another try

This commit is contained in:
mgthepro
2022-11-05 13:58:44 +01:00
parent 4a9f2bbf2a
commit 9f63fbe700
2002 changed files with 671171 additions and 671092 deletions

View File

@@ -1,356 +1,356 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <span>
#include <vector>
#include "audio_core/common/common.h"
#include "audio_core/sink/cubeb_sink.h"
#include "audio_core/sink/sink_stream.h"
#include "common/logging/log.h"
#include "core/core.h"
#ifdef _WIN32
#include <objbase.h>
#undef CreateEvent
#endif
namespace AudioCore::Sink {
/**
* Cubeb sink stream, responsible for sinking samples to hardware.
*/
class CubebSinkStream final : public SinkStream {
public:
/**
* Create a new sink stream.
*
* @param ctx_ - Cubeb context to create this stream with.
* @param device_channels_ - Number of channels supported by the hardware.
* @param system_channels_ - Number of channels the audio systems expect.
* @param output_device - Cubeb output device id.
* @param input_device - Cubeb input device id.
* @param name_ - Name of this stream.
* @param type_ - Type of this stream.
* @param system_ - Core system.
* @param event - Event used only for audio renderer, signalled on buffer consume.
*/
CubebSinkStream(cubeb* ctx_, u32 device_channels_, u32 system_channels_,
cubeb_devid output_device, cubeb_devid input_device, const std::string& name_,
StreamType type_, Core::System& system_)
: SinkStream(system_, type_), ctx{ctx_} {
#ifdef _WIN32
CoInitializeEx(nullptr, COINIT_MULTITHREADED);
#endif
name = name_;
device_channels = device_channels_;
system_channels = system_channels_;
cubeb_stream_params params{};
params.rate = TargetSampleRate;
params.channels = device_channels;
params.format = CUBEB_SAMPLE_S16LE;
params.prefs = CUBEB_STREAM_PREF_NONE;
switch (params.channels) {
case 1:
params.layout = CUBEB_LAYOUT_MONO;
break;
case 2:
params.layout = CUBEB_LAYOUT_STEREO;
break;
case 6:
params.layout = CUBEB_LAYOUT_3F2_LFE;
break;
}
u32 minimum_latency{0};
const auto latency_error = cubeb_get_min_latency(ctx, &params, &minimum_latency);
if (latency_error != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error getting minimum latency, error: {}", latency_error);
minimum_latency = TargetSampleCount * 2;
}
minimum_latency = std::max(minimum_latency, TargetSampleCount * 2);
LOG_INFO(Service_Audio,
"Opening cubeb stream {} type {} with: rate {} channels {} (system channels {}) "
"latency {}",
name, type, params.rate, params.channels, system_channels, minimum_latency);
auto init_error{0};
if (type == StreamType::In) {
init_error = cubeb_stream_init(ctx, &stream_backend, name.c_str(), input_device,
&params, output_device, nullptr, minimum_latency,
&CubebSinkStream::DataCallback,
&CubebSinkStream::StateCallback, this);
} else {
init_error = cubeb_stream_init(ctx, &stream_backend, name.c_str(), input_device,
nullptr, output_device, &params, minimum_latency,
&CubebSinkStream::DataCallback,
&CubebSinkStream::StateCallback, this);
}
if (init_error != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error initializing cubeb stream, error: {}", init_error);
return;
}
}
/**
* Destroy the sink stream.
*/
~CubebSinkStream() override {
LOG_DEBUG(Service_Audio, "Destructing cubeb stream {}", name);
Unstall();
if (!ctx) {
return;
}
Finalize();
#ifdef _WIN32
CoUninitialize();
#endif
}
/**
* Finalize the sink stream.
*/
void Finalize() override {
Stop();
cubeb_stream_destroy(stream_backend);
}
/**
* Start the sink stream.
*
* @param resume - Set to true if this is resuming the stream a previously-active stream.
* Default false.
*/
void Start(bool resume = false) override {
if (!ctx || !paused) {
return;
}
paused = false;
if (cubeb_stream_start(stream_backend) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error starting cubeb stream");
}
}
/**
* Stop the sink stream.
*/
void Stop() override {
Unstall();
if (!ctx || paused) {
return;
}
paused = true;
if (cubeb_stream_stop(stream_backend) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error stopping cubeb stream");
}
}
private:
/**
* Main callback from Cubeb. Either expects samples from us (audio render/audio out), or will
* provide samples to be copied (audio in).
*
* @param stream - Cubeb-specific data about the stream.
* @param user_data - Custom data pointer passed along, points to a CubebSinkStream.
* @param in_buff - Input buffer to be used if the stream is an input type.
* @param out_buff - Output buffer to be used if the stream is an output type.
* @param num_frames_ - Number of frames of audio in the buffers. Note: Not number of samples.
*/
static long DataCallback([[maybe_unused]] cubeb_stream* stream, void* user_data,
[[maybe_unused]] const void* in_buff, void* out_buff,
long num_frames_) {
auto* impl = static_cast<CubebSinkStream*>(user_data);
if (!impl) {
return -1;
}
const std::size_t num_channels = impl->GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t num_frames{static_cast<size_t>(num_frames_)};
if (impl->type == StreamType::In) {
std::span<const s16> input_buffer{reinterpret_cast<const s16*>(in_buff),
num_frames * frame_size};
impl->ProcessAudioIn(input_buffer, num_frames);
} else {
std::span<s16> output_buffer{reinterpret_cast<s16*>(out_buff), num_frames * frame_size};
impl->ProcessAudioOutAndRender(output_buffer, num_frames);
}
return num_frames_;
}
/**
* Cubeb callback for if a device state changes. Unused currently.
*
* @param stream - Cubeb-specific data about the stream.
* @param user_data - Custom data pointer passed along, points to a CubebSinkStream.
* @param state - New state of the device.
*/
static void StateCallback(cubeb_stream*, void*, cubeb_state) {}
/// Main Cubeb context
cubeb* ctx{};
/// Cubeb stream backend
cubeb_stream* stream_backend{};
};
CubebSink::CubebSink(std::string_view target_device_name) {
// Cubeb requires COM to be initialized on the thread calling cubeb_init on Windows
#ifdef _WIN32
com_init_result = CoInitializeEx(nullptr, COINIT_MULTITHREADED);
#endif
if (cubeb_init(&ctx, "yuzu", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
return;
}
if (target_device_name != auto_device_name && !target_device_name.empty()) {
cubeb_device_collection collection;
if (cubeb_enumerate_devices(ctx, CUBEB_DEVICE_TYPE_OUTPUT, &collection) != CUBEB_OK) {
LOG_WARNING(Audio_Sink, "Audio output device enumeration not supported");
} else {
const auto collection_end{collection.device + collection.count};
const auto device{
std::find_if(collection.device, collection_end, [&](const cubeb_device_info& info) {
return info.friendly_name != nullptr &&
target_device_name == std::string(info.friendly_name);
})};
if (device != collection_end) {
output_device = device->devid;
}
cubeb_device_collection_destroy(ctx, &collection);
}
}
cubeb_get_max_channel_count(ctx, &device_channels);
device_channels = device_channels >= 6U ? 6U : 2U;
}
CubebSink::~CubebSink() {
if (!ctx) {
return;
}
for (auto& sink_stream : sink_streams) {
sink_stream.reset();
}
cubeb_destroy(ctx);
#ifdef _WIN32
if (SUCCEEDED(com_init_result)) {
CoUninitialize();
}
#endif
}
SinkStream* CubebSink::AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string& name, StreamType type) {
SinkStreamPtr& stream = sink_streams.emplace_back(std::make_unique<CubebSinkStream>(
ctx, device_channels, system_channels, output_device, input_device, name, type, system));
return stream.get();
}
void CubebSink::CloseStream(SinkStream* stream) {
for (size_t i = 0; i < sink_streams.size(); i++) {
if (sink_streams[i].get() == stream) {
sink_streams[i].reset();
sink_streams.erase(sink_streams.begin() + i);
break;
}
}
}
void CubebSink::CloseStreams() {
sink_streams.clear();
}
f32 CubebSink::GetDeviceVolume() const {
if (sink_streams.empty()) {
return 1.0f;
}
return sink_streams[0]->GetDeviceVolume();
}
void CubebSink::SetDeviceVolume(f32 volume) {
for (auto& stream : sink_streams) {
stream->SetDeviceVolume(volume);
}
}
void CubebSink::SetSystemVolume(f32 volume) {
for (auto& stream : sink_streams) {
stream->SetSystemVolume(volume);
}
}
std::vector<std::string> ListCubebSinkDevices(bool capture) {
std::vector<std::string> device_list;
cubeb* ctx;
if (cubeb_init(&ctx, "yuzu Device Enumerator", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
return {};
}
auto type{capture ? CUBEB_DEVICE_TYPE_INPUT : CUBEB_DEVICE_TYPE_OUTPUT};
cubeb_device_collection collection;
if (cubeb_enumerate_devices(ctx, type, &collection) != CUBEB_OK) {
LOG_WARNING(Audio_Sink, "Audio output device enumeration not supported");
} else {
for (std::size_t i = 0; i < collection.count; i++) {
const cubeb_device_info& device = collection.device[i];
if (device.friendly_name && device.friendly_name[0] != '\0' &&
device.state == CUBEB_DEVICE_STATE_ENABLED) {
device_list.emplace_back(device.friendly_name);
}
}
cubeb_device_collection_destroy(ctx, &collection);
}
cubeb_destroy(ctx);
return device_list;
}
u32 GetCubebLatency() {
cubeb* ctx;
if (cubeb_init(&ctx, "yuzu Latency Getter", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
// Return a large latency so we choose SDL instead.
return 10000u;
}
cubeb_stream_params params{};
params.rate = TargetSampleRate;
params.channels = 2;
params.format = CUBEB_SAMPLE_S16LE;
params.prefs = CUBEB_STREAM_PREF_NONE;
params.layout = CUBEB_LAYOUT_STEREO;
u32 latency{0};
const auto latency_error = cubeb_get_min_latency(ctx, &params, &latency);
if (latency_error != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error getting minimum latency, error: {}", latency_error);
latency = TargetSampleCount * 2;
}
latency = std::max(latency, TargetSampleCount * 2);
cubeb_destroy(ctx);
return latency;
}
} // namespace AudioCore::Sink
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <span>
#include <vector>
#include "audio_core/common/common.h"
#include "audio_core/sink/cubeb_sink.h"
#include "audio_core/sink/sink_stream.h"
#include "common/logging/log.h"
#include "core/core.h"
#ifdef _WIN32
#include <objbase.h>
#undef CreateEvent
#endif
namespace AudioCore::Sink {
/**
* Cubeb sink stream, responsible for sinking samples to hardware.
*/
class CubebSinkStream final : public SinkStream {
public:
/**
* Create a new sink stream.
*
* @param ctx_ - Cubeb context to create this stream with.
* @param device_channels_ - Number of channels supported by the hardware.
* @param system_channels_ - Number of channels the audio systems expect.
* @param output_device - Cubeb output device id.
* @param input_device - Cubeb input device id.
* @param name_ - Name of this stream.
* @param type_ - Type of this stream.
* @param system_ - Core system.
* @param event - Event used only for audio renderer, signalled on buffer consume.
*/
CubebSinkStream(cubeb* ctx_, u32 device_channels_, u32 system_channels_,
cubeb_devid output_device, cubeb_devid input_device, const std::string& name_,
StreamType type_, Core::System& system_)
: SinkStream(system_, type_), ctx{ctx_} {
#ifdef _WIN32
CoInitializeEx(nullptr, COINIT_MULTITHREADED);
#endif
name = name_;
device_channels = device_channels_;
system_channels = system_channels_;
cubeb_stream_params params{};
params.rate = TargetSampleRate;
params.channels = device_channels;
params.format = CUBEB_SAMPLE_S16LE;
params.prefs = CUBEB_STREAM_PREF_NONE;
switch (params.channels) {
case 1:
params.layout = CUBEB_LAYOUT_MONO;
break;
case 2:
params.layout = CUBEB_LAYOUT_STEREO;
break;
case 6:
params.layout = CUBEB_LAYOUT_3F2_LFE;
break;
}
u32 minimum_latency{0};
const auto latency_error = cubeb_get_min_latency(ctx, &params, &minimum_latency);
if (latency_error != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error getting minimum latency, error: {}", latency_error);
minimum_latency = TargetSampleCount * 2;
}
minimum_latency = std::max(minimum_latency, TargetSampleCount * 2);
LOG_INFO(Service_Audio,
"Opening cubeb stream {} type {} with: rate {} channels {} (system channels {}) "
"latency {}",
name, type, params.rate, params.channels, system_channels, minimum_latency);
auto init_error{0};
if (type == StreamType::In) {
init_error = cubeb_stream_init(ctx, &stream_backend, name.c_str(), input_device,
&params, output_device, nullptr, minimum_latency,
&CubebSinkStream::DataCallback,
&CubebSinkStream::StateCallback, this);
} else {
init_error = cubeb_stream_init(ctx, &stream_backend, name.c_str(), input_device,
nullptr, output_device, &params, minimum_latency,
&CubebSinkStream::DataCallback,
&CubebSinkStream::StateCallback, this);
}
if (init_error != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error initializing cubeb stream, error: {}", init_error);
return;
}
}
/**
* Destroy the sink stream.
*/
~CubebSinkStream() override {
LOG_DEBUG(Service_Audio, "Destructing cubeb stream {}", name);
Unstall();
if (!ctx) {
return;
}
Finalize();
#ifdef _WIN32
CoUninitialize();
#endif
}
/**
* Finalize the sink stream.
*/
void Finalize() override {
Stop();
cubeb_stream_destroy(stream_backend);
}
/**
* Start the sink stream.
*
* @param resume - Set to true if this is resuming the stream a previously-active stream.
* Default false.
*/
void Start(bool resume = false) override {
if (!ctx || !paused) {
return;
}
paused = false;
if (cubeb_stream_start(stream_backend) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error starting cubeb stream");
}
}
/**
* Stop the sink stream.
*/
void Stop() override {
Unstall();
if (!ctx || paused) {
return;
}
paused = true;
if (cubeb_stream_stop(stream_backend) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error stopping cubeb stream");
}
}
private:
/**
* Main callback from Cubeb. Either expects samples from us (audio render/audio out), or will
* provide samples to be copied (audio in).
*
* @param stream - Cubeb-specific data about the stream.
* @param user_data - Custom data pointer passed along, points to a CubebSinkStream.
* @param in_buff - Input buffer to be used if the stream is an input type.
* @param out_buff - Output buffer to be used if the stream is an output type.
* @param num_frames_ - Number of frames of audio in the buffers. Note: Not number of samples.
*/
static long DataCallback([[maybe_unused]] cubeb_stream* stream, void* user_data,
[[maybe_unused]] const void* in_buff, void* out_buff,
long num_frames_) {
auto* impl = static_cast<CubebSinkStream*>(user_data);
if (!impl) {
return -1;
}
const std::size_t num_channels = impl->GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t num_frames{static_cast<size_t>(num_frames_)};
if (impl->type == StreamType::In) {
std::span<const s16> input_buffer{reinterpret_cast<const s16*>(in_buff),
num_frames * frame_size};
impl->ProcessAudioIn(input_buffer, num_frames);
} else {
std::span<s16> output_buffer{reinterpret_cast<s16*>(out_buff), num_frames * frame_size};
impl->ProcessAudioOutAndRender(output_buffer, num_frames);
}
return num_frames_;
}
/**
* Cubeb callback for if a device state changes. Unused currently.
*
* @param stream - Cubeb-specific data about the stream.
* @param user_data - Custom data pointer passed along, points to a CubebSinkStream.
* @param state - New state of the device.
*/
static void StateCallback(cubeb_stream*, void*, cubeb_state) {}
/// Main Cubeb context
cubeb* ctx{};
/// Cubeb stream backend
cubeb_stream* stream_backend{};
};
CubebSink::CubebSink(std::string_view target_device_name) {
// Cubeb requires COM to be initialized on the thread calling cubeb_init on Windows
#ifdef _WIN32
com_init_result = CoInitializeEx(nullptr, COINIT_MULTITHREADED);
#endif
if (cubeb_init(&ctx, "yuzu", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
return;
}
if (target_device_name != auto_device_name && !target_device_name.empty()) {
cubeb_device_collection collection;
if (cubeb_enumerate_devices(ctx, CUBEB_DEVICE_TYPE_OUTPUT, &collection) != CUBEB_OK) {
LOG_WARNING(Audio_Sink, "Audio output device enumeration not supported");
} else {
const auto collection_end{collection.device + collection.count};
const auto device{
std::find_if(collection.device, collection_end, [&](const cubeb_device_info& info) {
return info.friendly_name != nullptr &&
target_device_name == std::string(info.friendly_name);
})};
if (device != collection_end) {
output_device = device->devid;
}
cubeb_device_collection_destroy(ctx, &collection);
}
}
cubeb_get_max_channel_count(ctx, &device_channels);
device_channels = device_channels >= 6U ? 6U : 2U;
}
CubebSink::~CubebSink() {
if (!ctx) {
return;
}
for (auto& sink_stream : sink_streams) {
sink_stream.reset();
}
cubeb_destroy(ctx);
#ifdef _WIN32
if (SUCCEEDED(com_init_result)) {
CoUninitialize();
}
#endif
}
SinkStream* CubebSink::AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string& name, StreamType type) {
SinkStreamPtr& stream = sink_streams.emplace_back(std::make_unique<CubebSinkStream>(
ctx, device_channels, system_channels, output_device, input_device, name, type, system));
return stream.get();
}
void CubebSink::CloseStream(SinkStream* stream) {
for (size_t i = 0; i < sink_streams.size(); i++) {
if (sink_streams[i].get() == stream) {
sink_streams[i].reset();
sink_streams.erase(sink_streams.begin() + i);
break;
}
}
}
void CubebSink::CloseStreams() {
sink_streams.clear();
}
f32 CubebSink::GetDeviceVolume() const {
if (sink_streams.empty()) {
return 1.0f;
}
return sink_streams[0]->GetDeviceVolume();
}
void CubebSink::SetDeviceVolume(f32 volume) {
for (auto& stream : sink_streams) {
stream->SetDeviceVolume(volume);
}
}
void CubebSink::SetSystemVolume(f32 volume) {
for (auto& stream : sink_streams) {
stream->SetSystemVolume(volume);
}
}
std::vector<std::string> ListCubebSinkDevices(bool capture) {
std::vector<std::string> device_list;
cubeb* ctx;
if (cubeb_init(&ctx, "yuzu Device Enumerator", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
return {};
}
auto type{capture ? CUBEB_DEVICE_TYPE_INPUT : CUBEB_DEVICE_TYPE_OUTPUT};
cubeb_device_collection collection;
if (cubeb_enumerate_devices(ctx, type, &collection) != CUBEB_OK) {
LOG_WARNING(Audio_Sink, "Audio output device enumeration not supported");
} else {
for (std::size_t i = 0; i < collection.count; i++) {
const cubeb_device_info& device = collection.device[i];
if (device.friendly_name && device.friendly_name[0] != '\0' &&
device.state == CUBEB_DEVICE_STATE_ENABLED) {
device_list.emplace_back(device.friendly_name);
}
}
cubeb_device_collection_destroy(ctx, &collection);
}
cubeb_destroy(ctx);
return device_list;
}
u32 GetCubebLatency() {
cubeb* ctx;
if (cubeb_init(&ctx, "yuzu Latency Getter", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
// Return a large latency so we choose SDL instead.
return 10000u;
}
cubeb_stream_params params{};
params.rate = TargetSampleRate;
params.channels = 2;
params.format = CUBEB_SAMPLE_S16LE;
params.prefs = CUBEB_STREAM_PREF_NONE;
params.layout = CUBEB_LAYOUT_STEREO;
u32 latency{0};
const auto latency_error = cubeb_get_min_latency(ctx, &params, &latency);
if (latency_error != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error getting minimum latency, error: {}", latency_error);
latency = TargetSampleCount * 2;
}
latency = std::max(latency, TargetSampleCount * 2);
cubeb_destroy(ctx);
return latency;
}
} // namespace AudioCore::Sink

View File

@@ -1,106 +1,106 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include <vector>
#include <cubeb/cubeb.h>
#include "audio_core/sink/sink.h"
namespace Core {
class System;
}
namespace AudioCore::Sink {
class SinkStream;
/**
* Cubeb backend sink, holds multiple output streams and is responsible for sinking samples to
* hardware. Used by Audio Render, Audio In and Audio Out.
*/
class CubebSink final : public Sink {
public:
explicit CubebSink(std::string_view device_id);
~CubebSink() override;
/**
* Create a new sink stream.
*
* @param system - Core system.
* @param system_channels - Number of channels the audio system expects.
* May differ from the device's channel count.
* @param name - Name of this stream.
* @param type - Type of this stream, render/in/out.
*
* @return A pointer to the created SinkStream
*/
SinkStream* AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string& name, StreamType type) override;
/**
* Close a given stream.
*
* @param stream - The stream to close.
*/
void CloseStream(SinkStream* stream) override;
/**
* Close all streams.
*/
void CloseStreams() override;
/**
* Get the device volume. Set from calls to the IAudioDevice service.
*
* @return Volume of the device.
*/
f32 GetDeviceVolume() const override;
/**
* Set the device volume. Set from calls to the IAudioDevice service.
*
* @param volume - New volume of the device.
*/
void SetDeviceVolume(f32 volume) override;
/**
* Set the system volume. Comes from the audio system using this stream.
*
* @param volume - New volume of the system.
*/
void SetSystemVolume(f32 volume) override;
private:
/// Backend Cubeb context
cubeb* ctx{};
/// Cubeb id of the actual hardware output device
cubeb_devid output_device{};
/// Cubeb id of the actual hardware input device
cubeb_devid input_device{};
/// Vector of streams managed by this sink
std::vector<SinkStreamPtr> sink_streams{};
#ifdef _WIN32
/// Cubeb required COM to be initialized multi-threaded on Windows
u32 com_init_result = 0;
#endif
};
/**
* Get a list of connected devices from Cubeb.
*
* @param capture - Return input (capture) devices if true, otherwise output devices.
*/
std::vector<std::string> ListCubebSinkDevices(bool capture);
/**
* Get the reported latency for this sink.
*
* @return Minimum latency for this sink.
*/
u32 GetCubebLatency();
} // namespace AudioCore::Sink
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include <vector>
#include <cubeb/cubeb.h>
#include "audio_core/sink/sink.h"
namespace Core {
class System;
}
namespace AudioCore::Sink {
class SinkStream;
/**
* Cubeb backend sink, holds multiple output streams and is responsible for sinking samples to
* hardware. Used by Audio Render, Audio In and Audio Out.
*/
class CubebSink final : public Sink {
public:
explicit CubebSink(std::string_view device_id);
~CubebSink() override;
/**
* Create a new sink stream.
*
* @param system - Core system.
* @param system_channels - Number of channels the audio system expects.
* May differ from the device's channel count.
* @param name - Name of this stream.
* @param type - Type of this stream, render/in/out.
*
* @return A pointer to the created SinkStream
*/
SinkStream* AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string& name, StreamType type) override;
/**
* Close a given stream.
*
* @param stream - The stream to close.
*/
void CloseStream(SinkStream* stream) override;
/**
* Close all streams.
*/
void CloseStreams() override;
/**
* Get the device volume. Set from calls to the IAudioDevice service.
*
* @return Volume of the device.
*/
f32 GetDeviceVolume() const override;
/**
* Set the device volume. Set from calls to the IAudioDevice service.
*
* @param volume - New volume of the device.
*/
void SetDeviceVolume(f32 volume) override;
/**
* Set the system volume. Comes from the audio system using this stream.
*
* @param volume - New volume of the system.
*/
void SetSystemVolume(f32 volume) override;
private:
/// Backend Cubeb context
cubeb* ctx{};
/// Cubeb id of the actual hardware output device
cubeb_devid output_device{};
/// Cubeb id of the actual hardware input device
cubeb_devid input_device{};
/// Vector of streams managed by this sink
std::vector<SinkStreamPtr> sink_streams{};
#ifdef _WIN32
/// Cubeb required COM to be initialized multi-threaded on Windows
u32 com_init_result = 0;
#endif
};
/**
* Get a list of connected devices from Cubeb.
*
* @param capture - Return input (capture) devices if true, otherwise output devices.
*/
std::vector<std::string> ListCubebSinkDevices(bool capture);
/**
* Get the reported latency for this sink.
*
* @return Minimum latency for this sink.
*/
u32 GetCubebLatency();
} // namespace AudioCore::Sink

View File

@@ -1,57 +1,57 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include <string_view>
#include <vector>
#include "audio_core/sink/sink.h"
#include "audio_core/sink/sink_stream.h"
namespace Core {
class System;
} // namespace Core
namespace AudioCore::Sink {
class NullSinkStreamImpl final : public SinkStream {
public:
explicit NullSinkStreamImpl(Core::System& system_, StreamType type_)
: SinkStream{system_, type_} {}
~NullSinkStreamImpl() override {}
void AppendBuffer(SinkBuffer&, std::vector<s16>&) override {}
std::vector<s16> ReleaseBuffer(u64) override {
return {};
}
};
/**
* A no-op sink for when no audio out is wanted.
*/
class NullSink final : public Sink {
public:
explicit NullSink(std::string_view) {}
~NullSink() override = default;
SinkStream* AcquireSinkStream(Core::System& system, u32, const std::string&,
StreamType type) override {
if (null_sink == nullptr) {
null_sink = std::make_unique<NullSinkStreamImpl>(system, type);
}
return null_sink.get();
}
void CloseStream(SinkStream*) override {}
void CloseStreams() override {}
f32 GetDeviceVolume() const override {
return 1.0f;
}
void SetDeviceVolume(f32 volume) override {}
void SetSystemVolume(f32 volume) override {}
private:
SinkStreamPtr null_sink{};
};
} // namespace AudioCore::Sink
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include <string_view>
#include <vector>
#include "audio_core/sink/sink.h"
#include "audio_core/sink/sink_stream.h"
namespace Core {
class System;
} // namespace Core
namespace AudioCore::Sink {
class NullSinkStreamImpl final : public SinkStream {
public:
explicit NullSinkStreamImpl(Core::System& system_, StreamType type_)
: SinkStream{system_, type_} {}
~NullSinkStreamImpl() override {}
void AppendBuffer(SinkBuffer&, std::vector<s16>&) override {}
std::vector<s16> ReleaseBuffer(u64) override {
return {};
}
};
/**
* A no-op sink for when no audio out is wanted.
*/
class NullSink final : public Sink {
public:
explicit NullSink(std::string_view) {}
~NullSink() override = default;
SinkStream* AcquireSinkStream(Core::System& system, u32, const std::string&,
StreamType type) override {
if (null_sink == nullptr) {
null_sink = std::make_unique<NullSinkStreamImpl>(system, type);
}
return null_sink.get();
}
void CloseStream(SinkStream*) override {}
void CloseStreams() override {}
f32 GetDeviceVolume() const override {
return 1.0f;
}
void SetDeviceVolume(f32 volume) override {}
void SetSystemVolume(f32 volume) override {}
private:
SinkStreamPtr null_sink{};
};
} // namespace AudioCore::Sink

View File

@@ -1,245 +1,245 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <span>
#include <vector>
#include "audio_core/common/common.h"
#include "audio_core/sink/sdl2_sink.h"
#include "audio_core/sink/sink_stream.h"
#include "common/logging/log.h"
#include "core/core.h"
// Ignore -Wimplicit-fallthrough due to https://github.com/libsdl-org/SDL/issues/4307
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wimplicit-fallthrough"
#endif
#include <SDL.h>
#ifdef __clang__
#pragma clang diagnostic pop
#endif
namespace AudioCore::Sink {
/**
* SDL sink stream, responsible for sinking samples to hardware.
*/
class SDLSinkStream final : public SinkStream {
public:
/**
* Create a new sink stream.
*
* @param device_channels_ - Number of channels supported by the hardware.
* @param system_channels_ - Number of channels the audio systems expect.
* @param output_device - Name of the output device to use for this stream.
* @param input_device - Name of the input device to use for this stream.
* @param type_ - Type of this stream.
* @param system_ - Core system.
* @param event - Event used only for audio renderer, signalled on buffer consume.
*/
SDLSinkStream(u32 device_channels_, u32 system_channels_, const std::string& output_device,
const std::string& input_device, StreamType type_, Core::System& system_)
: SinkStream{system_, type_} {
system_channels = system_channels_;
device_channels = device_channels_;
SDL_AudioSpec spec;
spec.freq = TargetSampleRate;
spec.channels = static_cast<u8>(device_channels);
spec.format = AUDIO_S16SYS;
spec.samples = TargetSampleCount * 2;
spec.callback = &SDLSinkStream::DataCallback;
spec.userdata = this;
std::string device_name{output_device};
bool capture{false};
if (type == StreamType::In) {
device_name = input_device;
capture = true;
}
SDL_AudioSpec obtained;
if (device_name.empty()) {
device = SDL_OpenAudioDevice(nullptr, capture, &spec, &obtained, false);
} else {
device = SDL_OpenAudioDevice(device_name.c_str(), capture, &spec, &obtained, false);
}
if (device == 0) {
LOG_CRITICAL(Audio_Sink, "Error opening SDL audio device: {}", SDL_GetError());
return;
}
LOG_INFO(Service_Audio,
"Opening SDL stream {} with: rate {} channels {} (system channels {}) "
" samples {}",
device, obtained.freq, obtained.channels, system_channels, obtained.samples);
}
/**
* Destroy the sink stream.
*/
~SDLSinkStream() override {
LOG_DEBUG(Service_Audio, "Destructing SDL stream {}", name);
Finalize();
}
/**
* Finalize the sink stream.
*/
void Finalize() override {
Unstall();
if (device == 0) {
return;
}
Stop();
SDL_CloseAudioDevice(device);
}
/**
* Start the sink stream.
*
* @param resume - Set to true if this is resuming the stream a previously-active stream.
* Default false.
*/
void Start(bool resume = false) override {
if (device == 0 || !paused) {
return;
}
paused = false;
SDL_PauseAudioDevice(device, 0);
}
/**
* Stop the sink stream.
*/
void Stop() override {
Unstall();
if (device == 0 || paused) {
return;
}
paused = true;
SDL_PauseAudioDevice(device, 1);
}
private:
/**
* Main callback from SDL. Either expects samples from us (audio render/audio out), or will
* provide samples to be copied (audio in).
*
* @param userdata - Custom data pointer passed along, points to a SDLSinkStream.
* @param stream - Buffer of samples to be filled or read.
* @param len - Length of the stream in bytes.
*/
static void DataCallback(void* userdata, Uint8* stream, int len) {
auto* impl = static_cast<SDLSinkStream*>(userdata);
if (!impl) {
return;
}
const std::size_t num_channels = impl->GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t num_frames{len / num_channels / sizeof(s16)};
if (impl->type == StreamType::In) {
std::span<const s16> input_buffer{reinterpret_cast<const s16*>(stream),
num_frames * frame_size};
impl->ProcessAudioIn(input_buffer, num_frames);
} else {
std::span<s16> output_buffer{reinterpret_cast<s16*>(stream), num_frames * frame_size};
impl->ProcessAudioOutAndRender(output_buffer, num_frames);
}
}
/// SDL device id of the opened input/output device
SDL_AudioDeviceID device{};
};
SDLSink::SDLSink(std::string_view target_device_name) {
if (!SDL_WasInit(SDL_INIT_AUDIO)) {
if (SDL_InitSubSystem(SDL_INIT_AUDIO) < 0) {
LOG_CRITICAL(Audio_Sink, "SDL_InitSubSystem audio failed: {}", SDL_GetError());
return;
}
}
if (target_device_name != auto_device_name && !target_device_name.empty()) {
output_device = target_device_name;
} else {
output_device.clear();
}
device_channels = 2;
}
SDLSink::~SDLSink() = default;
SinkStream* SDLSink::AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string&, StreamType type) {
SinkStreamPtr& stream = sink_streams.emplace_back(std::make_unique<SDLSinkStream>(
device_channels, system_channels, output_device, input_device, type, system));
return stream.get();
}
void SDLSink::CloseStream(SinkStream* stream) {
for (size_t i = 0; i < sink_streams.size(); i++) {
if (sink_streams[i].get() == stream) {
sink_streams[i].reset();
sink_streams.erase(sink_streams.begin() + i);
break;
}
}
}
void SDLSink::CloseStreams() {
sink_streams.clear();
}
f32 SDLSink::GetDeviceVolume() const {
if (sink_streams.empty()) {
return 1.0f;
}
return sink_streams[0]->GetDeviceVolume();
}
void SDLSink::SetDeviceVolume(f32 volume) {
for (auto& stream : sink_streams) {
stream->SetDeviceVolume(volume);
}
}
void SDLSink::SetSystemVolume(f32 volume) {
for (auto& stream : sink_streams) {
stream->SetSystemVolume(volume);
}
}
std::vector<std::string> ListSDLSinkDevices(bool capture) {
std::vector<std::string> device_list;
if (!SDL_WasInit(SDL_INIT_AUDIO)) {
if (SDL_InitSubSystem(SDL_INIT_AUDIO) < 0) {
LOG_CRITICAL(Audio_Sink, "SDL_InitSubSystem audio failed: {}", SDL_GetError());
return {};
}
}
const int device_count = SDL_GetNumAudioDevices(capture);
for (int i = 0; i < device_count; ++i) {
if (const char* name = SDL_GetAudioDeviceName(i, capture)) {
device_list.emplace_back(name);
}
}
return device_list;
}
u32 GetSDLLatency() {
return TargetSampleCount * 2;
}
} // namespace AudioCore::Sink
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <span>
#include <vector>
#include "audio_core/common/common.h"
#include "audio_core/sink/sdl2_sink.h"
#include "audio_core/sink/sink_stream.h"
#include "common/logging/log.h"
#include "core/core.h"
// Ignore -Wimplicit-fallthrough due to https://github.com/libsdl-org/SDL/issues/4307
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wimplicit-fallthrough"
#endif
#include <SDL.h>
#ifdef __clang__
#pragma clang diagnostic pop
#endif
namespace AudioCore::Sink {
/**
* SDL sink stream, responsible for sinking samples to hardware.
*/
class SDLSinkStream final : public SinkStream {
public:
/**
* Create a new sink stream.
*
* @param device_channels_ - Number of channels supported by the hardware.
* @param system_channels_ - Number of channels the audio systems expect.
* @param output_device - Name of the output device to use for this stream.
* @param input_device - Name of the input device to use for this stream.
* @param type_ - Type of this stream.
* @param system_ - Core system.
* @param event - Event used only for audio renderer, signalled on buffer consume.
*/
SDLSinkStream(u32 device_channels_, u32 system_channels_, const std::string& output_device,
const std::string& input_device, StreamType type_, Core::System& system_)
: SinkStream{system_, type_} {
system_channels = system_channels_;
device_channels = device_channels_;
SDL_AudioSpec spec;
spec.freq = TargetSampleRate;
spec.channels = static_cast<u8>(device_channels);
spec.format = AUDIO_S16SYS;
spec.samples = TargetSampleCount * 2;
spec.callback = &SDLSinkStream::DataCallback;
spec.userdata = this;
std::string device_name{output_device};
bool capture{false};
if (type == StreamType::In) {
device_name = input_device;
capture = true;
}
SDL_AudioSpec obtained;
if (device_name.empty()) {
device = SDL_OpenAudioDevice(nullptr, capture, &spec, &obtained, false);
} else {
device = SDL_OpenAudioDevice(device_name.c_str(), capture, &spec, &obtained, false);
}
if (device == 0) {
LOG_CRITICAL(Audio_Sink, "Error opening SDL audio device: {}", SDL_GetError());
return;
}
LOG_INFO(Service_Audio,
"Opening SDL stream {} with: rate {} channels {} (system channels {}) "
" samples {}",
device, obtained.freq, obtained.channels, system_channels, obtained.samples);
}
/**
* Destroy the sink stream.
*/
~SDLSinkStream() override {
LOG_DEBUG(Service_Audio, "Destructing SDL stream {}", name);
Finalize();
}
/**
* Finalize the sink stream.
*/
void Finalize() override {
Unstall();
if (device == 0) {
return;
}
Stop();
SDL_CloseAudioDevice(device);
}
/**
* Start the sink stream.
*
* @param resume - Set to true if this is resuming the stream a previously-active stream.
* Default false.
*/
void Start(bool resume = false) override {
if (device == 0 || !paused) {
return;
}
paused = false;
SDL_PauseAudioDevice(device, 0);
}
/**
* Stop the sink stream.
*/
void Stop() override {
Unstall();
if (device == 0 || paused) {
return;
}
paused = true;
SDL_PauseAudioDevice(device, 1);
}
private:
/**
* Main callback from SDL. Either expects samples from us (audio render/audio out), or will
* provide samples to be copied (audio in).
*
* @param userdata - Custom data pointer passed along, points to a SDLSinkStream.
* @param stream - Buffer of samples to be filled or read.
* @param len - Length of the stream in bytes.
*/
static void DataCallback(void* userdata, Uint8* stream, int len) {
auto* impl = static_cast<SDLSinkStream*>(userdata);
if (!impl) {
return;
}
const std::size_t num_channels = impl->GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t num_frames{len / num_channels / sizeof(s16)};
if (impl->type == StreamType::In) {
std::span<const s16> input_buffer{reinterpret_cast<const s16*>(stream),
num_frames * frame_size};
impl->ProcessAudioIn(input_buffer, num_frames);
} else {
std::span<s16> output_buffer{reinterpret_cast<s16*>(stream), num_frames * frame_size};
impl->ProcessAudioOutAndRender(output_buffer, num_frames);
}
}
/// SDL device id of the opened input/output device
SDL_AudioDeviceID device{};
};
SDLSink::SDLSink(std::string_view target_device_name) {
if (!SDL_WasInit(SDL_INIT_AUDIO)) {
if (SDL_InitSubSystem(SDL_INIT_AUDIO) < 0) {
LOG_CRITICAL(Audio_Sink, "SDL_InitSubSystem audio failed: {}", SDL_GetError());
return;
}
}
if (target_device_name != auto_device_name && !target_device_name.empty()) {
output_device = target_device_name;
} else {
output_device.clear();
}
device_channels = 2;
}
SDLSink::~SDLSink() = default;
SinkStream* SDLSink::AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string&, StreamType type) {
SinkStreamPtr& stream = sink_streams.emplace_back(std::make_unique<SDLSinkStream>(
device_channels, system_channels, output_device, input_device, type, system));
return stream.get();
}
void SDLSink::CloseStream(SinkStream* stream) {
for (size_t i = 0; i < sink_streams.size(); i++) {
if (sink_streams[i].get() == stream) {
sink_streams[i].reset();
sink_streams.erase(sink_streams.begin() + i);
break;
}
}
}
void SDLSink::CloseStreams() {
sink_streams.clear();
}
f32 SDLSink::GetDeviceVolume() const {
if (sink_streams.empty()) {
return 1.0f;
}
return sink_streams[0]->GetDeviceVolume();
}
void SDLSink::SetDeviceVolume(f32 volume) {
for (auto& stream : sink_streams) {
stream->SetDeviceVolume(volume);
}
}
void SDLSink::SetSystemVolume(f32 volume) {
for (auto& stream : sink_streams) {
stream->SetSystemVolume(volume);
}
}
std::vector<std::string> ListSDLSinkDevices(bool capture) {
std::vector<std::string> device_list;
if (!SDL_WasInit(SDL_INIT_AUDIO)) {
if (SDL_InitSubSystem(SDL_INIT_AUDIO) < 0) {
LOG_CRITICAL(Audio_Sink, "SDL_InitSubSystem audio failed: {}", SDL_GetError());
return {};
}
}
const int device_count = SDL_GetNumAudioDevices(capture);
for (int i = 0; i < device_count; ++i) {
if (const char* name = SDL_GetAudioDeviceName(i, capture)) {
device_list.emplace_back(name);
}
}
return device_list;
}
u32 GetSDLLatency() {
return TargetSampleCount * 2;
}
} // namespace AudioCore::Sink

View File

@@ -1,97 +1,97 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include <vector>
#include "audio_core/sink/sink.h"
namespace Core {
class System;
}
namespace AudioCore::Sink {
class SinkStream;
/**
* SDL backend sink, holds multiple output streams and is responsible for sinking samples to
* hardware. Used by Audio Render, Audio In and Audio Out.
*/
class SDLSink final : public Sink {
public:
explicit SDLSink(std::string_view device_id);
~SDLSink() override;
/**
* Create a new sink stream.
*
* @param system - Core system.
* @param system_channels - Number of channels the audio system expects.
* May differ from the device's channel count.
* @param name - Name of this stream.
* @param type - Type of this stream, render/in/out.
*
* @return A pointer to the created SinkStream
*/
SinkStream* AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string& name, StreamType type) override;
/**
* Close a given stream.
*
* @param stream - The stream to close.
*/
void CloseStream(SinkStream* stream) override;
/**
* Close all streams.
*/
void CloseStreams() override;
/**
* Get the device volume. Set from calls to the IAudioDevice service.
*
* @return Volume of the device.
*/
f32 GetDeviceVolume() const override;
/**
* Set the device volume. Set from calls to the IAudioDevice service.
*
* @param volume - New volume of the device.
*/
void SetDeviceVolume(f32 volume) override;
/**
* Set the system volume. Comes from the audio system using this stream.
*
* @param volume - New volume of the system.
*/
void SetSystemVolume(f32 volume) override;
private:
/// Name of the output device used by streams
std::string output_device;
/// Name of the input device used by streams
std::string input_device;
/// Vector of streams managed by this sink
std::vector<SinkStreamPtr> sink_streams;
};
/**
* Get a list of connected devices from SDL.
*
* @param capture - Return input (capture) devices if true, otherwise output devices.
*/
std::vector<std::string> ListSDLSinkDevices(bool capture);
/**
* Get the reported latency for this sink.
*
* @return Minimum latency for this sink.
*/
u32 GetSDLLatency();
} // namespace AudioCore::Sink
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include <vector>
#include "audio_core/sink/sink.h"
namespace Core {
class System;
}
namespace AudioCore::Sink {
class SinkStream;
/**
* SDL backend sink, holds multiple output streams and is responsible for sinking samples to
* hardware. Used by Audio Render, Audio In and Audio Out.
*/
class SDLSink final : public Sink {
public:
explicit SDLSink(std::string_view device_id);
~SDLSink() override;
/**
* Create a new sink stream.
*
* @param system - Core system.
* @param system_channels - Number of channels the audio system expects.
* May differ from the device's channel count.
* @param name - Name of this stream.
* @param type - Type of this stream, render/in/out.
*
* @return A pointer to the created SinkStream
*/
SinkStream* AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string& name, StreamType type) override;
/**
* Close a given stream.
*
* @param stream - The stream to close.
*/
void CloseStream(SinkStream* stream) override;
/**
* Close all streams.
*/
void CloseStreams() override;
/**
* Get the device volume. Set from calls to the IAudioDevice service.
*
* @return Volume of the device.
*/
f32 GetDeviceVolume() const override;
/**
* Set the device volume. Set from calls to the IAudioDevice service.
*
* @param volume - New volume of the device.
*/
void SetDeviceVolume(f32 volume) override;
/**
* Set the system volume. Comes from the audio system using this stream.
*
* @param volume - New volume of the system.
*/
void SetSystemVolume(f32 volume) override;
private:
/// Name of the output device used by streams
std::string output_device;
/// Name of the input device used by streams
std::string input_device;
/// Vector of streams managed by this sink
std::vector<SinkStreamPtr> sink_streams;
};
/**
* Get a list of connected devices from SDL.
*
* @param capture - Return input (capture) devices if true, otherwise output devices.
*/
std::vector<std::string> ListSDLSinkDevices(bool capture);
/**
* Get the reported latency for this sink.
*
* @return Minimum latency for this sink.
*/
u32 GetSDLLatency();
} // namespace AudioCore::Sink

View File

@@ -1,95 +1,95 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory>
#include <string>
#include "audio_core/sink/sink_stream.h"
#include "common/common_types.h"
namespace Common {
class Event;
}
namespace Core {
class System;
}
namespace AudioCore::Sink {
constexpr char auto_device_name[] = "auto";
/**
* This class is an interface for an audio sink, holds multiple output streams and is responsible
* for sinking samples to hardware. Used by Audio Render, Audio In and Audio Out.
*/
class Sink {
public:
virtual ~Sink() = default;
/**
* Close a given stream.
*
* @param stream - The stream to close.
*/
virtual void CloseStream(SinkStream* stream) = 0;
/**
* Close all streams.
*/
virtual void CloseStreams() = 0;
/**
* Create a new sink stream, kept within this sink, with a pointer returned for use.
* Do not free the returned pointer. When done with the stream, call CloseStream on the sink.
*
* @param system - Core system.
* @param system_channels - Number of channels the audio system expects.
* May differ from the device's channel count.
* @param name - Name of this stream.
* @param type - Type of this stream, render/in/out.
*
* @return A pointer to the created SinkStream
*/
virtual SinkStream* AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string& name, StreamType type) = 0;
/**
* Get the number of channels the hardware device supports.
* Either 2 or 6.
*
* @return Number of device channels.
*/
u32 GetDeviceChannels() const {
return device_channels;
}
/**
* Get the device volume. Set from calls to the IAudioDevice service.
*
* @return Volume of the device.
*/
virtual f32 GetDeviceVolume() const = 0;
/**
* Set the device volume. Set from calls to the IAudioDevice service.
*
* @param volume - New volume of the device.
*/
virtual void SetDeviceVolume(f32 volume) = 0;
/**
* Set the system volume. Comes from the audio system using this stream.
*
* @param volume - New volume of the system.
*/
virtual void SetSystemVolume(f32 volume) = 0;
protected:
/// Number of device channels supported by the hardware
u32 device_channels{2};
};
using SinkPtr = std::unique_ptr<Sink>;
} // namespace AudioCore::Sink
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory>
#include <string>
#include "audio_core/sink/sink_stream.h"
#include "common/common_types.h"
namespace Common {
class Event;
}
namespace Core {
class System;
}
namespace AudioCore::Sink {
constexpr char auto_device_name[] = "auto";
/**
* This class is an interface for an audio sink, holds multiple output streams and is responsible
* for sinking samples to hardware. Used by Audio Render, Audio In and Audio Out.
*/
class Sink {
public:
virtual ~Sink() = default;
/**
* Close a given stream.
*
* @param stream - The stream to close.
*/
virtual void CloseStream(SinkStream* stream) = 0;
/**
* Close all streams.
*/
virtual void CloseStreams() = 0;
/**
* Create a new sink stream, kept within this sink, with a pointer returned for use.
* Do not free the returned pointer. When done with the stream, call CloseStream on the sink.
*
* @param system - Core system.
* @param system_channels - Number of channels the audio system expects.
* May differ from the device's channel count.
* @param name - Name of this stream.
* @param type - Type of this stream, render/in/out.
*
* @return A pointer to the created SinkStream
*/
virtual SinkStream* AcquireSinkStream(Core::System& system, u32 system_channels,
const std::string& name, StreamType type) = 0;
/**
* Get the number of channels the hardware device supports.
* Either 2 or 6.
*
* @return Number of device channels.
*/
u32 GetDeviceChannels() const {
return device_channels;
}
/**
* Get the device volume. Set from calls to the IAudioDevice service.
*
* @return Volume of the device.
*/
virtual f32 GetDeviceVolume() const = 0;
/**
* Set the device volume. Set from calls to the IAudioDevice service.
*
* @param volume - New volume of the device.
*/
virtual void SetDeviceVolume(f32 volume) = 0;
/**
* Set the system volume. Comes from the audio system using this stream.
*
* @param volume - New volume of the system.
*/
virtual void SetSystemVolume(f32 volume) = 0;
protected:
/// Number of device channels supported by the hardware
u32 device_channels{2};
};
using SinkPtr = std::unique_ptr<Sink>;
} // namespace AudioCore::Sink

View File

@@ -1,113 +1,113 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "audio_core/sink/sink_details.h"
#ifdef HAVE_CUBEB
#include "audio_core/sink/cubeb_sink.h"
#endif
#ifdef HAVE_SDL2
#include "audio_core/sink/sdl2_sink.h"
#endif
#include "audio_core/sink/null_sink.h"
#include "common/logging/log.h"
namespace AudioCore::Sink {
namespace {
struct SinkDetails {
using FactoryFn = std::unique_ptr<Sink> (*)(std::string_view);
using ListDevicesFn = std::vector<std::string> (*)(bool);
using LatencyFn = u32 (*)();
/// Name for this sink.
std::string_view id;
/// A method to call to construct an instance of this type of sink.
FactoryFn factory;
/// A method to call to list available devices.
ListDevicesFn list_devices;
/// Method to get the latency of this backend.
LatencyFn latency;
};
// sink_details is ordered in terms of desirability, with the best choice at the top.
constexpr SinkDetails sink_details[] = {
#ifdef HAVE_CUBEB
SinkDetails{
"cubeb",
[](std::string_view device_id) -> std::unique_ptr<Sink> {
return std::make_unique<CubebSink>(device_id);
},
&ListCubebSinkDevices,
&GetCubebLatency,
},
#endif
#ifdef HAVE_SDL2
SinkDetails{
"sdl2",
[](std::string_view device_id) -> std::unique_ptr<Sink> {
return std::make_unique<SDLSink>(device_id);
},
&ListSDLSinkDevices,
&GetSDLLatency,
},
#endif
SinkDetails{"null",
[](std::string_view device_id) -> std::unique_ptr<Sink> {
return std::make_unique<NullSink>(device_id);
},
[](bool capture) { return std::vector<std::string>{"null"}; }, []() { return 0u; }},
};
const SinkDetails& GetOutputSinkDetails(std::string_view sink_id) {
const auto find_backend{[](std::string_view id) {
return std::find_if(std::begin(sink_details), std::end(sink_details),
[&id](const auto& sink_detail) { return sink_detail.id == id; });
}};
auto iter = find_backend(sink_id);
if (sink_id == "auto") {
// Auto-select a backend. Prefer CubeB, but it may report a large minimum latency which
// causes audio issues, in that case go with SDL.
#if defined(HAVE_CUBEB) && defined(HAVE_SDL2)
iter = find_backend("cubeb");
if (iter->latency() > TargetSampleCount * 3) {
iter = find_backend("sdl2");
}
#else
iter = std::begin(sink_details);
#endif
LOG_INFO(Service_Audio, "Auto-selecting the {} backend", iter->id);
}
if (iter == std::end(sink_details)) {
LOG_ERROR(Audio, "Invalid sink_id {}", sink_id);
iter = find_backend("null");
}
return *iter;
}
} // Anonymous namespace
std::vector<std::string_view> GetSinkIDs() {
std::vector<std::string_view> sink_ids(std::size(sink_details));
std::transform(std::begin(sink_details), std::end(sink_details), std::begin(sink_ids),
[](const auto& sink) { return sink.id; });
return sink_ids;
}
std::vector<std::string> GetDeviceListForSink(std::string_view sink_id, bool capture) {
return GetOutputSinkDetails(sink_id).list_devices(capture);
}
std::unique_ptr<Sink> CreateSinkFromID(std::string_view sink_id, std::string_view device_id) {
return GetOutputSinkDetails(sink_id).factory(device_id);
}
} // namespace AudioCore::Sink
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "audio_core/sink/sink_details.h"
#ifdef HAVE_CUBEB
#include "audio_core/sink/cubeb_sink.h"
#endif
#ifdef HAVE_SDL2
#include "audio_core/sink/sdl2_sink.h"
#endif
#include "audio_core/sink/null_sink.h"
#include "common/logging/log.h"
namespace AudioCore::Sink {
namespace {
struct SinkDetails {
using FactoryFn = std::unique_ptr<Sink> (*)(std::string_view);
using ListDevicesFn = std::vector<std::string> (*)(bool);
using LatencyFn = u32 (*)();
/// Name for this sink.
std::string_view id;
/// A method to call to construct an instance of this type of sink.
FactoryFn factory;
/// A method to call to list available devices.
ListDevicesFn list_devices;
/// Method to get the latency of this backend.
LatencyFn latency;
};
// sink_details is ordered in terms of desirability, with the best choice at the top.
constexpr SinkDetails sink_details[] = {
#ifdef HAVE_CUBEB
SinkDetails{
"cubeb",
[](std::string_view device_id) -> std::unique_ptr<Sink> {
return std::make_unique<CubebSink>(device_id);
},
&ListCubebSinkDevices,
&GetCubebLatency,
},
#endif
#ifdef HAVE_SDL2
SinkDetails{
"sdl2",
[](std::string_view device_id) -> std::unique_ptr<Sink> {
return std::make_unique<SDLSink>(device_id);
},
&ListSDLSinkDevices,
&GetSDLLatency,
},
#endif
SinkDetails{"null",
[](std::string_view device_id) -> std::unique_ptr<Sink> {
return std::make_unique<NullSink>(device_id);
},
[](bool capture) { return std::vector<std::string>{"null"}; }, []() { return 0u; }},
};
const SinkDetails& GetOutputSinkDetails(std::string_view sink_id) {
const auto find_backend{[](std::string_view id) {
return std::find_if(std::begin(sink_details), std::end(sink_details),
[&id](const auto& sink_detail) { return sink_detail.id == id; });
}};
auto iter = find_backend(sink_id);
if (sink_id == "auto") {
// Auto-select a backend. Prefer CubeB, but it may report a large minimum latency which
// causes audio issues, in that case go with SDL.
#if defined(HAVE_CUBEB) && defined(HAVE_SDL2)
iter = find_backend("cubeb");
if (iter->latency() > TargetSampleCount * 3) {
iter = find_backend("sdl2");
}
#else
iter = std::begin(sink_details);
#endif
LOG_INFO(Service_Audio, "Auto-selecting the {} backend", iter->id);
}
if (iter == std::end(sink_details)) {
LOG_ERROR(Audio, "Invalid sink_id {}", sink_id);
iter = find_backend("null");
}
return *iter;
}
} // Anonymous namespace
std::vector<std::string_view> GetSinkIDs() {
std::vector<std::string_view> sink_ids(std::size(sink_details));
std::transform(std::begin(sink_details), std::end(sink_details), std::begin(sink_ids),
[](const auto& sink) { return sink.id; });
return sink_ids;
}
std::vector<std::string> GetDeviceListForSink(std::string_view sink_id, bool capture) {
return GetOutputSinkDetails(sink_id).list_devices(capture);
}
std::unique_ptr<Sink> CreateSinkFromID(std::string_view sink_id, std::string_view device_id) {
return GetOutputSinkDetails(sink_id).factory(device_id);
}
} // namespace AudioCore::Sink

View File

@@ -1,43 +1,43 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include <string_view>
#include <vector>
namespace AudioCore {
class AudioManager;
namespace Sink {
class Sink;
/**
* Retrieves the IDs for all available audio sinks.
*
* @return Vector of available sink names.
*/
std::vector<std::string_view> GetSinkIDs();
/**
* Gets the list of devices for a particular sink identified by the given ID.
*
* @param sink_id - Id of the sink to get devices from.
* @param capture - Get capture (input) devices, or output devices?
* @return Vector of device names.
*/
std::vector<std::string> GetDeviceListForSink(std::string_view sink_id, bool capture);
/**
* Creates an audio sink identified by the given device ID.
*
* @param sink_id - Id of the sink to create.
* @param device_id - Name of the device to create.
* @return Pointer to the created sink.
*/
std::unique_ptr<Sink> CreateSinkFromID(std::string_view sink_id, std::string_view device_id);
} // namespace Sink
} // namespace AudioCore
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include <string_view>
#include <vector>
namespace AudioCore {
class AudioManager;
namespace Sink {
class Sink;
/**
* Retrieves the IDs for all available audio sinks.
*
* @return Vector of available sink names.
*/
std::vector<std::string_view> GetSinkIDs();
/**
* Gets the list of devices for a particular sink identified by the given ID.
*
* @param sink_id - Id of the sink to get devices from.
* @param capture - Get capture (input) devices, or output devices?
* @return Vector of device names.
*/
std::vector<std::string> GetDeviceListForSink(std::string_view sink_id, bool capture);
/**
* Creates an audio sink identified by the given device ID.
*
* @param sink_id - Id of the sink to create.
* @param device_id - Name of the device to create.
* @return Pointer to the created sink.
*/
std::unique_ptr<Sink> CreateSinkFromID(std::string_view sink_id, std::string_view device_id);
} // namespace Sink
} // namespace AudioCore

View File

@@ -1,284 +1,284 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <atomic>
#include <memory>
#include <span>
#include <vector>
#include "audio_core/audio_core.h"
#include "audio_core/common/common.h"
#include "audio_core/sink/sink_stream.h"
#include "common/common_types.h"
#include "common/fixed_point.h"
#include "common/settings.h"
#include "core/core.h"
namespace AudioCore::Sink {
void SinkStream::AppendBuffer(SinkBuffer& buffer, std::vector<s16>& samples) {
if (type == StreamType::In) {
queue.enqueue(buffer);
queued_buffers++;
return;
}
constexpr s32 min{std::numeric_limits<s16>::min()};
constexpr s32 max{std::numeric_limits<s16>::max()};
auto yuzu_volume{Settings::Volume()};
if (yuzu_volume > 1.0f) {
yuzu_volume = 0.6f + 20 * std::log10(yuzu_volume);
}
auto volume{system_volume * device_volume * yuzu_volume};
if (system_channels == 6 && device_channels == 2) {
// We're given 6 channels, but our device only outputs 2, so downmix.
constexpr std::array<f32, 4> down_mix_coeff{1.0f, 0.707f, 0.251f, 0.707f};
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] * down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] * down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackLeft)] * down_mix_coeff[3]) *
volume)
.to_int()};
const auto right_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] * down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] * down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackRight)] * down_mix_coeff[3]) *
volume)
.to_int()};
samples[write_index + static_cast<u32>(Channels::FrontLeft)] =
static_cast<s16>(std::clamp(left_sample, min, max));
samples[write_index + static_cast<u32>(Channels::FrontRight)] =
static_cast<s16>(std::clamp(right_sample, min, max));
}
samples.resize(samples.size() / system_channels * device_channels);
} else if (system_channels == 2 && device_channels == 6) {
// We need moar samples! Not all games will provide 6 channel audio.
// TODO: Implement some upmixing here. Currently just passthrough, with other
// channels left as silence.
std::vector<s16> new_samples(samples.size() / system_channels * device_channels, 0);
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontLeft)] = left_sample;
const auto right_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontRight)] = right_sample;
}
samples = std::move(new_samples);
} else if (volume != 1.0f) {
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(
std::clamp(static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
}
samples_buffer.Push(samples);
queue.enqueue(buffer);
queued_buffers++;
}
std::vector<s16> SinkStream::ReleaseBuffer(u64 num_samples) {
constexpr s32 min = std::numeric_limits<s16>::min();
constexpr s32 max = std::numeric_limits<s16>::max();
auto samples{samples_buffer.Pop(num_samples)};
// TODO: Up-mix to 6 channels if the game expects it.
// For audio input this is unlikely to ever be the case though.
// Incoming mic volume seems to always be very quiet, so multiply by an additional 8 here.
// TODO: Play with this and find something that works better.
auto volume{system_volume * device_volume * 8};
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(
std::clamp(static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
if (samples.size() < num_samples) {
samples.resize(num_samples, 0);
}
return samples;
}
void SinkStream::ClearQueue() {
samples_buffer.Pop();
while (queue.pop()) {
}
queued_buffers = 0;
playing_buffer = {};
playing_buffer.consumed = true;
}
void SinkStream::ProcessAudioIn(std::span<const s16> input_buffer, std::size_t num_frames) {
const std::size_t num_channels = GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t frame_size_bytes = frame_size * sizeof(s16);
size_t frames_written{0};
// If we're paused or going to shut down, we don't want to consume buffers as coretiming is
// paused and we'll desync, so just return.
if (system.IsPaused() || system.IsShuttingDown()) {
return;
}
if (queued_buffers > max_queue_size) {
Stall();
}
while (frames_written < num_frames) {
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!queue.try_dequeue(playing_buffer)) {
// If no buffer was available we've underrun, just push the samples and
// continue.
samples_buffer.Push(&input_buffer[frames_written * frame_size],
(num_frames - frames_written) * frame_size);
frames_written = num_frames;
continue;
}
// Successfully dequeued a new buffer.
queued_buffers--;
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{std::min(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
samples_buffer.Push(&input_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
playing_buffer.consumed = true;
}
}
std::memcpy(&last_frame[0], &input_buffer[(frames_written - 1) * frame_size], frame_size_bytes);
if (queued_buffers <= max_queue_size) {
Unstall();
}
}
void SinkStream::ProcessAudioOutAndRender(std::span<s16> output_buffer, std::size_t num_frames) {
const std::size_t num_channels = GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t frame_size_bytes = frame_size * sizeof(s16);
size_t frames_written{0};
// If we're paused or going to shut down, we don't want to consume buffers as coretiming is
// paused and we'll desync, so just play silence.
if (system.IsPaused() || system.IsShuttingDown()) {
constexpr std::array<s16, 6> silence{};
for (size_t i = frames_written; i < num_frames; i++) {
std::memcpy(&output_buffer[i * frame_size], &silence[0], frame_size_bytes);
}
return;
}
// Due to many frames being queued up with nvdec (5 frames or so?), a lot of buffers also get
// queued up (30+) but not all at once, which causes constant stalling here, so just let the
// video play out without attempting to stall.
// Can hopefully remove this later with a more complete NVDEC implementation.
const auto nvdec_active{system.AudioCore().IsNVDECActive()};
// Core timing cannot be paused in single-core mode, so Stall ends up being called over and over
// and never recovers to a normal state, so just skip attempting to sync things on single-core.
if (system.IsMulticore() && !nvdec_active && queued_buffers > max_queue_size) {
Stall();
} else if (system.IsMulticore() && queued_buffers <= max_queue_size) {
Unstall();
}
while (frames_written < num_frames) {
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!queue.try_dequeue(playing_buffer)) {
// If no buffer was available we've underrun, fill the remaining buffer with
// the last written frame and continue.
for (size_t i = frames_written; i < num_frames; i++) {
std::memcpy(&output_buffer[i * frame_size], &last_frame[0], frame_size_bytes);
}
frames_written = num_frames;
continue;
}
// Successfully dequeued a new buffer.
queued_buffers--;
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{std::min(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
samples_buffer.Pop(&output_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
playing_buffer.consumed = true;
}
}
std::memcpy(&last_frame[0], &output_buffer[(frames_written - 1) * frame_size],
frame_size_bytes);
if (system.IsMulticore() && queued_buffers <= max_queue_size) {
Unstall();
}
}
void SinkStream::Stall() {
if (stalled) {
return;
}
stalled = true;
system.StallProcesses();
}
void SinkStream::Unstall() {
if (!stalled) {
return;
}
system.UnstallProcesses();
stalled = false;
}
} // namespace AudioCore::Sink
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <atomic>
#include <memory>
#include <span>
#include <vector>
#include "audio_core/audio_core.h"
#include "audio_core/common/common.h"
#include "audio_core/sink/sink_stream.h"
#include "common/common_types.h"
#include "common/fixed_point.h"
#include "common/settings.h"
#include "core/core.h"
namespace AudioCore::Sink {
void SinkStream::AppendBuffer(SinkBuffer& buffer, std::vector<s16>& samples) {
if (type == StreamType::In) {
queue.enqueue(buffer);
queued_buffers++;
return;
}
constexpr s32 min{std::numeric_limits<s16>::min()};
constexpr s32 max{std::numeric_limits<s16>::max()};
auto yuzu_volume{Settings::Volume()};
if (yuzu_volume > 1.0f) {
yuzu_volume = 0.6f + 20 * std::log10(yuzu_volume);
}
auto volume{system_volume * device_volume * yuzu_volume};
if (system_channels == 6 && device_channels == 2) {
// We're given 6 channels, but our device only outputs 2, so downmix.
constexpr std::array<f32, 4> down_mix_coeff{1.0f, 0.707f, 0.251f, 0.707f};
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] * down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] * down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackLeft)] * down_mix_coeff[3]) *
volume)
.to_int()};
const auto right_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] * down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] * down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackRight)] * down_mix_coeff[3]) *
volume)
.to_int()};
samples[write_index + static_cast<u32>(Channels::FrontLeft)] =
static_cast<s16>(std::clamp(left_sample, min, max));
samples[write_index + static_cast<u32>(Channels::FrontRight)] =
static_cast<s16>(std::clamp(right_sample, min, max));
}
samples.resize(samples.size() / system_channels * device_channels);
} else if (system_channels == 2 && device_channels == 6) {
// We need moar samples! Not all games will provide 6 channel audio.
// TODO: Implement some upmixing here. Currently just passthrough, with other
// channels left as silence.
std::vector<s16> new_samples(samples.size() / system_channels * device_channels, 0);
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontLeft)] = left_sample;
const auto right_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontRight)] = right_sample;
}
samples = std::move(new_samples);
} else if (volume != 1.0f) {
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(
std::clamp(static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
}
samples_buffer.Push(samples);
queue.enqueue(buffer);
queued_buffers++;
}
std::vector<s16> SinkStream::ReleaseBuffer(u64 num_samples) {
constexpr s32 min = std::numeric_limits<s16>::min();
constexpr s32 max = std::numeric_limits<s16>::max();
auto samples{samples_buffer.Pop(num_samples)};
// TODO: Up-mix to 6 channels if the game expects it.
// For audio input this is unlikely to ever be the case though.
// Incoming mic volume seems to always be very quiet, so multiply by an additional 8 here.
// TODO: Play with this and find something that works better.
auto volume{system_volume * device_volume * 8};
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(
std::clamp(static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
if (samples.size() < num_samples) {
samples.resize(num_samples, 0);
}
return samples;
}
void SinkStream::ClearQueue() {
samples_buffer.Pop();
while (queue.pop()) {
}
queued_buffers = 0;
playing_buffer = {};
playing_buffer.consumed = true;
}
void SinkStream::ProcessAudioIn(std::span<const s16> input_buffer, std::size_t num_frames) {
const std::size_t num_channels = GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t frame_size_bytes = frame_size * sizeof(s16);
size_t frames_written{0};
// If we're paused or going to shut down, we don't want to consume buffers as coretiming is
// paused and we'll desync, so just return.
if (system.IsPaused() || system.IsShuttingDown()) {
return;
}
if (queued_buffers > max_queue_size) {
Stall();
}
while (frames_written < num_frames) {
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!queue.try_dequeue(playing_buffer)) {
// If no buffer was available we've underrun, just push the samples and
// continue.
samples_buffer.Push(&input_buffer[frames_written * frame_size],
(num_frames - frames_written) * frame_size);
frames_written = num_frames;
continue;
}
// Successfully dequeued a new buffer.
queued_buffers--;
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{std::min(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
samples_buffer.Push(&input_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
playing_buffer.consumed = true;
}
}
std::memcpy(&last_frame[0], &input_buffer[(frames_written - 1) * frame_size], frame_size_bytes);
if (queued_buffers <= max_queue_size) {
Unstall();
}
}
void SinkStream::ProcessAudioOutAndRender(std::span<s16> output_buffer, std::size_t num_frames) {
const std::size_t num_channels = GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t frame_size_bytes = frame_size * sizeof(s16);
size_t frames_written{0};
// If we're paused or going to shut down, we don't want to consume buffers as coretiming is
// paused and we'll desync, so just play silence.
if (system.IsPaused() || system.IsShuttingDown()) {
constexpr std::array<s16, 6> silence{};
for (size_t i = frames_written; i < num_frames; i++) {
std::memcpy(&output_buffer[i * frame_size], &silence[0], frame_size_bytes);
}
return;
}
// Due to many frames being queued up with nvdec (5 frames or so?), a lot of buffers also get
// queued up (30+) but not all at once, which causes constant stalling here, so just let the
// video play out without attempting to stall.
// Can hopefully remove this later with a more complete NVDEC implementation.
const auto nvdec_active{system.AudioCore().IsNVDECActive()};
// Core timing cannot be paused in single-core mode, so Stall ends up being called over and over
// and never recovers to a normal state, so just skip attempting to sync things on single-core.
if (system.IsMulticore() && !nvdec_active && queued_buffers > max_queue_size) {
Stall();
} else if (system.IsMulticore() && queued_buffers <= max_queue_size) {
Unstall();
}
while (frames_written < num_frames) {
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!queue.try_dequeue(playing_buffer)) {
// If no buffer was available we've underrun, fill the remaining buffer with
// the last written frame and continue.
for (size_t i = frames_written; i < num_frames; i++) {
std::memcpy(&output_buffer[i * frame_size], &last_frame[0], frame_size_bytes);
}
frames_written = num_frames;
continue;
}
// Successfully dequeued a new buffer.
queued_buffers--;
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{std::min(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
samples_buffer.Pop(&output_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
playing_buffer.consumed = true;
}
}
std::memcpy(&last_frame[0], &output_buffer[(frames_written - 1) * frame_size],
frame_size_bytes);
if (system.IsMulticore() && queued_buffers <= max_queue_size) {
Unstall();
}
}
void SinkStream::Stall() {
if (stalled) {
return;
}
stalled = true;
system.StallProcesses();
}
void SinkStream::Unstall() {
if (!stalled) {
return;
}
system.UnstallProcesses();
stalled = false;
}
} // namespace AudioCore::Sink

View File

@@ -1,249 +1,249 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <atomic>
#include <memory>
#include <span>
#include <vector>
#include "audio_core/common/common.h"
#include "common/common_types.h"
#include "common/reader_writer_queue.h"
#include "common/ring_buffer.h"
namespace Core {
class System;
} // namespace Core
namespace AudioCore::Sink {
enum class StreamType {
Render,
Out,
In,
};
struct SinkBuffer {
u64 frames;
u64 frames_played;
u64 tag;
bool consumed;
};
/**
* Contains a real backend stream for outputting samples to hardware,
* created only via a Sink (See Sink::AcquireSinkStream).
*
* Accepts a SinkBuffer and samples in PCM16 format to be output (see AppendBuffer).
* Appended buffers act as a FIFO queue, and will be held until played.
* You should regularly call IsBufferConsumed with the unique SinkBuffer tag to check if the buffer
* has been consumed.
*
* Since these are a FIFO queue, IsBufferConsumed must be checked in the same order buffers were
* appended, skipping a buffer will result in the queue getting stuck, and all following buffers to
* never release.
*
* If the buffers appear to be stuck, you can stop and re-open an IAudioIn/IAudioOut service (this
* is what games do), or call ClearQueue to flush all of the buffers without a full restart.
*/
class SinkStream {
public:
explicit SinkStream(Core::System& system_, StreamType type_) : system{system_}, type{type_} {}
virtual ~SinkStream() {
Unstall();
}
/**
* Finalize the sink stream.
*/
virtual void Finalize() {}
/**
* Start the sink stream.
*
* @param resume - Set to true if this is resuming the stream a previously-active stream.
* Default false.
*/
virtual void Start(bool resume = false) {}
/**
* Stop the sink stream.
*/
virtual void Stop() {}
/**
* Check if the stream is paused.
*
* @return True if paused, otherwise false.
*/
bool IsPaused() const {
return paused;
}
/**
* Get the number of system channels in this stream.
*
* @return Number of system channels.
*/
u32 GetSystemChannels() const {
return system_channels;
}
/**
* Set the number of channels the system expects.
*
* @param channels - New number of system channels.
*/
void SetSystemChannels(u32 channels) {
system_channels = channels;
}
/**
* Get the number of channels the hardware supports.
*
* @return Number of channels supported.
*/
u32 GetDeviceChannels() const {
return device_channels;
}
/**
* Get the system volume.
*
* @return The current system volume.
*/
f32 GetSystemVolume() const {
return system_volume;
}
/**
* Get the device volume.
*
* @return The current device volume.
*/
f32 GetDeviceVolume() const {
return device_volume;
}
/**
* Set the system volume.
*
* @param volume_ - The new system volume.
*/
void SetSystemVolume(f32 volume_) {
system_volume = volume_;
}
/**
* Set the device volume.
*
* @param volume_ - The new device volume.
*/
void SetDeviceVolume(f32 volume_) {
device_volume = volume_;
}
/**
* Get the number of queued audio buffers.
*
* @return The number of queued buffers.
*/
u32 GetQueueSize() const {
return queued_buffers.load();
}
/**
* Set the maximum buffer queue size.
*/
void SetRingSize(u32 ring_size) {
max_queue_size = ring_size;
}
/**
* Append a new buffer and its samples to a waiting queue to play.
*
* @param buffer - Audio buffer information to be queued.
* @param samples - The s16 samples to be queue for playback.
*/
virtual void AppendBuffer(SinkBuffer& buffer, std::vector<s16>& samples);
/**
* Release a buffer. Audio In only, will fill a buffer with recorded samples.
*
* @param num_samples - Maximum number of samples to receive.
* @return Vector of recorded samples. May have fewer than num_samples.
*/
virtual std::vector<s16> ReleaseBuffer(u64 num_samples);
/**
* Empty out the buffer queue.
*/
void ClearQueue();
/**
* Callback for AudioIn.
*
* @param input_buffer - Input buffer to be filled with samples.
* @param num_frames - Number of frames to be filled.
*/
void ProcessAudioIn(std::span<const s16> input_buffer, std::size_t num_frames);
/**
* Callback for AudioOut and AudioRenderer.
*
* @param output_buffer - Output buffer to be filled with samples.
* @param num_frames - Number of frames to be filled.
*/
void ProcessAudioOutAndRender(std::span<s16> output_buffer, std::size_t num_frames);
/**
* Stall core processes if the audio thread falls too far behind.
*/
void Stall();
/**
* Unstall core processes.
*/
void Unstall();
protected:
/// Core system
Core::System& system;
/// Type of this stream
StreamType type;
/// Set by the audio render/in/out system which uses this stream
u32 system_channels{2};
/// Channels supported by hardware
u32 device_channels{2};
/// Is this stream currently paused?
std::atomic<bool> paused{true};
/// Name of this stream
std::string name{};
private:
/// Ring buffer of the samples waiting to be played or consumed
Common::RingBuffer<s16, 0x10000> samples_buffer;
/// Audio buffers queued and waiting to play
Common::ReaderWriterQueue<SinkBuffer> queue;
/// The currently-playing audio buffer
SinkBuffer playing_buffer{};
/// The last played (or received) frame of audio, used when the callback underruns
std::array<s16, MaxChannels> last_frame{};
/// Number of buffers waiting to be played
std::atomic<u32> queued_buffers{};
/// The ring size for audio out buffers (usually 4, rarely 2 or 8)
u32 max_queue_size{};
/// Set by the audio render/in/out system which uses this stream
f32 system_volume{1.0f};
/// Set via IAudioDevice service calls
f32 device_volume{1.0f};
/// True if coretiming has been stalled
bool stalled{false};
};
using SinkStreamPtr = std::unique_ptr<SinkStream>;
} // namespace AudioCore::Sink
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <atomic>
#include <memory>
#include <span>
#include <vector>
#include "audio_core/common/common.h"
#include "common/common_types.h"
#include "common/reader_writer_queue.h"
#include "common/ring_buffer.h"
namespace Core {
class System;
} // namespace Core
namespace AudioCore::Sink {
enum class StreamType {
Render,
Out,
In,
};
struct SinkBuffer {
u64 frames;
u64 frames_played;
u64 tag;
bool consumed;
};
/**
* Contains a real backend stream for outputting samples to hardware,
* created only via a Sink (See Sink::AcquireSinkStream).
*
* Accepts a SinkBuffer and samples in PCM16 format to be output (see AppendBuffer).
* Appended buffers act as a FIFO queue, and will be held until played.
* You should regularly call IsBufferConsumed with the unique SinkBuffer tag to check if the buffer
* has been consumed.
*
* Since these are a FIFO queue, IsBufferConsumed must be checked in the same order buffers were
* appended, skipping a buffer will result in the queue getting stuck, and all following buffers to
* never release.
*
* If the buffers appear to be stuck, you can stop and re-open an IAudioIn/IAudioOut service (this
* is what games do), or call ClearQueue to flush all of the buffers without a full restart.
*/
class SinkStream {
public:
explicit SinkStream(Core::System& system_, StreamType type_) : system{system_}, type{type_} {}
virtual ~SinkStream() {
Unstall();
}
/**
* Finalize the sink stream.
*/
virtual void Finalize() {}
/**
* Start the sink stream.
*
* @param resume - Set to true if this is resuming the stream a previously-active stream.
* Default false.
*/
virtual void Start(bool resume = false) {}
/**
* Stop the sink stream.
*/
virtual void Stop() {}
/**
* Check if the stream is paused.
*
* @return True if paused, otherwise false.
*/
bool IsPaused() const {
return paused;
}
/**
* Get the number of system channels in this stream.
*
* @return Number of system channels.
*/
u32 GetSystemChannels() const {
return system_channels;
}
/**
* Set the number of channels the system expects.
*
* @param channels - New number of system channels.
*/
void SetSystemChannels(u32 channels) {
system_channels = channels;
}
/**
* Get the number of channels the hardware supports.
*
* @return Number of channels supported.
*/
u32 GetDeviceChannels() const {
return device_channels;
}
/**
* Get the system volume.
*
* @return The current system volume.
*/
f32 GetSystemVolume() const {
return system_volume;
}
/**
* Get the device volume.
*
* @return The current device volume.
*/
f32 GetDeviceVolume() const {
return device_volume;
}
/**
* Set the system volume.
*
* @param volume_ - The new system volume.
*/
void SetSystemVolume(f32 volume_) {
system_volume = volume_;
}
/**
* Set the device volume.
*
* @param volume_ - The new device volume.
*/
void SetDeviceVolume(f32 volume_) {
device_volume = volume_;
}
/**
* Get the number of queued audio buffers.
*
* @return The number of queued buffers.
*/
u32 GetQueueSize() const {
return queued_buffers.load();
}
/**
* Set the maximum buffer queue size.
*/
void SetRingSize(u32 ring_size) {
max_queue_size = ring_size;
}
/**
* Append a new buffer and its samples to a waiting queue to play.
*
* @param buffer - Audio buffer information to be queued.
* @param samples - The s16 samples to be queue for playback.
*/
virtual void AppendBuffer(SinkBuffer& buffer, std::vector<s16>& samples);
/**
* Release a buffer. Audio In only, will fill a buffer with recorded samples.
*
* @param num_samples - Maximum number of samples to receive.
* @return Vector of recorded samples. May have fewer than num_samples.
*/
virtual std::vector<s16> ReleaseBuffer(u64 num_samples);
/**
* Empty out the buffer queue.
*/
void ClearQueue();
/**
* Callback for AudioIn.
*
* @param input_buffer - Input buffer to be filled with samples.
* @param num_frames - Number of frames to be filled.
*/
void ProcessAudioIn(std::span<const s16> input_buffer, std::size_t num_frames);
/**
* Callback for AudioOut and AudioRenderer.
*
* @param output_buffer - Output buffer to be filled with samples.
* @param num_frames - Number of frames to be filled.
*/
void ProcessAudioOutAndRender(std::span<s16> output_buffer, std::size_t num_frames);
/**
* Stall core processes if the audio thread falls too far behind.
*/
void Stall();
/**
* Unstall core processes.
*/
void Unstall();
protected:
/// Core system
Core::System& system;
/// Type of this stream
StreamType type;
/// Set by the audio render/in/out system which uses this stream
u32 system_channels{2};
/// Channels supported by hardware
u32 device_channels{2};
/// Is this stream currently paused?
std::atomic<bool> paused{true};
/// Name of this stream
std::string name{};
private:
/// Ring buffer of the samples waiting to be played or consumed
Common::RingBuffer<s16, 0x10000> samples_buffer;
/// Audio buffers queued and waiting to play
Common::ReaderWriterQueue<SinkBuffer> queue;
/// The currently-playing audio buffer
SinkBuffer playing_buffer{};
/// The last played (or received) frame of audio, used when the callback underruns
std::array<s16, MaxChannels> last_frame{};
/// Number of buffers waiting to be played
std::atomic<u32> queued_buffers{};
/// The ring size for audio out buffers (usually 4, rarely 2 or 8)
u32 max_queue_size{};
/// Set by the audio render/in/out system which uses this stream
f32 system_volume{1.0f};
/// Set via IAudioDevice service calls
f32 device_volume{1.0f};
/// True if coretiming has been stalled
bool stalled{false};
};
using SinkStreamPtr = std::unique_ptr<SinkStream>;
} // namespace AudioCore::Sink