpeg multithreading methods
|
||||
==============================================
|
||||
|
||||
FFmpeg provides two methods for multithreading codecs.
|
||||
|
||||
Slice threading decodes multiple parts of a frame at the same time, using
|
||||
AVCodecContext execute() and execute2().
|
||||
|
||||
Frame threading decodes multiple frames at the same time.
|
||||
It accepts N future frames and delays decoded pictures by N-1 frames.
|
||||
The later frames are decoded in separate threads while the user is
|
||||
displaying the current one.
|
||||
|
||||
Restrictions on clients
|
||||
==============================================
|
||||
|
||||
Slice threading -
|
||||
* The client's draw_horiz_band() must be thread-safe according to the comment
|
||||
in avcodec.h.
|
||||
|
||||
Frame threading -
|
||||
* Restrictions with slice threading also apply.
|
||||
* For best performance, the client should set thread_safe_callbacks if it
|
||||
provides a thread-safe get_buffer() callback.
|
||||
* There is one frame of delay added for every thread beyond the first one.
|
||||
Clients must be able to handle this; the pkt_dts and pkt_pts fields in
|
||||
AVFrame will work as usual.
|
||||
|
||||
Restrictions on codec implementations
|
||||
==============================================
|
||||
|
||||
Slice threading -
|
||||
None except that there must be something worth executing in parallel.
|
||||
|
||||
Frame threading -
|
||||
* Codecs can only accept entire pictures per packet.
|
||||
* Codecs similar to ffv1, whose streams don't reset across frames,
|
||||
will not work because their bitstreams cannot be decoded in parallel.
|
||||
|
||||
* The contents of buffers must not be read before ff_thread_await_progress()
|
||||
has been called on them. reget_buffer() and buffer age optimizations no longer work.
|
||||
* The contents of buffers must not be written to after ff_thread_report_progress()
|
||||
has been called on them. This includes draw_edges().
|
||||
|
||||
Porting codecs to frame threading
|
||||
==============================================
|
||||
|
||||
Find all context variables that are needed by the next frame. Move all
|
||||
code changing them, as well as code calling get_buffer(), up to before
|
||||
the decode process starts. Call ff_thread_finish_setup() afterwards. If
|
||||
some code can't be moved, have update_thread_context() run it in the next
|
||||
thread.
|
||||
|
||||
Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities. There will be very little
|
||||
speed gain at this point but it should work.
|
||||
|
||||
If there are inter-frame dependencies, so the codec calls
|
||||
ff_thread_report/await_progress(), set FF_CODEC_CAP_ALLOCATE_PROGRESS in
|
||||
AVCodec.caps_internal and use ff_thread_get_buffer() to allocate frames. The
|
||||
frames must then be freed with ff_thread_release_buffer().
|
||||
Otherwise decode directly into the user-supplied frames.
|
||||
|
||||
Call ff_thread_report_progress() after some part of the current picture has decoded.
|
||||
A good place to put this is where draw_horiz_band() is called - add this if it isn't
|
||||
called anywhere, as it's useful too and the implementation is trivial when you're
|
||||
doing this. Note that draw_edges() needs to be called before reporting progress.
|
||||
|
||||
Before accessing a reference frame or its MVs, call ff_thread_await_progress().
|
Reference in New Issue
Block a user