early-access version 1255

This commit is contained in:
pineappleEA
2020-12-28 15:15:37 +00:00
parent 84b39492d1
commit 78b48028e1
6254 changed files with 1868140 additions and 0 deletions

View File

@@ -0,0 +1,315 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <memory>
#include <dynarmic/A32/a32.h>
#include <dynarmic/A32/config.h>
#include <dynarmic/A32/context.h>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/page_table.h"
#include "core/arm/cpu_interrupt_handler.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_cp15.h"
#include "core/arm/dynarmic/arm_exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/svc.h"
#include "core/memory.h"
#include "core/settings.h"
namespace Core {
class DynarmicCallbacks32 : public Dynarmic::A32::UserCallbacks {
public:
explicit DynarmicCallbacks32(ARM_Dynarmic_32& parent) : parent(parent) {}
u8 MemoryRead8(u32 vaddr) override {
return parent.system.Memory().Read8(vaddr);
}
u16 MemoryRead16(u32 vaddr) override {
return parent.system.Memory().Read16(vaddr);
}
u32 MemoryRead32(u32 vaddr) override {
return parent.system.Memory().Read32(vaddr);
}
u64 MemoryRead64(u32 vaddr) override {
return parent.system.Memory().Read64(vaddr);
}
void MemoryWrite8(u32 vaddr, u8 value) override {
parent.system.Memory().Write8(vaddr, value);
}
void MemoryWrite16(u32 vaddr, u16 value) override {
parent.system.Memory().Write16(vaddr, value);
}
void MemoryWrite32(u32 vaddr, u32 value) override {
parent.system.Memory().Write32(vaddr, value);
}
void MemoryWrite64(u32 vaddr, u64 value) override {
parent.system.Memory().Write64(vaddr, value);
}
bool MemoryWriteExclusive8(u32 vaddr, u8 value, u8 expected) override {
return parent.system.Memory().WriteExclusive8(vaddr, value, expected);
}
bool MemoryWriteExclusive16(u32 vaddr, u16 value, u16 expected) override {
return parent.system.Memory().WriteExclusive16(vaddr, value, expected);
}
bool MemoryWriteExclusive32(u32 vaddr, u32 value, u32 expected) override {
return parent.system.Memory().WriteExclusive32(vaddr, value, expected);
}
bool MemoryWriteExclusive64(u32 vaddr, u64 value, u64 expected) override {
return parent.system.Memory().WriteExclusive64(vaddr, value, expected);
}
void InterpreterFallback(u32 pc, std::size_t num_instructions) override {
UNIMPLEMENTED_MSG("This should never happen, pc = {:08X}, code = {:08X}", pc,
MemoryReadCode(pc));
}
void ExceptionRaised(u32 pc, Dynarmic::A32::Exception exception) override {
switch (exception) {
case Dynarmic::A32::Exception::UndefinedInstruction:
case Dynarmic::A32::Exception::UnpredictableInstruction:
break;
case Dynarmic::A32::Exception::Breakpoint:
break;
}
LOG_CRITICAL(Core_ARM, "ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X})",
static_cast<std::size_t>(exception), pc, MemoryReadCode(pc));
UNIMPLEMENTED();
}
void CallSVC(u32 swi) override {
Kernel::Svc::Call(parent.system, swi);
}
void AddTicks(u64 ticks) override {
if (parent.uses_wall_clock) {
return;
}
// Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
// rough approximation of the amount of executed ticks in the system, it may be thrown off
// if not all cores are doing a similar amount of work. Instead of doing this, we should
// device a way so that timing is consistent across all cores without increasing the ticks 4
// times.
u64 amortized_ticks =
(ticks - num_interpreted_instructions) / Core::Hardware::NUM_CPU_CORES;
// Always execute at least one tick.
amortized_ticks = std::max<u64>(amortized_ticks, 1);
parent.system.CoreTiming().AddTicks(amortized_ticks);
num_interpreted_instructions = 0;
}
u64 GetTicksRemaining() override {
if (parent.uses_wall_clock) {
if (!parent.interrupt_handlers[parent.core_index].IsInterrupted()) {
return minimum_run_cycles;
}
return 0U;
}
return std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0);
}
ARM_Dynarmic_32& parent;
std::size_t num_interpreted_instructions{};
static constexpr u64 minimum_run_cycles = 1000U;
};
std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable& page_table,
std::size_t address_space_bits) const {
Dynarmic::A32::UserConfig config;
config.callbacks = cb.get();
// TODO(bunnei): Implement page table for 32-bit
// config.page_table = &page_table.pointers;
config.coprocessors[15] = cp15;
config.define_unpredictable_behaviour = true;
static constexpr std::size_t PAGE_BITS = 12;
static constexpr std::size_t NUM_PAGE_TABLE_ENTRIES = 1 << (32 - PAGE_BITS);
config.page_table = reinterpret_cast<std::array<std::uint8_t*, NUM_PAGE_TABLE_ENTRIES>*>(
page_table.pointers.data());
config.absolute_offset_page_table = true;
config.detect_misaligned_access_via_page_table = 16 | 32 | 64 | 128;
config.only_detect_misalignment_via_page_table_on_page_boundary = true;
// Multi-process state
config.processor_id = core_index;
config.global_monitor = &exclusive_monitor.monitor;
// Timing
config.wall_clock_cntpct = uses_wall_clock;
// Safe optimizations
if (Settings::values.cpu_accuracy == Settings::CPUAccuracy::DebugMode) {
if (!Settings::values.cpuopt_page_tables) {
config.page_table = nullptr;
}
if (!Settings::values.cpuopt_block_linking) {
config.optimizations &= ~Dynarmic::OptimizationFlag::BlockLinking;
}
if (!Settings::values.cpuopt_return_stack_buffer) {
config.optimizations &= ~Dynarmic::OptimizationFlag::ReturnStackBuffer;
}
if (!Settings::values.cpuopt_fast_dispatcher) {
config.optimizations &= ~Dynarmic::OptimizationFlag::FastDispatch;
}
if (!Settings::values.cpuopt_context_elimination) {
config.optimizations &= ~Dynarmic::OptimizationFlag::GetSetElimination;
}
if (!Settings::values.cpuopt_const_prop) {
config.optimizations &= ~Dynarmic::OptimizationFlag::ConstProp;
}
if (!Settings::values.cpuopt_misc_ir) {
config.optimizations &= ~Dynarmic::OptimizationFlag::MiscIROpt;
}
if (!Settings::values.cpuopt_reduce_misalign_checks) {
config.only_detect_misalignment_via_page_table_on_page_boundary = false;
}
}
// Unsafe optimizations
if (Settings::values.cpu_accuracy == Settings::CPUAccuracy::Unsafe) {
config.unsafe_optimizations = true;
if (Settings::values.cpuopt_unsafe_unfuse_fma) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
}
if (Settings::values.cpuopt_unsafe_reduce_fp_error) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_ReducedErrorFP;
}
}
return std::make_unique<Dynarmic::A32::Jit>(config);
}
void ARM_Dynarmic_32::Run() {
jit->Run();
}
void ARM_Dynarmic_32::ExceptionalExit() {
jit->ExceptionalExit();
}
void ARM_Dynarmic_32::Step() {
jit->Step();
}
ARM_Dynarmic_32::ARM_Dynarmic_32(System& system, CPUInterrupts& interrupt_handlers,
bool uses_wall_clock, ExclusiveMonitor& exclusive_monitor,
std::size_t core_index)
: ARM_Interface{system, interrupt_handlers, uses_wall_clock},
cb(std::make_unique<DynarmicCallbacks32>(*this)),
cp15(std::make_shared<DynarmicCP15>(*this)), core_index{core_index},
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
ARM_Dynarmic_32::~ARM_Dynarmic_32() = default;
void ARM_Dynarmic_32::SetPC(u64 pc) {
jit->Regs()[15] = static_cast<u32>(pc);
}
u64 ARM_Dynarmic_32::GetPC() const {
return jit->Regs()[15];
}
u64 ARM_Dynarmic_32::GetReg(int index) const {
return jit->Regs()[index];
}
void ARM_Dynarmic_32::SetReg(int index, u64 value) {
jit->Regs()[index] = static_cast<u32>(value);
}
u128 ARM_Dynarmic_32::GetVectorReg(int index) const {
return {};
}
void ARM_Dynarmic_32::SetVectorReg(int index, u128 value) {}
u32 ARM_Dynarmic_32::GetPSTATE() const {
return jit->Cpsr();
}
void ARM_Dynarmic_32::SetPSTATE(u32 cpsr) {
jit->SetCpsr(cpsr);
}
u64 ARM_Dynarmic_32::GetTlsAddress() const {
return cp15->uro;
}
void ARM_Dynarmic_32::SetTlsAddress(VAddr address) {
cp15->uro = static_cast<u32>(address);
}
u64 ARM_Dynarmic_32::GetTPIDR_EL0() const {
return cp15->uprw;
}
void ARM_Dynarmic_32::SetTPIDR_EL0(u64 value) {
cp15->uprw = static_cast<u32>(value);
}
void ARM_Dynarmic_32::ChangeProcessorID(std::size_t new_core_id) {
jit->ChangeProcessorID(new_core_id);
}
void ARM_Dynarmic_32::SaveContext(ThreadContext32& ctx) {
Dynarmic::A32::Context context;
jit->SaveContext(context);
ctx.cpu_registers = context.Regs();
ctx.extension_registers = context.ExtRegs();
ctx.cpsr = context.Cpsr();
ctx.fpscr = context.Fpscr();
}
void ARM_Dynarmic_32::LoadContext(const ThreadContext32& ctx) {
Dynarmic::A32::Context context;
context.Regs() = ctx.cpu_registers;
context.ExtRegs() = ctx.extension_registers;
context.SetCpsr(ctx.cpsr);
context.SetFpscr(ctx.fpscr);
jit->LoadContext(context);
}
void ARM_Dynarmic_32::PrepareReschedule() {
jit->HaltExecution();
}
void ARM_Dynarmic_32::ClearInstructionCache() {
if (!jit) {
return;
}
jit->ClearCache();
}
void ARM_Dynarmic_32::InvalidateCacheRange(VAddr addr, std::size_t size) {
if (!jit) {
return;
}
jit->InvalidateCacheRange(static_cast<u32>(addr), size);
}
void ARM_Dynarmic_32::ClearExclusiveState() {
if (!jit) {
return;
}
jit->ClearExclusiveState();
}
void ARM_Dynarmic_32::PageTableChanged(Common::PageTable& page_table,
std::size_t new_address_space_size_in_bits) {
auto key = std::make_pair(&page_table, new_address_space_size_in_bits);
auto iter = jit_cache.find(key);
if (iter != jit_cache.end()) {
jit = iter->second;
return;
}
jit = MakeJit(page_table, new_address_space_size_in_bits);
jit_cache.emplace(key, jit);
}
} // namespace Core

View File

@@ -0,0 +1,85 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <unordered_map>
#include <dynarmic/A32/a32.h>
#include <dynarmic/A64/a64.h>
#include <dynarmic/exclusive_monitor.h>
#include "common/common_types.h"
#include "common/hash.h"
#include "core/arm/arm_interface.h"
#include "core/arm/exclusive_monitor.h"
namespace Core::Memory {
class Memory;
}
namespace Core {
class CPUInterruptHandler;
class DynarmicCallbacks32;
class DynarmicCP15;
class DynarmicExclusiveMonitor;
class System;
class ARM_Dynarmic_32 final : public ARM_Interface {
public:
ARM_Dynarmic_32(System& system, CPUInterrupts& interrupt_handlers, bool uses_wall_clock,
ExclusiveMonitor& exclusive_monitor, std::size_t core_index);
~ARM_Dynarmic_32() override;
void SetPC(u64 pc) override;
u64 GetPC() const override;
u64 GetReg(int index) const override;
void SetReg(int index, u64 value) override;
u128 GetVectorReg(int index) const override;
void SetVectorReg(int index, u128 value) override;
u32 GetPSTATE() const override;
void SetPSTATE(u32 pstate) override;
void Run() override;
void ExceptionalExit() override;
void Step() override;
VAddr GetTlsAddress() const override;
void SetTlsAddress(VAddr address) override;
void SetTPIDR_EL0(u64 value) override;
u64 GetTPIDR_EL0() const override;
void ChangeProcessorID(std::size_t new_core_id) override;
void SaveContext(ThreadContext32& ctx) override;
void SaveContext(ThreadContext64& ctx) override {}
void LoadContext(const ThreadContext32& ctx) override;
void LoadContext(const ThreadContext64& ctx) override {}
void PrepareReschedule() override;
void ClearExclusiveState() override;
void ClearInstructionCache() override;
void InvalidateCacheRange(VAddr addr, std::size_t size) override;
void PageTableChanged(Common::PageTable& new_page_table,
std::size_t new_address_space_size_in_bits) override;
private:
std::shared_ptr<Dynarmic::A32::Jit> MakeJit(Common::PageTable& page_table,
std::size_t address_space_bits) const;
using JitCacheKey = std::pair<Common::PageTable*, std::size_t>;
using JitCacheType =
std::unordered_map<JitCacheKey, std::shared_ptr<Dynarmic::A32::Jit>, Common::PairHash>;
friend class DynarmicCallbacks32;
friend class DynarmicCP15;
std::unique_ptr<DynarmicCallbacks32> cb;
JitCacheType jit_cache;
std::shared_ptr<Dynarmic::A32::Jit> jit;
std::shared_ptr<DynarmicCP15> cp15;
std::size_t core_index;
DynarmicExclusiveMonitor& exclusive_monitor;
};
} // namespace Core

View File

@@ -0,0 +1,351 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <memory>
#include <dynarmic/A64/a64.h>
#include <dynarmic/A64/config.h>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/page_table.h"
#include "core/arm/cpu_interrupt_handler.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#include "core/arm/dynarmic/arm_exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/svc.h"
#include "core/memory.h"
#include "core/settings.h"
namespace Core {
using Vector = Dynarmic::A64::Vector;
class DynarmicCallbacks64 : public Dynarmic::A64::UserCallbacks {
public:
explicit DynarmicCallbacks64(ARM_Dynarmic_64& parent) : parent(parent) {}
u8 MemoryRead8(u64 vaddr) override {
return parent.system.Memory().Read8(vaddr);
}
u16 MemoryRead16(u64 vaddr) override {
return parent.system.Memory().Read16(vaddr);
}
u32 MemoryRead32(u64 vaddr) override {
return parent.system.Memory().Read32(vaddr);
}
u64 MemoryRead64(u64 vaddr) override {
return parent.system.Memory().Read64(vaddr);
}
Vector MemoryRead128(u64 vaddr) override {
auto& memory = parent.system.Memory();
return {memory.Read64(vaddr), memory.Read64(vaddr + 8)};
}
void MemoryWrite8(u64 vaddr, u8 value) override {
parent.system.Memory().Write8(vaddr, value);
}
void MemoryWrite16(u64 vaddr, u16 value) override {
parent.system.Memory().Write16(vaddr, value);
}
void MemoryWrite32(u64 vaddr, u32 value) override {
parent.system.Memory().Write32(vaddr, value);
}
void MemoryWrite64(u64 vaddr, u64 value) override {
parent.system.Memory().Write64(vaddr, value);
}
void MemoryWrite128(u64 vaddr, Vector value) override {
auto& memory = parent.system.Memory();
memory.Write64(vaddr, value[0]);
memory.Write64(vaddr + 8, value[1]);
}
bool MemoryWriteExclusive8(u64 vaddr, std::uint8_t value, std::uint8_t expected) override {
return parent.system.Memory().WriteExclusive8(vaddr, value, expected);
}
bool MemoryWriteExclusive16(u64 vaddr, std::uint16_t value, std::uint16_t expected) override {
return parent.system.Memory().WriteExclusive16(vaddr, value, expected);
}
bool MemoryWriteExclusive32(u64 vaddr, std::uint32_t value, std::uint32_t expected) override {
return parent.system.Memory().WriteExclusive32(vaddr, value, expected);
}
bool MemoryWriteExclusive64(u64 vaddr, std::uint64_t value, std::uint64_t expected) override {
return parent.system.Memory().WriteExclusive64(vaddr, value, expected);
}
bool MemoryWriteExclusive128(u64 vaddr, Vector value, Vector expected) override {
return parent.system.Memory().WriteExclusive128(vaddr, value, expected);
}
void InterpreterFallback(u64 pc, std::size_t num_instructions) override {
LOG_ERROR(Core_ARM,
"Unimplemented instruction @ 0x{:X} for {} instructions (instr = {:08X})", pc,
num_instructions, MemoryReadCode(pc));
}
void ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) override {
switch (exception) {
case Dynarmic::A64::Exception::WaitForInterrupt:
case Dynarmic::A64::Exception::WaitForEvent:
case Dynarmic::A64::Exception::SendEvent:
case Dynarmic::A64::Exception::SendEventLocal:
case Dynarmic::A64::Exception::Yield:
return;
case Dynarmic::A64::Exception::Breakpoint:
default:
ASSERT_MSG(false, "ExceptionRaised(exception = {}, pc = {:08X}, code = {:08X})",
static_cast<std::size_t>(exception), pc, MemoryReadCode(pc));
}
}
void CallSVC(u32 swi) override {
Kernel::Svc::Call(parent.system, swi);
}
void AddTicks(u64 ticks) override {
if (parent.uses_wall_clock) {
return;
}
// Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
// rough approximation of the amount of executed ticks in the system, it may be thrown off
// if not all cores are doing a similar amount of work. Instead of doing this, we should
// device a way so that timing is consistent across all cores without increasing the ticks 4
// times.
u64 amortized_ticks = ticks / Core::Hardware::NUM_CPU_CORES;
// Always execute at least one tick.
amortized_ticks = std::max<u64>(amortized_ticks, 1);
parent.system.CoreTiming().AddTicks(amortized_ticks);
}
u64 GetTicksRemaining() override {
if (parent.uses_wall_clock) {
if (!parent.interrupt_handlers[parent.core_index].IsInterrupted()) {
return minimum_run_cycles;
}
return 0U;
}
return std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0);
}
u64 GetCNTPCT() override {
return parent.system.CoreTiming().GetClockTicks();
}
ARM_Dynarmic_64& parent;
u64 tpidrro_el0 = 0;
u64 tpidr_el0 = 0;
static constexpr u64 minimum_run_cycles = 1000U;
};
std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable& page_table,
std::size_t address_space_bits) const {
Dynarmic::A64::UserConfig config;
// Callbacks
config.callbacks = cb.get();
// Memory
config.page_table = reinterpret_cast<void**>(page_table.pointers.data());
config.page_table_address_space_bits = address_space_bits;
config.silently_mirror_page_table = false;
config.absolute_offset_page_table = true;
config.detect_misaligned_access_via_page_table = 16 | 32 | 64 | 128;
config.only_detect_misalignment_via_page_table_on_page_boundary = true;
// Multi-process state
config.processor_id = core_index;
config.global_monitor = &exclusive_monitor.monitor;
// System registers
config.tpidrro_el0 = &cb->tpidrro_el0;
config.tpidr_el0 = &cb->tpidr_el0;
config.dczid_el0 = 4;
config.ctr_el0 = 0x8444c004;
config.cntfrq_el0 = Hardware::CNTFREQ;
// Unpredictable instructions
config.define_unpredictable_behaviour = true;
// Timing
config.wall_clock_cntpct = uses_wall_clock;
// Safe optimizations
if (Settings::values.cpu_accuracy == Settings::CPUAccuracy::DebugMode) {
if (!Settings::values.cpuopt_page_tables) {
config.page_table = nullptr;
}
if (!Settings::values.cpuopt_block_linking) {
config.optimizations &= ~Dynarmic::OptimizationFlag::BlockLinking;
}
if (!Settings::values.cpuopt_return_stack_buffer) {
config.optimizations &= ~Dynarmic::OptimizationFlag::ReturnStackBuffer;
}
if (!Settings::values.cpuopt_fast_dispatcher) {
config.optimizations &= ~Dynarmic::OptimizationFlag::FastDispatch;
}
if (!Settings::values.cpuopt_context_elimination) {
config.optimizations &= ~Dynarmic::OptimizationFlag::GetSetElimination;
}
if (!Settings::values.cpuopt_const_prop) {
config.optimizations &= ~Dynarmic::OptimizationFlag::ConstProp;
}
if (!Settings::values.cpuopt_misc_ir) {
config.optimizations &= ~Dynarmic::OptimizationFlag::MiscIROpt;
}
if (!Settings::values.cpuopt_reduce_misalign_checks) {
config.only_detect_misalignment_via_page_table_on_page_boundary = false;
}
}
// Unsafe optimizations
if (Settings::values.cpu_accuracy == Settings::CPUAccuracy::Unsafe) {
config.unsafe_optimizations = true;
if (Settings::values.cpuopt_unsafe_unfuse_fma) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
}
if (Settings::values.cpuopt_unsafe_reduce_fp_error) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_ReducedErrorFP;
}
}
return std::make_shared<Dynarmic::A64::Jit>(config);
}
void ARM_Dynarmic_64::Run() {
jit->Run();
}
void ARM_Dynarmic_64::ExceptionalExit() {
jit->ExceptionalExit();
}
void ARM_Dynarmic_64::Step() {
cb->InterpreterFallback(jit->GetPC(), 1);
}
ARM_Dynarmic_64::ARM_Dynarmic_64(System& system, CPUInterrupts& interrupt_handlers,
bool uses_wall_clock, ExclusiveMonitor& exclusive_monitor,
std::size_t core_index)
: ARM_Interface{system, interrupt_handlers, uses_wall_clock},
cb(std::make_unique<DynarmicCallbacks64>(*this)), core_index{core_index},
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
ARM_Dynarmic_64::~ARM_Dynarmic_64() = default;
void ARM_Dynarmic_64::SetPC(u64 pc) {
jit->SetPC(pc);
}
u64 ARM_Dynarmic_64::GetPC() const {
return jit->GetPC();
}
u64 ARM_Dynarmic_64::GetReg(int index) const {
return jit->GetRegister(index);
}
void ARM_Dynarmic_64::SetReg(int index, u64 value) {
jit->SetRegister(index, value);
}
u128 ARM_Dynarmic_64::GetVectorReg(int index) const {
return jit->GetVector(index);
}
void ARM_Dynarmic_64::SetVectorReg(int index, u128 value) {
jit->SetVector(index, value);
}
u32 ARM_Dynarmic_64::GetPSTATE() const {
return jit->GetPstate();
}
void ARM_Dynarmic_64::SetPSTATE(u32 pstate) {
jit->SetPstate(pstate);
}
u64 ARM_Dynarmic_64::GetTlsAddress() const {
return cb->tpidrro_el0;
}
void ARM_Dynarmic_64::SetTlsAddress(VAddr address) {
cb->tpidrro_el0 = address;
}
u64 ARM_Dynarmic_64::GetTPIDR_EL0() const {
return cb->tpidr_el0;
}
void ARM_Dynarmic_64::SetTPIDR_EL0(u64 value) {
cb->tpidr_el0 = value;
}
void ARM_Dynarmic_64::ChangeProcessorID(std::size_t new_core_id) {
jit->ChangeProcessorID(new_core_id);
}
void ARM_Dynarmic_64::SaveContext(ThreadContext64& ctx) {
ctx.cpu_registers = jit->GetRegisters();
ctx.sp = jit->GetSP();
ctx.pc = jit->GetPC();
ctx.pstate = jit->GetPstate();
ctx.vector_registers = jit->GetVectors();
ctx.fpcr = jit->GetFpcr();
ctx.fpsr = jit->GetFpsr();
ctx.tpidr = cb->tpidr_el0;
}
void ARM_Dynarmic_64::LoadContext(const ThreadContext64& ctx) {
jit->SetRegisters(ctx.cpu_registers);
jit->SetSP(ctx.sp);
jit->SetPC(ctx.pc);
jit->SetPstate(ctx.pstate);
jit->SetVectors(ctx.vector_registers);
jit->SetFpcr(ctx.fpcr);
jit->SetFpsr(ctx.fpsr);
SetTPIDR_EL0(ctx.tpidr);
}
void ARM_Dynarmic_64::PrepareReschedule() {
jit->HaltExecution();
}
void ARM_Dynarmic_64::ClearInstructionCache() {
if (!jit) {
return;
}
jit->ClearCache();
}
void ARM_Dynarmic_64::InvalidateCacheRange(VAddr addr, std::size_t size) {
if (!jit) {
return;
}
jit->InvalidateCacheRange(addr, size);
}
void ARM_Dynarmic_64::ClearExclusiveState() {
if (!jit) {
return;
}
jit->ClearExclusiveState();
}
void ARM_Dynarmic_64::PageTableChanged(Common::PageTable& page_table,
std::size_t new_address_space_size_in_bits) {
auto key = std::make_pair(&page_table, new_address_space_size_in_bits);
auto iter = jit_cache.find(key);
if (iter != jit_cache.end()) {
jit = iter->second;
return;
}
jit = MakeJit(page_table, new_address_space_size_in_bits);
jit_cache.emplace(key, jit);
}
} // namespace Core

View File

@@ -0,0 +1,80 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <unordered_map>
#include <dynarmic/A64/a64.h>
#include "common/common_types.h"
#include "common/hash.h"
#include "core/arm/arm_interface.h"
#include "core/arm/exclusive_monitor.h"
namespace Core::Memory {
class Memory;
}
namespace Core {
class DynarmicCallbacks64;
class CPUInterruptHandler;
class DynarmicExclusiveMonitor;
class System;
class ARM_Dynarmic_64 final : public ARM_Interface {
public:
ARM_Dynarmic_64(System& system, CPUInterrupts& interrupt_handlers, bool uses_wall_clock,
ExclusiveMonitor& exclusive_monitor, std::size_t core_index);
~ARM_Dynarmic_64() override;
void SetPC(u64 pc) override;
u64 GetPC() const override;
u64 GetReg(int index) const override;
void SetReg(int index, u64 value) override;
u128 GetVectorReg(int index) const override;
void SetVectorReg(int index, u128 value) override;
u32 GetPSTATE() const override;
void SetPSTATE(u32 pstate) override;
void Run() override;
void Step() override;
void ExceptionalExit() override;
VAddr GetTlsAddress() const override;
void SetTlsAddress(VAddr address) override;
void SetTPIDR_EL0(u64 value) override;
u64 GetTPIDR_EL0() const override;
void ChangeProcessorID(std::size_t new_core_id) override;
void SaveContext(ThreadContext32& ctx) override {}
void SaveContext(ThreadContext64& ctx) override;
void LoadContext(const ThreadContext32& ctx) override {}
void LoadContext(const ThreadContext64& ctx) override;
void PrepareReschedule() override;
void ClearExclusiveState() override;
void ClearInstructionCache() override;
void InvalidateCacheRange(VAddr addr, std::size_t size) override;
void PageTableChanged(Common::PageTable& new_page_table,
std::size_t new_address_space_size_in_bits) override;
private:
std::shared_ptr<Dynarmic::A64::Jit> MakeJit(Common::PageTable& page_table,
std::size_t address_space_bits) const;
using JitCacheKey = std::pair<Common::PageTable*, std::size_t>;
using JitCacheType =
std::unordered_map<JitCacheKey, std::shared_ptr<Dynarmic::A64::Jit>, Common::PairHash>;
friend class DynarmicCallbacks64;
std::unique_ptr<DynarmicCallbacks64> cb;
JitCacheType jit_cache;
std::shared_ptr<Dynarmic::A64::Jit> jit;
std::size_t core_index;
DynarmicExclusiveMonitor& exclusive_monitor;
};
} // namespace Core

View File

@@ -0,0 +1,133 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <fmt/format.h>
#include "common/logging/log.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_cp15.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
using Callback = Dynarmic::A32::Coprocessor::Callback;
using CallbackOrAccessOneWord = Dynarmic::A32::Coprocessor::CallbackOrAccessOneWord;
using CallbackOrAccessTwoWords = Dynarmic::A32::Coprocessor::CallbackOrAccessTwoWords;
template <>
struct fmt::formatter<Dynarmic::A32::CoprocReg> {
constexpr auto parse(format_parse_context& ctx) {
return ctx.begin();
}
template <typename FormatContext>
auto format(const Dynarmic::A32::CoprocReg& reg, FormatContext& ctx) {
return format_to(ctx.out(), "cp{}", static_cast<size_t>(reg));
}
};
namespace Core {
static u32 dummy_value;
std::optional<Callback> DynarmicCP15::CompileInternalOperation(bool two, unsigned opc1,
CoprocReg CRd, CoprocReg CRn,
CoprocReg CRm, unsigned opc2) {
LOG_CRITICAL(Core_ARM, "CP15: cdp{} p15, {}, {}, {}, {}, {}", two ? "2" : "", opc1, CRd, CRn,
CRm, opc2);
return std::nullopt;
}
CallbackOrAccessOneWord DynarmicCP15::CompileSendOneWord(bool two, unsigned opc1, CoprocReg CRn,
CoprocReg CRm, unsigned opc2) {
if (!two && CRn == CoprocReg::C7 && opc1 == 0 && CRm == CoprocReg::C5 && opc2 == 4) {
// CP15_FLUSH_PREFETCH_BUFFER
// This is a dummy write, we ignore the value written here.
return &dummy_value;
}
if (!two && CRn == CoprocReg::C7 && opc1 == 0 && CRm == CoprocReg::C10) {
switch (opc2) {
case 4:
// CP15_DATA_SYNC_BARRIER
// This is a dummy write, we ignore the value written here.
return &dummy_value;
case 5:
// CP15_DATA_MEMORY_BARRIER
// This is a dummy write, we ignore the value written here.
return &dummy_value;
}
}
if (!two && CRn == CoprocReg::C13 && opc1 == 0 && CRm == CoprocReg::C0 && opc2 == 2) {
// CP15_THREAD_UPRW
return &uprw;
}
LOG_CRITICAL(Core_ARM, "CP15: mcr{} p15, {}, <Rt>, {}, {}, {}", two ? "2" : "", opc1, CRn, CRm,
opc2);
return {};
}
CallbackOrAccessTwoWords DynarmicCP15::CompileSendTwoWords(bool two, unsigned opc, CoprocReg CRm) {
LOG_CRITICAL(Core_ARM, "CP15: mcrr{} p15, {}, <Rt>, <Rt2>, {}", two ? "2" : "", opc, CRm);
return {};
}
CallbackOrAccessOneWord DynarmicCP15::CompileGetOneWord(bool two, unsigned opc1, CoprocReg CRn,
CoprocReg CRm, unsigned opc2) {
if (!two && CRn == CoprocReg::C13 && opc1 == 0 && CRm == CoprocReg::C0) {
switch (opc2) {
case 2:
// CP15_THREAD_UPRW
return &uprw;
case 3:
// CP15_THREAD_URO
return &uro;
}
}
LOG_CRITICAL(Core_ARM, "CP15: mrc{} p15, {}, <Rt>, {}, {}, {}", two ? "2" : "", opc1, CRn, CRm,
opc2);
return {};
}
CallbackOrAccessTwoWords DynarmicCP15::CompileGetTwoWords(bool two, unsigned opc, CoprocReg CRm) {
if (!two && opc == 0 && CRm == CoprocReg::C14) {
// CNTPCT
const auto callback = static_cast<u64 (*)(Dynarmic::A32::Jit*, void*, u32, u32)>(
[](Dynarmic::A32::Jit*, void* arg, u32, u32) -> u64 {
ARM_Dynarmic_32& parent = *(ARM_Dynarmic_32*)arg;
return parent.system.CoreTiming().GetClockTicks();
});
return Dynarmic::A32::Coprocessor::Callback{callback, (void*)&parent};
}
LOG_CRITICAL(Core_ARM, "CP15: mrrc{} p15, {}, <Rt>, <Rt2>, {}", two ? "2" : "", opc, CRm);
return {};
}
std::optional<Callback> DynarmicCP15::CompileLoadWords(bool two, bool long_transfer, CoprocReg CRd,
std::optional<u8> option) {
if (option) {
LOG_CRITICAL(Core_ARM, "CP15: mrrc{}{} p15, {}, [...], {}", two ? "2" : "",
long_transfer ? "l" : "", CRd, *option);
} else {
LOG_CRITICAL(Core_ARM, "CP15: mrrc{}{} p15, {}, [...]", two ? "2" : "",
long_transfer ? "l" : "", CRd);
}
return std::nullopt;
}
std::optional<Callback> DynarmicCP15::CompileStoreWords(bool two, bool long_transfer, CoprocReg CRd,
std::optional<u8> option) {
if (option) {
LOG_CRITICAL(Core_ARM, "CP15: mrrc{}{} p15, {}, [...], {}", two ? "2" : "",
long_transfer ? "l" : "", CRd, *option);
} else {
LOG_CRITICAL(Core_ARM, "CP15: mrrc{}{} p15, {}, [...]", two ? "2" : "",
long_transfer ? "l" : "", CRd);
}
return std::nullopt;
}
} // namespace Core

View File

@@ -0,0 +1,42 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <optional>
#include <dynarmic/A32/coprocessor.h>
#include "common/common_types.h"
namespace Core {
class ARM_Dynarmic_32;
class DynarmicCP15 final : public Dynarmic::A32::Coprocessor {
public:
using CoprocReg = Dynarmic::A32::CoprocReg;
explicit DynarmicCP15(ARM_Dynarmic_32& parent) : parent(parent) {}
std::optional<Callback> CompileInternalOperation(bool two, unsigned opc1, CoprocReg CRd,
CoprocReg CRn, CoprocReg CRm,
unsigned opc2) override;
CallbackOrAccessOneWord CompileSendOneWord(bool two, unsigned opc1, CoprocReg CRn,
CoprocReg CRm, unsigned opc2) override;
CallbackOrAccessTwoWords CompileSendTwoWords(bool two, unsigned opc, CoprocReg CRm) override;
CallbackOrAccessOneWord CompileGetOneWord(bool two, unsigned opc1, CoprocReg CRn, CoprocReg CRm,
unsigned opc2) override;
CallbackOrAccessTwoWords CompileGetTwoWords(bool two, unsigned opc, CoprocReg CRm) override;
std::optional<Callback> CompileLoadWords(bool two, bool long_transfer, CoprocReg CRd,
std::optional<u8> option) override;
std::optional<Callback> CompileStoreWords(bool two, bool long_transfer, CoprocReg CRd,
std::optional<u8> option) override;
ARM_Dynarmic_32& parent;
u32 uprw = 0;
u32 uro = 0;
};
} // namespace Core

View File

@@ -0,0 +1,76 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <memory>
#include "core/arm/dynarmic/arm_exclusive_monitor.h"
#include "core/memory.h"
namespace Core {
DynarmicExclusiveMonitor::DynarmicExclusiveMonitor(Memory::Memory& memory, std::size_t core_count)
: monitor(core_count), memory{memory} {}
DynarmicExclusiveMonitor::~DynarmicExclusiveMonitor() = default;
u8 DynarmicExclusiveMonitor::ExclusiveRead8(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u8>(core_index, addr, [&]() -> u8 { return memory.Read8(addr); });
}
u16 DynarmicExclusiveMonitor::ExclusiveRead16(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u16>(core_index, addr, [&]() -> u16 { return memory.Read16(addr); });
}
u32 DynarmicExclusiveMonitor::ExclusiveRead32(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u32>(core_index, addr, [&]() -> u32 { return memory.Read32(addr); });
}
u64 DynarmicExclusiveMonitor::ExclusiveRead64(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u64>(core_index, addr, [&]() -> u64 { return memory.Read64(addr); });
}
u128 DynarmicExclusiveMonitor::ExclusiveRead128(std::size_t core_index, VAddr addr) {
return monitor.ReadAndMark<u128>(core_index, addr, [&]() -> u128 {
u128 result;
result[0] = memory.Read64(addr);
result[1] = memory.Read64(addr + 8);
return result;
});
}
void DynarmicExclusiveMonitor::ClearExclusive() {
monitor.Clear();
}
bool DynarmicExclusiveMonitor::ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) {
return monitor.DoExclusiveOperation<u8>(core_index, vaddr, [&](u8 expected) -> bool {
return memory.WriteExclusive8(vaddr, value, expected);
});
}
bool DynarmicExclusiveMonitor::ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) {
return monitor.DoExclusiveOperation<u16>(core_index, vaddr, [&](u16 expected) -> bool {
return memory.WriteExclusive16(vaddr, value, expected);
});
}
bool DynarmicExclusiveMonitor::ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) {
return monitor.DoExclusiveOperation<u32>(core_index, vaddr, [&](u32 expected) -> bool {
return memory.WriteExclusive32(vaddr, value, expected);
});
}
bool DynarmicExclusiveMonitor::ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) {
return monitor.DoExclusiveOperation<u64>(core_index, vaddr, [&](u64 expected) -> bool {
return memory.WriteExclusive64(vaddr, value, expected);
});
}
bool DynarmicExclusiveMonitor::ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) {
return monitor.DoExclusiveOperation<u128>(core_index, vaddr, [&](u128 expected) -> bool {
return memory.WriteExclusive128(vaddr, value, expected);
});
}
} // namespace Core

View File

@@ -0,0 +1,48 @@
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <unordered_map>
#include <dynarmic/exclusive_monitor.h>
#include "common/common_types.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#include "core/arm/exclusive_monitor.h"
namespace Core::Memory {
class Memory;
}
namespace Core {
class DynarmicExclusiveMonitor final : public ExclusiveMonitor {
public:
explicit DynarmicExclusiveMonitor(Memory::Memory& memory, std::size_t core_count);
~DynarmicExclusiveMonitor() override;
u8 ExclusiveRead8(std::size_t core_index, VAddr addr) override;
u16 ExclusiveRead16(std::size_t core_index, VAddr addr) override;
u32 ExclusiveRead32(std::size_t core_index, VAddr addr) override;
u64 ExclusiveRead64(std::size_t core_index, VAddr addr) override;
u128 ExclusiveRead128(std::size_t core_index, VAddr addr) override;
void ClearExclusive() override;
bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) override;
bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) override;
bool ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) override;
bool ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) override;
bool ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) override;
private:
friend class ARM_Dynarmic_32;
friend class ARM_Dynarmic_64;
Dynarmic::ExclusiveMonitor monitor;
Core::Memory::Memory& memory;
};
} // namespace Core