early-access version 1255

This commit is contained in:
pineappleEA
2020-12-28 15:15:37 +00:00
parent 84b39492d1
commit 78b48028e1
6254 changed files with 1868140 additions and 0 deletions

278
src/core/arm/arm_interface.cpp Executable file
View File

@@ -0,0 +1,278 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <map>
#include <optional>
#include "common/bit_field.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/loader/loader.h"
#include "core/memory.h"
namespace Core {
namespace {
constexpr u64 ELF_DYNAMIC_TAG_NULL = 0;
constexpr u64 ELF_DYNAMIC_TAG_STRTAB = 5;
constexpr u64 ELF_DYNAMIC_TAG_SYMTAB = 6;
constexpr u64 ELF_DYNAMIC_TAG_SYMENT = 11;
enum class ELFSymbolType : u8 {
None = 0,
Object = 1,
Function = 2,
Section = 3,
File = 4,
Common = 5,
TLS = 6,
};
enum class ELFSymbolBinding : u8 {
Local = 0,
Global = 1,
Weak = 2,
};
enum class ELFSymbolVisibility : u8 {
Default = 0,
Internal = 1,
Hidden = 2,
Protected = 3,
};
struct ELFSymbol {
u32 name_index;
union {
u8 info;
BitField<0, 4, ELFSymbolType> type;
BitField<4, 4, ELFSymbolBinding> binding;
};
ELFSymbolVisibility visibility;
u16 sh_index;
u64 value;
u64 size;
};
static_assert(sizeof(ELFSymbol) == 0x18, "ELFSymbol has incorrect size.");
using Symbols = std::vector<std::pair<ELFSymbol, std::string>>;
Symbols GetSymbols(VAddr text_offset, Core::Memory::Memory& memory) {
const auto mod_offset = text_offset + memory.Read32(text_offset + 4);
if (mod_offset < text_offset || (mod_offset & 0b11) != 0 ||
memory.Read32(mod_offset) != Common::MakeMagic('M', 'O', 'D', '0')) {
return {};
}
const auto dynamic_offset = memory.Read32(mod_offset + 0x4) + mod_offset;
VAddr string_table_offset{};
VAddr symbol_table_offset{};
u64 symbol_entry_size{};
VAddr dynamic_index = dynamic_offset;
while (true) {
const u64 tag = memory.Read64(dynamic_index);
const u64 value = memory.Read64(dynamic_index + 0x8);
dynamic_index += 0x10;
if (tag == ELF_DYNAMIC_TAG_NULL) {
break;
}
if (tag == ELF_DYNAMIC_TAG_STRTAB) {
string_table_offset = value;
} else if (tag == ELF_DYNAMIC_TAG_SYMTAB) {
symbol_table_offset = value;
} else if (tag == ELF_DYNAMIC_TAG_SYMENT) {
symbol_entry_size = value;
}
}
if (string_table_offset == 0 || symbol_table_offset == 0 || symbol_entry_size == 0) {
return {};
}
const auto string_table_address = text_offset + string_table_offset;
const auto symbol_table_address = text_offset + symbol_table_offset;
Symbols out;
VAddr symbol_index = symbol_table_address;
while (symbol_index < string_table_address) {
ELFSymbol symbol{};
memory.ReadBlock(symbol_index, &symbol, sizeof(ELFSymbol));
VAddr string_offset = string_table_address + symbol.name_index;
std::string name;
for (u8 c = memory.Read8(string_offset); c != 0; c = memory.Read8(++string_offset)) {
name += static_cast<char>(c);
}
symbol_index += symbol_entry_size;
out.push_back({symbol, name});
}
return out;
}
std::optional<std::string> GetSymbolName(const Symbols& symbols, VAddr func_address) {
const auto iter =
std::find_if(symbols.begin(), symbols.end(), [func_address](const auto& pair) {
const auto& symbol = pair.first;
const auto end_address = symbol.value + symbol.size;
return func_address >= symbol.value && func_address < end_address;
});
if (iter == symbols.end()) {
return std::nullopt;
}
return iter->second;
}
} // Anonymous namespace
constexpr u64 SEGMENT_BASE = 0x7100000000ull;
std::vector<ARM_Interface::BacktraceEntry> ARM_Interface::GetBacktraceFromContext(
System& system, const ThreadContext64& ctx) {
std::vector<BacktraceEntry> out;
auto& memory = system.Memory();
auto fp = ctx.cpu_registers[29];
auto lr = ctx.cpu_registers[30];
while (true) {
out.push_back({
.module = "",
.address = 0,
.original_address = lr,
.offset = 0,
.name = {},
});
if (fp == 0) {
break;
}
lr = memory.Read64(fp + 8) - 4;
fp = memory.Read64(fp);
}
std::map<VAddr, std::string> modules;
auto& loader{system.GetAppLoader()};
if (loader.ReadNSOModules(modules) != Loader::ResultStatus::Success) {
return {};
}
std::map<std::string, Symbols> symbols;
for (const auto& module : modules) {
symbols.insert_or_assign(module.second, GetSymbols(module.first, memory));
}
for (auto& entry : out) {
VAddr base = 0;
for (auto iter = modules.rbegin(); iter != modules.rend(); ++iter) {
const auto& module{*iter};
if (entry.original_address >= module.first) {
entry.module = module.second;
base = module.first;
break;
}
}
entry.offset = entry.original_address - base;
entry.address = SEGMENT_BASE + entry.offset;
if (entry.module.empty())
entry.module = "unknown";
const auto symbol_set = symbols.find(entry.module);
if (symbol_set != symbols.end()) {
const auto symbol = GetSymbolName(symbol_set->second, entry.offset);
if (symbol.has_value()) {
// TODO(DarkLordZach): Add demangling of symbol names.
entry.name = *symbol;
}
}
}
return out;
}
std::vector<ARM_Interface::BacktraceEntry> ARM_Interface::GetBacktrace() const {
std::vector<BacktraceEntry> out;
auto& memory = system.Memory();
auto fp = GetReg(29);
auto lr = GetReg(30);
while (true) {
out.push_back({"", 0, lr, 0, ""});
if (!fp) {
break;
}
lr = memory.Read64(fp + 8) - 4;
fp = memory.Read64(fp);
}
std::map<VAddr, std::string> modules;
auto& loader{system.GetAppLoader()};
if (loader.ReadNSOModules(modules) != Loader::ResultStatus::Success) {
return {};
}
std::map<std::string, Symbols> symbols;
for (const auto& module : modules) {
symbols.insert_or_assign(module.second, GetSymbols(module.first, memory));
}
for (auto& entry : out) {
VAddr base = 0;
for (auto iter = modules.rbegin(); iter != modules.rend(); ++iter) {
const auto& module{*iter};
if (entry.original_address >= module.first) {
entry.module = module.second;
base = module.first;
break;
}
}
entry.offset = entry.original_address - base;
entry.address = SEGMENT_BASE + entry.offset;
if (entry.module.empty())
entry.module = "unknown";
const auto symbol_set = symbols.find(entry.module);
if (symbol_set != symbols.end()) {
const auto symbol = GetSymbolName(symbol_set->second, entry.offset);
if (symbol.has_value()) {
// TODO(DarkLordZach): Add demangling of symbol names.
entry.name = *symbol;
}
}
}
return out;
}
void ARM_Interface::LogBacktrace() const {
const VAddr sp = GetReg(13);
const VAddr pc = GetPC();
LOG_ERROR(Core_ARM, "Backtrace, sp={:016X}, pc={:016X}", sp, pc);
LOG_ERROR(Core_ARM, "{:20}{:20}{:20}{:20}{}", "Module Name", "Address", "Original Address",
"Offset", "Symbol");
LOG_ERROR(Core_ARM, "");
const auto backtrace = GetBacktrace();
for (const auto& entry : backtrace) {
LOG_ERROR(Core_ARM, "{:20}{:016X} {:016X} {:016X} {}", entry.module, entry.address,
entry.original_address, entry.offset, entry.name);
}
}
} // namespace Core

202
src/core/arm/arm_interface.h Executable file
View File

@@ -0,0 +1,202 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <vector>
#include "common/common_types.h"
#include "core/hardware_properties.h"
namespace Common {
struct PageTable;
}
namespace Kernel {
enum class VMAPermission : u8;
}
namespace Core {
class System;
class CPUInterruptHandler;
using CPUInterrupts = std::array<CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>;
/// Generic ARMv8 CPU interface
class ARM_Interface : NonCopyable {
public:
explicit ARM_Interface(System& system_, CPUInterrupts& interrupt_handlers, bool uses_wall_clock)
: system{system_}, interrupt_handlers{interrupt_handlers}, uses_wall_clock{
uses_wall_clock} {}
virtual ~ARM_Interface() = default;
struct ThreadContext32 {
std::array<u32, 16> cpu_registers{};
std::array<u32, 64> extension_registers{};
u32 cpsr{};
u32 fpscr{};
u32 fpexc{};
u32 tpidr{};
};
// Internally within the kernel, it expects the AArch32 version of the
// thread context to be 344 bytes in size.
static_assert(sizeof(ThreadContext32) == 0x150);
struct ThreadContext64 {
std::array<u64, 31> cpu_registers{};
u64 sp{};
u64 pc{};
u32 pstate{};
std::array<u8, 4> padding{};
std::array<u128, 32> vector_registers{};
u32 fpcr{};
u32 fpsr{};
u64 tpidr{};
};
// Internally within the kernel, it expects the AArch64 version of the
// thread context to be 800 bytes in size.
static_assert(sizeof(ThreadContext64) == 0x320);
/// Runs the CPU until an event happens
virtual void Run() = 0;
/// Step CPU by one instruction
virtual void Step() = 0;
/// Exits execution from a callback, the callback must rewind the stack
virtual void ExceptionalExit() = 0;
/// Clear all instruction cache
virtual void ClearInstructionCache() = 0;
/**
* Clear instruction cache range
* @param addr Start address of the cache range to clear
* @param size Size of the cache range to clear, starting at addr
*/
virtual void InvalidateCacheRange(VAddr addr, std::size_t size) = 0;
/**
* Notifies CPU emulation that the current page table has changed.
* @param new_page_table The new page table.
* @param new_address_space_size_in_bits The new usable size of the address space in bits.
* This can be either 32, 36, or 39 on official software.
*/
virtual void PageTableChanged(Common::PageTable& new_page_table,
std::size_t new_address_space_size_in_bits) = 0;
/**
* Set the Program Counter to an address
* @param addr Address to set PC to
*/
virtual void SetPC(u64 addr) = 0;
/*
* Get the current Program Counter
* @return Returns current PC
*/
virtual u64 GetPC() const = 0;
/**
* Get an ARM register
* @param index Register index
* @return Returns the value in the register
*/
virtual u64 GetReg(int index) const = 0;
/**
* Set an ARM register
* @param index Register index
* @param value Value to set register to
*/
virtual void SetReg(int index, u64 value) = 0;
/**
* Gets the value of a specified vector register.
*
* @param index The index of the vector register.
* @return the value within the vector register.
*/
virtual u128 GetVectorReg(int index) const = 0;
/**
* Sets a given value into a vector register.
*
* @param index The index of the vector register.
* @param value The new value to place in the register.
*/
virtual void SetVectorReg(int index, u128 value) = 0;
/**
* Get the current PSTATE register
* @return Returns the value of the PSTATE register
*/
virtual u32 GetPSTATE() const = 0;
/**
* Set the current PSTATE register
* @param pstate Value to set PSTATE to
*/
virtual void SetPSTATE(u32 pstate) = 0;
virtual VAddr GetTlsAddress() const = 0;
virtual void SetTlsAddress(VAddr address) = 0;
/**
* Gets the value within the TPIDR_EL0 (read/write software thread ID) register.
*
* @return the value within the register.
*/
virtual u64 GetTPIDR_EL0() const = 0;
/**
* Sets a new value within the TPIDR_EL0 (read/write software thread ID) register.
*
* @param value The new value to place in the register.
*/
virtual void SetTPIDR_EL0(u64 value) = 0;
virtual void ChangeProcessorID(std::size_t new_core_id) = 0;
virtual void SaveContext(ThreadContext32& ctx) = 0;
virtual void SaveContext(ThreadContext64& ctx) = 0;
virtual void LoadContext(const ThreadContext32& ctx) = 0;
virtual void LoadContext(const ThreadContext64& ctx) = 0;
/// Clears the exclusive monitor's state.
virtual void ClearExclusiveState() = 0;
/// Prepare core for thread reschedule (if needed to correctly handle state)
virtual void PrepareReschedule() = 0;
struct BacktraceEntry {
std::string module;
u64 address;
u64 original_address;
u64 offset;
std::string name;
};
static std::vector<BacktraceEntry> GetBacktraceFromContext(System& system,
const ThreadContext64& ctx);
std::vector<BacktraceEntry> GetBacktrace() const;
/// fp (= r29) points to the last frame record.
/// Note that this is the frame record for the *previous* frame, not the current one.
/// Note we need to subtract 4 from our last read to get the proper address
/// Frame records are two words long:
/// fp+0 : pointer to previous frame record
/// fp+8 : value of lr for frame
void LogBacktrace() const;
protected:
/// System context that this ARM interface is running under.
System& system;
CPUInterrupts& interrupt_handlers;
bool uses_wall_clock;
};
} // namespace Core

View File

@@ -0,0 +1,25 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/thread.h"
#include "core/arm/cpu_interrupt_handler.h"
namespace Core {
CPUInterruptHandler::CPUInterruptHandler() : interrupt_event{std::make_unique<Common::Event>()} {}
CPUInterruptHandler::~CPUInterruptHandler() = default;
void CPUInterruptHandler::SetInterrupt(bool is_interrupted_) {
if (is_interrupted_) {
interrupt_event->Set();
}
is_interrupted = is_interrupted_;
}
void CPUInterruptHandler::AwaitInterrupt() {
interrupt_event->Wait();
}
} // namespace Core

View File

@@ -0,0 +1,40 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include <memory>
namespace Common {
class Event;
}
namespace Core {
class CPUInterruptHandler {
public:
CPUInterruptHandler();
~CPUInterruptHandler();
CPUInterruptHandler(const CPUInterruptHandler&) = delete;
CPUInterruptHandler& operator=(const CPUInterruptHandler&) = delete;
CPUInterruptHandler(CPUInterruptHandler&&) = delete;
CPUInterruptHandler& operator=(CPUInterruptHandler&&) = delete;
bool IsInterrupted() const {
return is_interrupted;
}
void SetInterrupt(bool is_interrupted);
void AwaitInterrupt();
private:
std::unique_ptr<Common::Event> interrupt_event;
std::atomic_bool is_interrupted{false};
};
} // namespace Core

View File

@@ -0,0 +1,315 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <memory>
#include <dynarmic/A32/a32.h>
#include <dynarmic/A32/config.h>
#include <dynarmic/A32/context.h>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/page_table.h"
#include "core/arm/cpu_interrupt_handler.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_cp15.h"
#include "core/arm/dynarmic/arm_exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/svc.h"
#include "core/memory.h"
#include "core/settings.h"
namespace Core {
class DynarmicCallbacks32 : public Dynarmic::A32::UserCallbacks {
public:
explicit DynarmicCallbacks32(ARM_Dynarmic_32& parent) : parent(parent) {}
u8 MemoryRead8(u32 vaddr) override {
return parent.system.Memory().Read8(vaddr);
}
u16 MemoryRead16(u32 vaddr) override {
return parent.system.Memory().Read16(vaddr);
}
u32 MemoryRead32(u32 vaddr) override {
return parent.system.Memory().Read32(vaddr);
}
u64 MemoryRead64(u32 vaddr) override {
return parent.system.Memory().Read64(vaddr);
}
void MemoryWrite8(u32 vaddr, u8 value) override {
parent.system.Memory().Write8(vaddr, value);
}
void MemoryWrite16(u32 vaddr, u16 value) override {
parent.system.Memory().Write16(vaddr, value);
}
void MemoryWrite32(u32 vaddr, u32 value) override {
parent.system.Memory().Write32(vaddr, value);
}
void MemoryWrite64(u32 vaddr, u64 value) override {
parent.system.Memory().Write64(vaddr, value);
}
bool MemoryWriteExclusive8(u32 vaddr, u8 value, u8 expected) override {
return parent.system.Memory().WriteExclusive8(vaddr, value, expected);
}
bool MemoryWriteExclusive16(u32 vaddr, u16 value, u16 expected) override {
return parent.system.Memory().WriteExclusive16(vaddr, value, expected);
}
bool MemoryWriteExclusive32(u32 vaddr, u32 value, u32 expected) override {
return parent.system.Memory().WriteExclusive32(vaddr, value, expected);
}
bool MemoryWriteExclusive64(u32 vaddr, u64 value, u64 expected) override {
return parent.system.Memory().WriteExclusive64(vaddr, value, expected);
}
void InterpreterFallback(u32 pc, std::size_t num_instructions) override {
UNIMPLEMENTED_MSG("This should never happen, pc = {:08X}, code = {:08X}", pc,
MemoryReadCode(pc));
}
void ExceptionRaised(u32 pc, Dynarmic::A32::Exception exception) override {
switch (exception) {
case Dynarmic::A32::Exception::UndefinedInstruction:
case Dynarmic::A32::Exception::UnpredictableInstruction:
break;
case Dynarmic::A32::Exception::Breakpoint:
break;
}
LOG_CRITICAL(Core_ARM, "ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X})",
static_cast<std::size_t>(exception), pc, MemoryReadCode(pc));
UNIMPLEMENTED();
}
void CallSVC(u32 swi) override {
Kernel::Svc::Call(parent.system, swi);
}
void AddTicks(u64 ticks) override {
if (parent.uses_wall_clock) {
return;
}
// Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
// rough approximation of the amount of executed ticks in the system, it may be thrown off
// if not all cores are doing a similar amount of work. Instead of doing this, we should
// device a way so that timing is consistent across all cores without increasing the ticks 4
// times.
u64 amortized_ticks =
(ticks - num_interpreted_instructions) / Core::Hardware::NUM_CPU_CORES;
// Always execute at least one tick.
amortized_ticks = std::max<u64>(amortized_ticks, 1);
parent.system.CoreTiming().AddTicks(amortized_ticks);
num_interpreted_instructions = 0;
}
u64 GetTicksRemaining() override {
if (parent.uses_wall_clock) {
if (!parent.interrupt_handlers[parent.core_index].IsInterrupted()) {
return minimum_run_cycles;
}
return 0U;
}
return std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0);
}
ARM_Dynarmic_32& parent;
std::size_t num_interpreted_instructions{};
static constexpr u64 minimum_run_cycles = 1000U;
};
std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable& page_table,
std::size_t address_space_bits) const {
Dynarmic::A32::UserConfig config;
config.callbacks = cb.get();
// TODO(bunnei): Implement page table for 32-bit
// config.page_table = &page_table.pointers;
config.coprocessors[15] = cp15;
config.define_unpredictable_behaviour = true;
static constexpr std::size_t PAGE_BITS = 12;
static constexpr std::size_t NUM_PAGE_TABLE_ENTRIES = 1 << (32 - PAGE_BITS);
config.page_table = reinterpret_cast<std::array<std::uint8_t*, NUM_PAGE_TABLE_ENTRIES>*>(
page_table.pointers.data());
config.absolute_offset_page_table = true;
config.detect_misaligned_access_via_page_table = 16 | 32 | 64 | 128;
config.only_detect_misalignment_via_page_table_on_page_boundary = true;
// Multi-process state
config.processor_id = core_index;
config.global_monitor = &exclusive_monitor.monitor;
// Timing
config.wall_clock_cntpct = uses_wall_clock;
// Safe optimizations
if (Settings::values.cpu_accuracy == Settings::CPUAccuracy::DebugMode) {
if (!Settings::values.cpuopt_page_tables) {
config.page_table = nullptr;
}
if (!Settings::values.cpuopt_block_linking) {
config.optimizations &= ~Dynarmic::OptimizationFlag::BlockLinking;
}
if (!Settings::values.cpuopt_return_stack_buffer) {
config.optimizations &= ~Dynarmic::OptimizationFlag::ReturnStackBuffer;
}
if (!Settings::values.cpuopt_fast_dispatcher) {
config.optimizations &= ~Dynarmic::OptimizationFlag::FastDispatch;
}
if (!Settings::values.cpuopt_context_elimination) {
config.optimizations &= ~Dynarmic::OptimizationFlag::GetSetElimination;
}
if (!Settings::values.cpuopt_const_prop) {
config.optimizations &= ~Dynarmic::OptimizationFlag::ConstProp;
}
if (!Settings::values.cpuopt_misc_ir) {
config.optimizations &= ~Dynarmic::OptimizationFlag::MiscIROpt;
}
if (!Settings::values.cpuopt_reduce_misalign_checks) {
config.only_detect_misalignment_via_page_table_on_page_boundary = false;
}
}
// Unsafe optimizations
if (Settings::values.cpu_accuracy == Settings::CPUAccuracy::Unsafe) {
config.unsafe_optimizations = true;
if (Settings::values.cpuopt_unsafe_unfuse_fma) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
}
if (Settings::values.cpuopt_unsafe_reduce_fp_error) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_ReducedErrorFP;
}
}
return std::make_unique<Dynarmic::A32::Jit>(config);
}
void ARM_Dynarmic_32::Run() {
jit->Run();
}
void ARM_Dynarmic_32::ExceptionalExit() {
jit->ExceptionalExit();
}
void ARM_Dynarmic_32::Step() {
jit->Step();
}
ARM_Dynarmic_32::ARM_Dynarmic_32(System& system, CPUInterrupts& interrupt_handlers,
bool uses_wall_clock, ExclusiveMonitor& exclusive_monitor,
std::size_t core_index)
: ARM_Interface{system, interrupt_handlers, uses_wall_clock},
cb(std::make_unique<DynarmicCallbacks32>(*this)),
cp15(std::make_shared<DynarmicCP15>(*this)), core_index{core_index},
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
ARM_Dynarmic_32::~ARM_Dynarmic_32() = default;
void ARM_Dynarmic_32::SetPC(u64 pc) {
jit->Regs()[15] = static_cast<u32>(pc);
}
u64 ARM_Dynarmic_32::GetPC() const {
return jit->Regs()[15];
}
u64 ARM_Dynarmic_32::GetReg(int index) const {
return jit->Regs()[index];
}
void ARM_Dynarmic_32::SetReg(int index, u64 value) {
jit->Regs()[index] = static_cast<u32>(value);
}
u128 ARM_Dynarmic_32::GetVectorReg(int index) const {
return {};
}
void ARM_Dynarmic_32::SetVectorReg(int index, u128 value) {}
u32 ARM_Dynarmic_32::GetPSTATE() const {
return jit->Cpsr();
}
void ARM_Dynarmic_32::SetPSTATE(u32 cpsr) {
jit->SetCpsr(cpsr);
}
u64 ARM_Dynarmic_32::GetTlsAddress() const {
return cp15->uro;
}
void ARM_Dynarmic_32::SetTlsAddress(VAddr address) {
cp15->uro = static_cast<u32>(address);
}
u64 ARM_Dynarmic_32::GetTPIDR_EL0() const {
return cp15->uprw;
}
void ARM_Dynarmic_32::SetTPIDR_EL0(u64 value) {
cp15->uprw = static_cast<u32>(value);
}
void ARM_Dynarmic_32::ChangeProcessorID(std::size_t new_core_id) {
jit->ChangeProcessorID(new_core_id);
}
void ARM_Dynarmic_32::SaveContext(ThreadContext32& ctx) {
Dynarmic::A32::Context context;
jit->SaveContext(context);
ctx.cpu_registers = context.Regs();
ctx.extension_registers = context.ExtRegs();
ctx.cpsr = context.Cpsr();
ctx.fpscr = context.Fpscr();
}
void ARM_Dynarmic_32::LoadContext(const ThreadContext32& ctx) {
Dynarmic::A32::Context context;
context.Regs() = ctx.cpu_registers;
context.ExtRegs() = ctx.extension_registers;
context.SetCpsr(ctx.cpsr);
context.SetFpscr(ctx.fpscr);
jit->LoadContext(context);
}
void ARM_Dynarmic_32::PrepareReschedule() {
jit->HaltExecution();
}
void ARM_Dynarmic_32::ClearInstructionCache() {
if (!jit) {
return;
}
jit->ClearCache();
}
void ARM_Dynarmic_32::InvalidateCacheRange(VAddr addr, std::size_t size) {
if (!jit) {
return;
}
jit->InvalidateCacheRange(static_cast<u32>(addr), size);
}
void ARM_Dynarmic_32::ClearExclusiveState() {
if (!jit) {
return;
}
jit->ClearExclusiveState();
}
void ARM_Dynarmic_32::PageTableChanged(Common::PageTable& page_table,
std::size_t new_address_space_size_in_bits) {
auto key = std::make_pair(&page_table, new_address_space_size_in_bits);
auto iter = jit_cache.find(key);
if (iter != jit_cache.end()) {
jit = iter->second;
return;
}
jit = MakeJit(page_table, new_address_space_size_in_bits);
jit_cache.emplace(key, jit);
}
} // namespace Core

View File

@@ -0,0 +1,85 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <unordered_map>
#include <dynarmic/A32/a32.h>
#include <dynarmic/A64/a64.h>
#include <dynarmic/exclusive_monitor.h>
#include "common/common_types.h"
#include "common/hash.h"
#include "core/arm/arm_interface.h"
#include "core/arm/exclusive_monitor.h"
namespace Core::Memory {
class Memory;
}
namespace Core {
class CPUInterruptHandler;
class DynarmicCallbacks32;
class DynarmicCP15;
class DynarmicExclusiveMonitor;
class System;
class ARM_Dynarmic_32 final : public ARM_Interface {
public:
ARM_Dynarmic_32(System& system, CPUInterrupts& interrupt_handlers, bool uses_wall_clock,
ExclusiveMonitor& exclusive_monitor, std::size_t core_index);
~ARM_Dynarmic_32() override;
void SetPC(u64 pc) override;
u64 GetPC() const override;
u64 GetReg(int index) const override;
void SetReg(int index, u64 value) override;
u128 GetVectorReg(int index) const override;
void SetVectorReg(int index, u128 value) override;
u32 GetPSTATE() const override;
void SetPSTATE(u32 pstate) override;
void Run() override;
void ExceptionalExit() override;
void Step() override;
VAddr GetTlsAddress() const override;
void SetTlsAddress(VAddr address) override;
void SetTPIDR_EL0(u64 value) override;
u64 GetTPIDR_EL0() const override;
void ChangeProcessorID(std::size_t new_core_id) override;
void SaveContext(ThreadContext32& ctx) override;
void SaveContext(ThreadContext64& ctx) override {}
void LoadContext(const ThreadContext32& ctx) override;
void LoadContext(const ThreadContext64& ctx) override {}
void PrepareReschedule() override;
void ClearExclusiveState() override;
void ClearInstructionCache() override;
void InvalidateCacheRange(VAddr addr, std::size_t size) override;
void PageTableChanged(Common::PageTable& new_page_table,
std::size_t new_address_space_size_in_bits) override;
private:
std::shared_ptr<Dynarmic::A32::Jit> MakeJit(Common::PageTable& page_table,
std::size_t address_space_bits) const;
using JitCacheKey = std::pair<Common::PageTable*, std::size_t>;
using JitCacheType =
std::unordered_map<JitCacheKey, std::shared_ptr<Dynarmic::A32::Jit>, Common::PairHash>;
friend class DynarmicCallbacks32;
friend class DynarmicCP15;
std::unique_ptr<DynarmicCallbacks32> cb;
JitCacheType jit_cache;
std::shared_ptr<Dynarmic::A32::Jit> jit;
std::shared_ptr<DynarmicCP15> cp15;
std::size_t core_index;
DynarmicExclusiveMonitor& exclusive_monitor;
};
} // namespace Core

View File

@@ -0,0 +1,351 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <memory>
#include <dynarmic/A64/a64.h>
#include <dynarmic/A64/config.h>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/page_table.h"
#include "core/arm/cpu_interrupt_handler.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#include "core/arm/dynarmic/arm_exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/svc.h"
#include "core/memory.h"
#include "core/settings.h"
namespace Core {
using Vector = Dynarmic::A64::Vector;
class DynarmicCallbacks64 : public Dynarmic::A64::UserCallbacks {
public:
explicit DynarmicCallbacks64(ARM_Dynarmic_64& parent) : parent(parent) {}
u8 MemoryRead8(u64 vaddr) override {
return parent.system.Memory().Read8(vaddr);
}
u16 MemoryRead16(u64 vaddr) override {
return parent.system.Memory().Read16(vaddr);
}
u32 MemoryRead32(u64 vaddr) override {
return parent.system.Memory().Read32(vaddr);
}
u64 MemoryRead64(u64 vaddr) override {
return parent.system.Memory().Read64(vaddr);
}
Vector MemoryRead128(u64 vaddr) override {
auto& memory = parent.system.Memory();
return {memory.Read64(vaddr), memory.Read64(vaddr + 8)};
}
void MemoryWrite8(u64 vaddr, u8 value) override {
parent.system.Memory().Write8(vaddr, value);
}
void MemoryWrite16(u64 vaddr, u16 value) override {
parent.system.Memory().Write16(vaddr, value);
}
void MemoryWrite32(u64 vaddr, u32 value) override {
parent.system.Memory().Write32(vaddr, value);
}
void MemoryWrite64(u64 vaddr, u64 value) override {
parent.system.Memory().Write64(vaddr, value);
}
void MemoryWrite128(u64 vaddr, Vector value) override {
auto& memory = parent.system.Memory();
memory.Write64(vaddr, value[0]);
memory.Write64(vaddr + 8, value[1]);
}
bool MemoryWriteExclusive8(u64 vaddr, std::uint8_t value, std::uint8_t expected) override {
return parent.system.Memory().WriteExclusive8(vaddr, value, expected);
}
bool MemoryWriteExclusive16(u64 vaddr, std::uint16_t value, std::uint16_t expected) override {
return parent.system.Memory().WriteExclusive16(vaddr, value, expected);
}
bool MemoryWriteExclusive32(u64 vaddr, std::uint32_t value, std::uint32_t expected) override {
return parent.system.Memory().WriteExclusive32(vaddr, value, expected);
}
bool MemoryWriteExclusive64(u64 vaddr, std::uint64_t value, std::uint64_t expected) override {
return parent.system.Memory().WriteExclusive64(vaddr, value, expected);
}
bool MemoryWriteExclusive128(u64 vaddr, Vector value, Vector expected) override {
return parent.system.Memory().WriteExclusive128(vaddr, value, expected);
}
void InterpreterFallback(u64 pc, std::size_t num_instructions) override {
LOG_ERROR(Core_ARM,
"Unimplemented instruction @ 0x{:X} for {} instructions (instr = {:08X})", pc,
num_instructions, MemoryReadCode(pc));
}
void ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) override {
switch (exception) {
case Dynarmic::A64::Exception::WaitForInterrupt:
case Dynarmic::A64::Exception::WaitForEvent:
case Dynarmic::A64::Exception::SendEvent:
case Dynarmic::A64::Exception::SendEventLocal:
case Dynarmic::A64::Exception::Yield:
return;
case Dynarmic::A64::Exception::Breakpoint:
default:
ASSERT_MSG(false, "ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X})",
static_cast<std::size_t>(exception), pc, MemoryReadCode(pc));
}
}
void CallSVC(u32 swi) override {
Kernel::Svc::Call(parent.system, swi);
}
void AddTicks(u64 ticks) override {
if (parent.uses_wall_clock) {
return;
}
// Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
// rough approximation of the amount of executed ticks in the system, it may be thrown off
// if not all cores are doing a similar amount of work. Instead of doing this, we should
// device a way so that timing is consistent across all cores without increasing the ticks 4
// times.
u64 amortized_ticks = ticks / Core::Hardware::NUM_CPU_CORES;
// Always execute at least one tick.
amortized_ticks = std::max<u64>(amortized_ticks, 1);
parent.system.CoreTiming().AddTicks(amortized_ticks);
}
u64 GetTicksRemaining() override {
if (parent.uses_wall_clock) {
if (!parent.interrupt_handlers[parent.core_index].IsInterrupted()) {
return minimum_run_cycles;
}
return 0U;
}
return std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0);
}
u64 GetCNTPCT() override {
return parent.system.CoreTiming().GetClockTicks();
}
ARM_Dynarmic_64& parent;
u64 tpidrro_el0 = 0;
u64 tpidr_el0 = 0;
static constexpr u64 minimum_run_cycles = 1000U;
};
std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable& page_table,
std::size_t address_space_bits) const {
Dynarmic::A64::UserConfig config;
// Callbacks
config.callbacks = cb.get();
// Memory
config.page_table = reinterpret_cast<void**>(page_table.pointers.data());
config.page_table_address_space_bits = address_space_bits;
config.silently_mirror_page_table = false;
config.absolute_offset_page_table = true;
config.detect_misaligned_access_via_page_table = 16 | 32 | 64 | 128;
config.only_detect_misalignment_via_page_table_on_page_boundary = true;
// Multi-process state
config.processor_id = core_index;
config.global_monitor = &exclusive_monitor.monitor;
// System registers
config.tpidrro_el0 = &cb->tpidrro_el0;
config.tpidr_el0 = &cb->tpidr_el0;
config.dczid_el0 = 4;
config.ctr_el0 = 0x8444c004;
config.cntfrq_el0 = Hardware::CNTFREQ;
// Unpredictable instructions
config.define_unpredictable_behaviour = true;
// Timing
config.wall_clock_cntpct = uses_wall_clock;
// Safe optimizations
if (Settings::values.cpu_accuracy == Settings::CPUAccuracy::DebugMode) {
if (!Settings::values.cpuopt_page_tables) {
config.page_table = nullptr;
}
if (!Settings::values.cpuopt_block_linking) {
config.optimizations &= ~Dynarmic::OptimizationFlag::BlockLinking;
}
if (!Settings::values.cpuopt_return_stack_buffer) {
config.optimizations &= ~Dynarmic::OptimizationFlag::ReturnStackBuffer;
}
if (!Settings::values.cpuopt_fast_dispatcher) {
config.optimizations &= ~Dynarmic::OptimizationFlag::FastDispatch;
}
if (!Settings::values.cpuopt_context_elimination) {
config.optimizations &= ~Dynarmic::OptimizationFlag::GetSetElimination;
}
if (!Settings::values.cpuopt_const_prop) {
config.optimizations &= ~Dynarmic::OptimizationFlag::ConstProp;
}
if (!Settings::values.cpuopt_misc_ir) {
config.optimizations &= ~Dynarmic::OptimizationFlag::MiscIROpt;
}
if (!Settings::values.cpuopt_reduce_misalign_checks) {
config.only_detect_misalignment_via_page_table_on_page_boundary = false;
}
}
// Unsafe optimizations
if (Settings::values.cpu_accuracy == Settings::CPUAccuracy::Unsafe) {
config.unsafe_optimizations = true;
if (Settings::values.cpuopt_unsafe_unfuse_fma) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
}
if (Settings::values.cpuopt_unsafe_reduce_fp_error) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_ReducedErrorFP;
}
}
return std::make_shared<Dynarmic::A64::Jit>(config);
}
void ARM_Dynarmic_64::Run() {
jit->Run();
}
void ARM_Dynarmic_64::ExceptionalExit() {
jit->ExceptionalExit();
}
void ARM_Dynarmic_64::Step() {
cb->InterpreterFallback(jit->GetPC(), 1);
}
ARM_Dynarmic_64::ARM_Dynarmic_64(System& system, CPUInterrupts& interrupt_handlers,
bool uses_wall_clock, ExclusiveMonitor& exclusive_monitor,
std::size_t core_index)
: ARM_Interface{system, interrupt_handlers, uses_wall_clock},
cb(std::make_unique<DynarmicCallbacks64>(*this)), core_index{core_index},
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
ARM_Dynarmic_64::~ARM_Dynarmic_64() = default;
void ARM_Dynarmic_64::SetPC(u64 pc) {
jit->SetPC(pc);
}
u64 ARM_Dynarmic_64::GetPC() const {
return jit->GetPC();
}
u64 ARM_Dynarmic_64::GetReg(int index) const {
return jit->GetRegister(index);
}
void ARM_Dynarmic_64::SetReg(int index, u64 value) {
jit->SetRegister(index, value);
}
u128 ARM_Dynarmic_64::GetVectorReg(int index) const {
return jit->GetVector(index);
}
void ARM_Dynarmic_64::SetVectorReg(int index, u128 value) {
jit->SetVector(index, value);
}
u32 ARM_Dynarmic_64::GetPSTATE() const {
return jit->GetPstate();
}
void ARM_Dynarmic_64::SetPSTATE(u32 pstate) {
jit->SetPstate(pstate);
}
u64 ARM_Dynarmic_64::GetTlsAddress() const {
return cb->tpidrro_el0;
}
void ARM_Dynarmic_64::SetTlsAddress(VAddr address) {
cb->tpidrro_el0 = address;
}
u64 ARM_Dynarmic_64::GetTPIDR_EL0() const {
return cb->tpidr_el0;
}
void ARM_Dynarmic_64::SetTPIDR_EL0(u64 value) {
cb->tpidr_el0 = value;
}
void ARM_Dynarmic_64::ChangeProcessorID(std::size_t new_core_id) {
jit->ChangeProcessorID(new_core_id);
}
void ARM_Dynarmic_64::SaveContext(ThreadContext64& ctx) {
ctx.cpu_registers = jit->GetRegisters();
ctx.sp = jit->GetSP();
ctx.pc = jit->GetPC();
ctx.pstate = jit->GetPstate();
ctx.vector_registers = jit->GetVectors();
ctx.fpcr = jit->GetFpcr();
ctx.fpsr = jit->GetFpsr();
ctx.tpidr = cb->tpidr_el0;
}
void ARM_Dynarmic_64::LoadContext(const ThreadContext64& ctx) {
jit->SetRegisters(ctx.cpu_registers);
jit->SetSP(ctx.sp);
jit->SetPC(ctx.pc);
jit->SetPstate(ctx.pstate);
jit->SetVectors(ctx.vector_registers);
jit->SetFpcr(ctx.fpcr);
jit->SetFpsr(ctx.fpsr);
SetTPIDR_EL0(ctx.tpidr);
}
void ARM_Dynarmic_64::PrepareReschedule() {
jit->HaltExecution();
}
void ARM_Dynarmic_64::ClearInstructionCache() {
if (!jit) {
return;
}
jit->ClearCache();
}
void ARM_Dynarmic_64::InvalidateCacheRange(VAddr addr, std::size_t size) {
if (!jit) {
return;
}
jit->InvalidateCacheRange(addr, size);
}
void ARM_Dynarmic_64::ClearExclusiveState() {
if (!jit) {
return;
}
jit->ClearExclusiveState();
}
void ARM_Dynarmic_64::PageTableChanged(Common::PageTable& page_table,
std::size_t new_address_space_size_in_bits) {
auto key = std::make_pair(&page_table, new_address_space_size_in_bits);
auto iter = jit_cache.find(key);
if (iter != jit_cache.end()) {
jit = iter->second;
return;
}
jit = MakeJit(page_table, new_address_space_size_in_bits);
jit_cache.emplace(key, jit);
}
} // namespace Core

View File

@@ -0,0 +1,80 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <unordered_map>
#include <dynarmic/A64/a64.h>
#include "common/common_types.h"
#include "common/hash.h"
#include "core/arm/arm_interface.h"
#include "core/arm/exclusive_monitor.h"
namespace Core::Memory {
class Memory;
}
namespace Core {
class DynarmicCallbacks64;
class CPUInterruptHandler;
class DynarmicExclusiveMonitor;
class System;
class ARM_Dynarmic_64 final : public ARM_Interface {
public:
ARM_Dynarmic_64(System& system, CPUInterrupts& interrupt_handlers, bool uses_wall_clock,
ExclusiveMonitor& exclusive_monitor, std::size_t core_index);
~ARM_Dynarmic_64() override;
void SetPC(u64 pc) override;
u64 GetPC() const override;
u64 GetReg(int index) const override;
void SetReg(int index, u64 value) override;
u128 GetVectorReg(int index) const override;
void SetVectorReg(int index, u128 value) override;
u32 GetPSTATE() const override;
void SetPSTATE(u32 pstate) override;
void Run() override;
void Step() override;
void ExceptionalExit() override;
VAddr GetTlsAddress() const override;
void SetTlsAddress(VAddr address) override;
void SetTPIDR_EL0(u64 value) override;
u64 GetTPIDR_EL0() const override;
void ChangeProcessorID(std::size_t new_core_id) override;
void SaveContext(ThreadContext32& ctx) override {}
void SaveContext(ThreadContext64& ctx) override;
void LoadContext(const ThreadContext32& ctx) override {}
void LoadContext(const ThreadContext64& ctx) override;
void PrepareReschedule() override;
void ClearExclusiveState() override;
void ClearInstructionCache() override;
void InvalidateCacheRange(VAddr addr, std::size_t size) override;
void PageTableChanged(Common::PageTable& new_page_table,
std::size_t new_address_space_size_in_bits) override;
private:
std::shared_ptr<Dynarmic::A64::Jit> MakeJit(Common::PageTable& page_table,
std::size_t address_space_bits) const;
using JitCacheKey = std::pair<Common::PageTable*, std::size_t>;
using JitCacheType =
std::unordered_map<JitCacheKey, std::shared_ptr<Dynarmic::A64::Jit>, Common::PairHash>;
friend class DynarmicCallbacks64;
std::unique_ptr<DynarmicCallbacks64> cb;
JitCacheType jit_cache;
std::shared_ptr<Dynarmic::A64::Jit> jit;
std::size_t core_index;
DynarmicExclusiveMonitor& exclusive_monitor;
};
} // namespace Core

View File

@@ -0,0 +1,133 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <fmt/format.h>
#include "common/logging/log.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_cp15.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
using Callback = Dynarmic::A32::Coprocessor::Callback;
using CallbackOrAccessOneWord = Dynarmic::A32::Coprocessor::CallbackOrAccessOneWord;
using CallbackOrAccessTwoWords = Dynarmic::A32::Coprocessor::CallbackOrAccessTwoWords;
template <>
struct fmt::formatter<Dynarmic::A32::CoprocReg> {
constexpr auto parse(format_parse_context& ctx) {
return ctx.begin();
}
template <typename FormatContext>
auto format(const Dynarmic::A32::CoprocReg& reg, FormatContext& ctx) {
return format_to(ctx.out(), "cp{}", static_cast<size_t>(reg));
}
};
namespace Core {
static u32 dummy_value;
std::optional<Callback> DynarmicCP15::CompileInternalOperation(bool two, unsigned opc1,
CoprocReg CRd, CoprocReg CRn,
CoprocReg CRm, unsigned opc2) {
LOG_CRITICAL(Core_ARM, "CP15: cdp{} p15, {}, {}, {}, {}, {}", two ? "2" : "", opc1, CRd, CRn,
CRm, opc2);
return std::nullopt;
}
CallbackOrAccessOneWord DynarmicCP15::CompileSendOneWord(bool two, unsigned opc1, CoprocReg CRn,
CoprocReg CRm, unsigned opc2) {
if (!two && CRn == CoprocReg::C7 && opc1 == 0 && CRm == CoprocReg::C5 && opc2 == 4) {
// CP15_FLUSH_PREFETCH_BUFFER
// This is a dummy write, we ignore the value written here.
return &dummy_value;
}
if (!two && CRn == CoprocReg::C7 && opc1 == 0 && CRm == CoprocReg::C10) {
switch (opc2) {
case 4:
// CP15_DATA_SYNC_BARRIER
// This is a dummy write, we ignore the value written here.
return &dummy_value;
case 5:
// CP15_DATA_MEMORY_BARRIER
// This is a dummy write, we ignore the value written here.
return &dummy_value;
}
}
if (!two && CRn == CoprocReg::C13 && opc1 == 0 && CRm == CoprocReg::C0 && opc2 == 2) {
// CP15_THREAD_UPRW
return &uprw;
}
LOG_CRITICAL(Core_ARM, "CP15: mcr{} p15, {}, <Rt>, {}, {}, {}", two ? "2" : "", opc1, CRn, CRm,
opc2);
return {};
}
CallbackOrAccessTwoWords DynarmicCP15::CompileSendTwoWords(bool two, unsigned opc, CoprocReg CRm) {
LOG_CRITICAL(Core_ARM, "CP15: mcrr{} p15, {}, <Rt>, <Rt2>, {}", two ? "2" : "", opc, CRm);
return {};
}
CallbackOrAccessOneWord DynarmicCP15::CompileGetOneWord(bool two, unsigned opc1, CoprocReg CRn,
CoprocReg CRm, unsigned opc2) {
if (!two && CRn == CoprocReg::C13 && opc1 == 0 && CRm == CoprocReg::C0) {
switch (opc2) {
case 2:
// CP15_THREAD_UPRW
return &uprw;
case 3:
// CP15_THREAD_URO
return &uro;
}
}
LOG_CRITICAL(Core_ARM, "CP15: mrc{} p15, {}, <Rt>, {}, {}, {}", two ? "2" : "", opc1, CRn, CRm,
opc2);
return {};
}
CallbackOrAccessTwoWords DynarmicCP15::CompileGetTwoWords(bool two, unsigned opc, CoprocReg CRm) {
if (!two && opc == 0 && CRm == CoprocReg::C14) {
// CNTPCT
const auto callback = static_cast<u64 (*)(Dynarmic::A32::Jit*, void*, u32, u32)>(
[](Dynarmic::A32::Jit*, void* arg, u32, u32) -> u64 {
ARM_Dynarmic_32& parent = *(ARM_Dynarmic_32*)arg;
return parent.system.CoreTiming().GetClockTicks();
});
return Dynarmic::A32::Coprocessor::Callback{callback, (void*)&parent};
}
LOG_CRITICAL(Core_ARM, "CP15: mrrc{} p15, {}, <Rt>, <Rt2>, {}", two ? "2" : "", opc, CRm);
return {};
}
std::optional<Callback> DynarmicCP15::CompileLoadWords(bool two, bool long_transfer, CoprocReg CRd,
std::optional<u8> option) {
if (option) {
LOG_CRITICAL(Core_ARM, "CP15: mrrc{}{} p15, {}, [...], {}", two ? "2" : "",
long_transfer ? "l" : "", CRd, *option);
} else {
LOG_CRITICAL(Core_ARM, "CP15: mrrc{}{} p15, {}, [...]", two ? "2" : "",
long_transfer ? "l" : "", CRd);
}
return std::nullopt;
}
std::optional<Callback> DynarmicCP15::CompileStoreWords(bool two, bool long_transfer, CoprocReg CRd,
std::optional<u8> option) {
if (option) {
LOG_CRITICAL(Core_ARM, "CP15: mrrc{}{} p15, {}, [...], {}", two ? "2" : "",
long_transfer ? "l" : "", CRd, *option);
} else {
LOG_CRITICAL(Core_ARM, "CP15: mrrc{}{} p15, {}, [...]", two ? "2" : "",
long_transfer ? "l" : "", CRd);
}
return std::nullopt;
}
} // namespace Core

View File

@@ -0,0 +1,42 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <optional>
#include <dynarmic/A32/coprocessor.h>
#include "common/common_types.h"
namespace Core {
class ARM_Dynarmic_32;
class DynarmicCP15 final : public Dynarmic::A32::Coprocessor {
public:
using CoprocReg = Dynarmic::A32::CoprocReg;
explicit DynarmicCP15(ARM_Dynarmic_32& parent) : parent(parent) {}
std::optional<Callback> CompileInternalOperation(bool two, unsigned opc1, CoprocReg CRd,
CoprocReg CRn, CoprocReg CRm,
unsigned opc2) override;
CallbackOrAccessOneWord CompileSendOneWord(bool two, unsigned opc1, CoprocReg CRn,
CoprocReg CRm, unsigned opc2) override;
CallbackOrAccessTwoWords CompileSendTwoWords(bool two, unsigned opc, CoprocReg CRm) override;
CallbackOrAccessOneWord CompileGetOneWord(bool two, unsigned opc1, CoprocReg CRn, CoprocReg CRm,
unsigned opc2) override;
CallbackOrAccessTwoWords CompileGetTwoWords(bool two, unsigned opc, CoprocReg CRm) override;
std::optional<Callback> CompileLoadWords(bool two, bool long_transfer, CoprocReg CRd,
std::optional<u8> option) override;
std::optional<Callback> CompileStoreWords(bool two, bool long_transfer, CoprocReg CRd,
std::optional<u8> option) override;
ARM_Dynarmic_32& parent;
u32 uprw = 0;
u32 uro = 0;
};
} // namespace Core

View File

@@ -0,0 +1,76 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <memory>
#include "core/arm/dynarmic/arm_exclusive_monitor.h"
#include "core/memory.h"
namespace Core {
DynarmicExclusiveMonitor::DynarmicExclusiveMonitor(Memory::Memory& memory, std::size_t core_count)
: monitor(core_count), memory{memory} {}
DynarmicExclusiveMonitor::~DynarmicExclusiveMonitor() = default;
u8 DynarmicExclusiveMonitor::ExclusiveRead8(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u8>(core_index, addr, [&]() -> u8 { return memory.Read8(addr); });
}
u16 DynarmicExclusiveMonitor::ExclusiveRead16(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u16>(core_index, addr, [&]() -> u16 { return memory.Read16(addr); });
}
u32 DynarmicExclusiveMonitor::ExclusiveRead32(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u32>(core_index, addr, [&]() -> u32 { return memory.Read32(addr); });
}
u64 DynarmicExclusiveMonitor::ExclusiveRead64(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u64>(core_index, addr, [&]() -> u64 { return memory.Read64(addr); });
}
u128 DynarmicExclusiveMonitor::ExclusiveRead128(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u128>(core_index, addr, [&]() -> u128 {
u128 result;
result[0] = memory.Read64(addr);
result[1] = memory.Read64(addr + 8);
return result;
});
}
void DynarmicExclusiveMonitor::ClearExclusive() {
monitor.Clear();
}
bool DynarmicExclusiveMonitor::ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) {
return monitor.DoExclusiveOperation<u8>(core_index, vaddr, [&](u8 expected) -> bool {
return memory.WriteExclusive8(vaddr, value, expected);
});
}
bool DynarmicExclusiveMonitor::ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) {
return monitor.DoExclusiveOperation<u16>(core_index, vaddr, [&](u16 expected) -> bool {
return memory.WriteExclusive16(vaddr, value, expected);
});
}
bool DynarmicExclusiveMonitor::ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) {
return monitor.DoExclusiveOperation<u32>(core_index, vaddr, [&](u32 expected) -> bool {
return memory.WriteExclusive32(vaddr, value, expected);
});
}
bool DynarmicExclusiveMonitor::ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) {
return monitor.DoExclusiveOperation<u64>(core_index, vaddr, [&](u64 expected) -> bool {
return memory.WriteExclusive64(vaddr, value, expected);
});
}
bool DynarmicExclusiveMonitor::ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) {
return monitor.DoExclusiveOperation<u128>(core_index, vaddr, [&](u128 expected) -> bool {
return memory.WriteExclusive128(vaddr, value, expected);
});
}
} // namespace Core

View File

@@ -0,0 +1,48 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <unordered_map>
#include <dynarmic/exclusive_monitor.h>
#include "common/common_types.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#include "core/arm/exclusive_monitor.h"
namespace Core::Memory {
class Memory;
}
namespace Core {
class DynarmicExclusiveMonitor final : public ExclusiveMonitor {
public:
explicit DynarmicExclusiveMonitor(Memory::Memory& memory, std::size_t core_count);
~DynarmicExclusiveMonitor() override;
u8 ExclusiveRead8(std::size_t core_index, VAddr addr) override;
u16 ExclusiveRead16(std::size_t core_index, VAddr addr) override;
u32 ExclusiveRead32(std::size_t core_index, VAddr addr) override;
u64 ExclusiveRead64(std::size_t core_index, VAddr addr) override;
u128 ExclusiveRead128(std::size_t core_index, VAddr addr) override;
void ClearExclusive() override;
bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) override;
bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) override;
bool ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) override;
bool ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) override;
bool ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) override;
private:
friend class ARM_Dynarmic_32;
friend class ARM_Dynarmic_64;
Dynarmic::ExclusiveMonitor monitor;
Core::Memory::Memory& memory;
};
} // namespace Core

View File

@@ -0,0 +1,25 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_exclusive_monitor.h"
#endif
#include "core/arm/exclusive_monitor.h"
#include "core/memory.h"
namespace Core {
ExclusiveMonitor::~ExclusiveMonitor() = default;
std::unique_ptr<Core::ExclusiveMonitor> MakeExclusiveMonitor(Memory::Memory& memory,
std::size_t num_cores) {
#ifdef ARCHITECTURE_x86_64
return std::make_unique<Core::DynarmicExclusiveMonitor>(memory, num_cores);
#else
// TODO(merry): Passthrough exclusive monitor
return nullptr;
#endif
}
} // namespace Core

View File

@@ -0,0 +1,38 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include "common/common_types.h"
namespace Core::Memory {
class Memory;
}
namespace Core {
class ExclusiveMonitor {
public:
virtual ~ExclusiveMonitor();
virtual u8 ExclusiveRead8(std::size_t core_index, VAddr addr) = 0;
virtual u16 ExclusiveRead16(std::size_t core_index, VAddr addr) = 0;
virtual u32 ExclusiveRead32(std::size_t core_index, VAddr addr) = 0;
virtual u64 ExclusiveRead64(std::size_t core_index, VAddr addr) = 0;
virtual u128 ExclusiveRead128(std::size_t core_index, VAddr addr) = 0;
virtual void ClearExclusive() = 0;
virtual bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) = 0;
virtual bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) = 0;
virtual bool ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) = 0;
virtual bool ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) = 0;
virtual bool ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) = 0;
};
std::unique_ptr<Core::ExclusiveMonitor> MakeExclusiveMonitor(Memory::Memory& memory,
std::size_t num_cores);
} // namespace Core