another try
This commit is contained in:
@@ -1,19 +1,19 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
// All architectures must define NumArchitectureDeviceRegions.
|
||||
constexpr inline const auto NumArchitectureDeviceRegions = 3;
|
||||
|
||||
constexpr inline const auto KMemoryRegionType_Uart =
|
||||
KMemoryRegionType_ArchDeviceBase.DeriveSparse(0, NumArchitectureDeviceRegions, 0);
|
||||
constexpr inline const auto KMemoryRegionType_InterruptCpuInterface =
|
||||
KMemoryRegionType_ArchDeviceBase.DeriveSparse(0, NumArchitectureDeviceRegions, 1)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
constexpr inline const auto KMemoryRegionType_InterruptDistributor =
|
||||
KMemoryRegionType_ArchDeviceBase.DeriveSparse(0, NumArchitectureDeviceRegions, 2)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
static_assert(KMemoryRegionType_Uart.GetValue() == (0x1D));
|
||||
static_assert(KMemoryRegionType_InterruptCpuInterface.GetValue() ==
|
||||
(0x2D | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_InterruptDistributor.GetValue() ==
|
||||
(0x4D | KMemoryRegionAttr_NoUserMap));
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
// All architectures must define NumArchitectureDeviceRegions.
|
||||
constexpr inline const auto NumArchitectureDeviceRegions = 3;
|
||||
|
||||
constexpr inline const auto KMemoryRegionType_Uart =
|
||||
KMemoryRegionType_ArchDeviceBase.DeriveSparse(0, NumArchitectureDeviceRegions, 0);
|
||||
constexpr inline const auto KMemoryRegionType_InterruptCpuInterface =
|
||||
KMemoryRegionType_ArchDeviceBase.DeriveSparse(0, NumArchitectureDeviceRegions, 1)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
constexpr inline const auto KMemoryRegionType_InterruptDistributor =
|
||||
KMemoryRegionType_ArchDeviceBase.DeriveSparse(0, NumArchitectureDeviceRegions, 2)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
static_assert(KMemoryRegionType_Uart.GetValue() == (0x1D));
|
||||
static_assert(KMemoryRegionType_InterruptCpuInterface.GetValue() ==
|
||||
(0x2D | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_InterruptDistributor.GetValue() ==
|
||||
(0x4D | KMemoryRegionAttr_NoUserMap));
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
constexpr inline PAddr MainMemoryAddress = 0x80000000;
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
constexpr inline PAddr MainMemoryAddress = 0x80000000;
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,51 +1,51 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
// All architectures must define NumBoardDeviceRegions.
|
||||
constexpr inline const auto NumBoardDeviceRegions = 6;
|
||||
// UNUSED: .Derive(NumBoardDeviceRegions, 0);
|
||||
constexpr inline const auto KMemoryRegionType_MemoryController =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 1)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
constexpr inline const auto KMemoryRegionType_MemoryController1 =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 2)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
constexpr inline const auto KMemoryRegionType_MemoryController0 =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 3)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
constexpr inline const auto KMemoryRegionType_PowerManagementController =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 4).DeriveTransition();
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsDevices =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 5);
|
||||
static_assert(KMemoryRegionType_MemoryController.GetValue() ==
|
||||
(0x55 | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_MemoryController1.GetValue() ==
|
||||
(0x65 | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_MemoryController0.GetValue() ==
|
||||
(0x95 | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_PowerManagementController.GetValue() == (0x1A5));
|
||||
|
||||
static_assert(KMemoryRegionType_LegacyLpsDevices.GetValue() == 0xC5);
|
||||
|
||||
constexpr inline const auto NumLegacyLpsDevices = 7;
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsExceptionVectors =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 0);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsIram =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 1);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsFlowController =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 2);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsPrimaryICtlr =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 3);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsSemaphore =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 4);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsAtomics =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 5);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsClkRst =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 6);
|
||||
static_assert(KMemoryRegionType_LegacyLpsExceptionVectors.GetValue() == 0x3C5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsIram.GetValue() == 0x5C5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsFlowController.GetValue() == 0x6C5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsPrimaryICtlr.GetValue() == 0x9C5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsSemaphore.GetValue() == 0xAC5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsAtomics.GetValue() == 0xCC5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsClkRst.GetValue() == 0x11C5);
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
// All architectures must define NumBoardDeviceRegions.
|
||||
constexpr inline const auto NumBoardDeviceRegions = 6;
|
||||
// UNUSED: .Derive(NumBoardDeviceRegions, 0);
|
||||
constexpr inline const auto KMemoryRegionType_MemoryController =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 1)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
constexpr inline const auto KMemoryRegionType_MemoryController1 =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 2)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
constexpr inline const auto KMemoryRegionType_MemoryController0 =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 3)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
constexpr inline const auto KMemoryRegionType_PowerManagementController =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 4).DeriveTransition();
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsDevices =
|
||||
KMemoryRegionType_BoardDeviceBase.Derive(NumBoardDeviceRegions, 5);
|
||||
static_assert(KMemoryRegionType_MemoryController.GetValue() ==
|
||||
(0x55 | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_MemoryController1.GetValue() ==
|
||||
(0x65 | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_MemoryController0.GetValue() ==
|
||||
(0x95 | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_PowerManagementController.GetValue() == (0x1A5));
|
||||
|
||||
static_assert(KMemoryRegionType_LegacyLpsDevices.GetValue() == 0xC5);
|
||||
|
||||
constexpr inline const auto NumLegacyLpsDevices = 7;
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsExceptionVectors =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 0);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsIram =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 1);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsFlowController =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 2);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsPrimaryICtlr =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 3);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsSemaphore =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 4);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsAtomics =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 5);
|
||||
constexpr inline const auto KMemoryRegionType_LegacyLpsClkRst =
|
||||
KMemoryRegionType_LegacyLpsDevices.Derive(NumLegacyLpsDevices, 6);
|
||||
static_assert(KMemoryRegionType_LegacyLpsExceptionVectors.GetValue() == 0x3C5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsIram.GetValue() == 0x5C5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsFlowController.GetValue() == 0x6C5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsPrimaryICtlr.GetValue() == 0x9C5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsSemaphore.GetValue() == 0xAC5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsAtomics.GetValue() == 0xCC5);
|
||||
static_assert(KMemoryRegionType_LegacyLpsClkRst.GetValue() == 0x11C5);
|
||||
|
||||
@@ -1,160 +1,160 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <random>
|
||||
|
||||
#include "common/literals.h"
|
||||
#include "common/settings.h"
|
||||
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_system_control.h"
|
||||
#include "core/hle/kernel/board/nintendo/nx/secure_monitor.h"
|
||||
#include "core/hle/kernel/k_trace.h"
|
||||
|
||||
namespace Kernel::Board::Nintendo::Nx {
|
||||
|
||||
namespace impl {
|
||||
|
||||
constexpr const std::size_t RequiredNonSecureSystemMemorySizeVi = 0x2238 * 4 * 1024;
|
||||
constexpr const std::size_t RequiredNonSecureSystemMemorySizeNvservices = 0x710 * 4 * 1024;
|
||||
constexpr const std::size_t RequiredNonSecureSystemMemorySizeMisc = 0x80 * 4 * 1024;
|
||||
|
||||
} // namespace impl
|
||||
|
||||
constexpr const std::size_t RequiredNonSecureSystemMemorySize =
|
||||
impl::RequiredNonSecureSystemMemorySizeVi + impl::RequiredNonSecureSystemMemorySizeNvservices +
|
||||
impl::RequiredNonSecureSystemMemorySizeMisc;
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
u32 GetMemorySizeForInit() {
|
||||
return Settings::values.use_extended_memory_layout ? Smc::MemorySize_6GB : Smc::MemorySize_4GB;
|
||||
}
|
||||
|
||||
Smc::MemoryArrangement GetMemoryArrangeForInit() {
|
||||
return Settings::values.use_extended_memory_layout ? Smc::MemoryArrangement_6GB
|
||||
: Smc::MemoryArrangement_4GB;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
size_t KSystemControl::Init::GetRealMemorySize() {
|
||||
return GetIntendedMemorySize();
|
||||
}
|
||||
|
||||
// Initialization.
|
||||
size_t KSystemControl::Init::GetIntendedMemorySize() {
|
||||
switch (GetMemorySizeForInit()) {
|
||||
case Smc::MemorySize_4GB:
|
||||
default: // All invalid modes should go to 4GB.
|
||||
return 4_GiB;
|
||||
case Smc::MemorySize_6GB:
|
||||
return 6_GiB;
|
||||
case Smc::MemorySize_8GB:
|
||||
return 8_GiB;
|
||||
}
|
||||
}
|
||||
|
||||
PAddr KSystemControl::Init::GetKernelPhysicalBaseAddress(u64 base_address) {
|
||||
const size_t real_dram_size = KSystemControl::Init::GetRealMemorySize();
|
||||
const size_t intended_dram_size = KSystemControl::Init::GetIntendedMemorySize();
|
||||
if (intended_dram_size * 2 < real_dram_size) {
|
||||
return base_address;
|
||||
} else {
|
||||
return base_address + ((real_dram_size - intended_dram_size) / 2);
|
||||
}
|
||||
}
|
||||
|
||||
bool KSystemControl::Init::ShouldIncreaseThreadResourceLimit() {
|
||||
return true;
|
||||
}
|
||||
|
||||
std::size_t KSystemControl::Init::GetApplicationPoolSize() {
|
||||
// Get the base pool size.
|
||||
const size_t base_pool_size = []() -> size_t {
|
||||
switch (GetMemoryArrangeForInit()) {
|
||||
case Smc::MemoryArrangement_4GB:
|
||||
default:
|
||||
return 3285_MiB;
|
||||
case Smc::MemoryArrangement_4GBForAppletDev:
|
||||
return 2048_MiB;
|
||||
case Smc::MemoryArrangement_4GBForSystemDev:
|
||||
return 3285_MiB;
|
||||
case Smc::MemoryArrangement_6GB:
|
||||
return 4916_MiB;
|
||||
case Smc::MemoryArrangement_6GBForAppletDev:
|
||||
return 3285_MiB;
|
||||
case Smc::MemoryArrangement_8GB:
|
||||
return 4916_MiB;
|
||||
}
|
||||
}();
|
||||
|
||||
// Return (possibly) adjusted size.
|
||||
return base_pool_size;
|
||||
}
|
||||
|
||||
size_t KSystemControl::Init::GetAppletPoolSize() {
|
||||
// Get the base pool size.
|
||||
const size_t base_pool_size = []() -> size_t {
|
||||
switch (GetMemoryArrangeForInit()) {
|
||||
case Smc::MemoryArrangement_4GB:
|
||||
default:
|
||||
return 507_MiB;
|
||||
case Smc::MemoryArrangement_4GBForAppletDev:
|
||||
return 1554_MiB;
|
||||
case Smc::MemoryArrangement_4GBForSystemDev:
|
||||
return 448_MiB;
|
||||
case Smc::MemoryArrangement_6GB:
|
||||
return 562_MiB;
|
||||
case Smc::MemoryArrangement_6GBForAppletDev:
|
||||
return 2193_MiB;
|
||||
case Smc::MemoryArrangement_8GB:
|
||||
return 2193_MiB;
|
||||
}
|
||||
}();
|
||||
|
||||
// Return (possibly) adjusted size.
|
||||
constexpr size_t ExtraSystemMemoryForAtmosphere = 33_MiB;
|
||||
return base_pool_size - ExtraSystemMemoryForAtmosphere - KTraceBufferSize;
|
||||
}
|
||||
|
||||
size_t KSystemControl::Init::GetMinimumNonSecureSystemPoolSize() {
|
||||
// Verify that our minimum is at least as large as Nintendo's.
|
||||
constexpr size_t MinimumSize = RequiredNonSecureSystemMemorySize;
|
||||
static_assert(MinimumSize >= 0x29C8000);
|
||||
|
||||
return MinimumSize;
|
||||
}
|
||||
|
||||
namespace {
|
||||
template <typename F>
|
||||
u64 GenerateUniformRange(u64 min, u64 max, F f) {
|
||||
// Handle the case where the difference is too large to represent.
|
||||
if (max == std::numeric_limits<u64>::max() && min == std::numeric_limits<u64>::min()) {
|
||||
return f();
|
||||
}
|
||||
|
||||
// Iterate until we get a value in range.
|
||||
const u64 range_size = ((max + 1) - min);
|
||||
const u64 effective_max = (std::numeric_limits<u64>::max() / range_size) * range_size;
|
||||
while (true) {
|
||||
if (const u64 rnd = f(); rnd < effective_max) {
|
||||
return min + (rnd % range_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // Anonymous namespace
|
||||
|
||||
u64 KSystemControl::GenerateRandomU64() {
|
||||
std::random_device device;
|
||||
std::mt19937 gen(device());
|
||||
std::uniform_int_distribution<u64> distribution(1, std::numeric_limits<u64>::max());
|
||||
return distribution(gen);
|
||||
}
|
||||
|
||||
u64 KSystemControl::GenerateRandomRange(u64 min, u64 max) {
|
||||
return GenerateUniformRange(min, max, GenerateRandomU64);
|
||||
}
|
||||
|
||||
} // namespace Kernel::Board::Nintendo::Nx
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <random>
|
||||
|
||||
#include "common/literals.h"
|
||||
#include "common/settings.h"
|
||||
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_system_control.h"
|
||||
#include "core/hle/kernel/board/nintendo/nx/secure_monitor.h"
|
||||
#include "core/hle/kernel/k_trace.h"
|
||||
|
||||
namespace Kernel::Board::Nintendo::Nx {
|
||||
|
||||
namespace impl {
|
||||
|
||||
constexpr const std::size_t RequiredNonSecureSystemMemorySizeVi = 0x2238 * 4 * 1024;
|
||||
constexpr const std::size_t RequiredNonSecureSystemMemorySizeNvservices = 0x710 * 4 * 1024;
|
||||
constexpr const std::size_t RequiredNonSecureSystemMemorySizeMisc = 0x80 * 4 * 1024;
|
||||
|
||||
} // namespace impl
|
||||
|
||||
constexpr const std::size_t RequiredNonSecureSystemMemorySize =
|
||||
impl::RequiredNonSecureSystemMemorySizeVi + impl::RequiredNonSecureSystemMemorySizeNvservices +
|
||||
impl::RequiredNonSecureSystemMemorySizeMisc;
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
u32 GetMemorySizeForInit() {
|
||||
return Settings::values.use_extended_memory_layout ? Smc::MemorySize_6GB : Smc::MemorySize_4GB;
|
||||
}
|
||||
|
||||
Smc::MemoryArrangement GetMemoryArrangeForInit() {
|
||||
return Settings::values.use_extended_memory_layout ? Smc::MemoryArrangement_6GB
|
||||
: Smc::MemoryArrangement_4GB;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
size_t KSystemControl::Init::GetRealMemorySize() {
|
||||
return GetIntendedMemorySize();
|
||||
}
|
||||
|
||||
// Initialization.
|
||||
size_t KSystemControl::Init::GetIntendedMemorySize() {
|
||||
switch (GetMemorySizeForInit()) {
|
||||
case Smc::MemorySize_4GB:
|
||||
default: // All invalid modes should go to 4GB.
|
||||
return 4_GiB;
|
||||
case Smc::MemorySize_6GB:
|
||||
return 6_GiB;
|
||||
case Smc::MemorySize_8GB:
|
||||
return 8_GiB;
|
||||
}
|
||||
}
|
||||
|
||||
PAddr KSystemControl::Init::GetKernelPhysicalBaseAddress(u64 base_address) {
|
||||
const size_t real_dram_size = KSystemControl::Init::GetRealMemorySize();
|
||||
const size_t intended_dram_size = KSystemControl::Init::GetIntendedMemorySize();
|
||||
if (intended_dram_size * 2 < real_dram_size) {
|
||||
return base_address;
|
||||
} else {
|
||||
return base_address + ((real_dram_size - intended_dram_size) / 2);
|
||||
}
|
||||
}
|
||||
|
||||
bool KSystemControl::Init::ShouldIncreaseThreadResourceLimit() {
|
||||
return true;
|
||||
}
|
||||
|
||||
std::size_t KSystemControl::Init::GetApplicationPoolSize() {
|
||||
// Get the base pool size.
|
||||
const size_t base_pool_size = []() -> size_t {
|
||||
switch (GetMemoryArrangeForInit()) {
|
||||
case Smc::MemoryArrangement_4GB:
|
||||
default:
|
||||
return 3285_MiB;
|
||||
case Smc::MemoryArrangement_4GBForAppletDev:
|
||||
return 2048_MiB;
|
||||
case Smc::MemoryArrangement_4GBForSystemDev:
|
||||
return 3285_MiB;
|
||||
case Smc::MemoryArrangement_6GB:
|
||||
return 4916_MiB;
|
||||
case Smc::MemoryArrangement_6GBForAppletDev:
|
||||
return 3285_MiB;
|
||||
case Smc::MemoryArrangement_8GB:
|
||||
return 4916_MiB;
|
||||
}
|
||||
}();
|
||||
|
||||
// Return (possibly) adjusted size.
|
||||
return base_pool_size;
|
||||
}
|
||||
|
||||
size_t KSystemControl::Init::GetAppletPoolSize() {
|
||||
// Get the base pool size.
|
||||
const size_t base_pool_size = []() -> size_t {
|
||||
switch (GetMemoryArrangeForInit()) {
|
||||
case Smc::MemoryArrangement_4GB:
|
||||
default:
|
||||
return 507_MiB;
|
||||
case Smc::MemoryArrangement_4GBForAppletDev:
|
||||
return 1554_MiB;
|
||||
case Smc::MemoryArrangement_4GBForSystemDev:
|
||||
return 448_MiB;
|
||||
case Smc::MemoryArrangement_6GB:
|
||||
return 562_MiB;
|
||||
case Smc::MemoryArrangement_6GBForAppletDev:
|
||||
return 2193_MiB;
|
||||
case Smc::MemoryArrangement_8GB:
|
||||
return 2193_MiB;
|
||||
}
|
||||
}();
|
||||
|
||||
// Return (possibly) adjusted size.
|
||||
constexpr size_t ExtraSystemMemoryForAtmosphere = 33_MiB;
|
||||
return base_pool_size - ExtraSystemMemoryForAtmosphere - KTraceBufferSize;
|
||||
}
|
||||
|
||||
size_t KSystemControl::Init::GetMinimumNonSecureSystemPoolSize() {
|
||||
// Verify that our minimum is at least as large as Nintendo's.
|
||||
constexpr size_t MinimumSize = RequiredNonSecureSystemMemorySize;
|
||||
static_assert(MinimumSize >= 0x29C8000);
|
||||
|
||||
return MinimumSize;
|
||||
}
|
||||
|
||||
namespace {
|
||||
template <typename F>
|
||||
u64 GenerateUniformRange(u64 min, u64 max, F f) {
|
||||
// Handle the case where the difference is too large to represent.
|
||||
if (max == std::numeric_limits<u64>::max() && min == std::numeric_limits<u64>::min()) {
|
||||
return f();
|
||||
}
|
||||
|
||||
// Iterate until we get a value in range.
|
||||
const u64 range_size = ((max + 1) - min);
|
||||
const u64 effective_max = (std::numeric_limits<u64>::max() / range_size) * range_size;
|
||||
while (true) {
|
||||
if (const u64 rnd = f(); rnd < effective_max) {
|
||||
return min + (rnd % range_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // Anonymous namespace
|
||||
|
||||
u64 KSystemControl::GenerateRandomU64() {
|
||||
std::random_device device;
|
||||
std::mt19937 gen(device());
|
||||
std::uniform_int_distribution<u64> distribution(1, std::numeric_limits<u64>::max());
|
||||
return distribution(gen);
|
||||
}
|
||||
|
||||
u64 KSystemControl::GenerateRandomRange(u64 min, u64 max) {
|
||||
return GenerateUniformRange(min, max, GenerateRandomU64);
|
||||
}
|
||||
|
||||
} // namespace Kernel::Board::Nintendo::Nx
|
||||
|
||||
@@ -1,28 +1,28 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel::Board::Nintendo::Nx {
|
||||
|
||||
class KSystemControl {
|
||||
public:
|
||||
class Init {
|
||||
public:
|
||||
// Initialization.
|
||||
static std::size_t GetRealMemorySize();
|
||||
static std::size_t GetIntendedMemorySize();
|
||||
static PAddr GetKernelPhysicalBaseAddress(u64 base_address);
|
||||
static bool ShouldIncreaseThreadResourceLimit();
|
||||
static std::size_t GetApplicationPoolSize();
|
||||
static std::size_t GetAppletPoolSize();
|
||||
static std::size_t GetMinimumNonSecureSystemPoolSize();
|
||||
};
|
||||
|
||||
static u64 GenerateRandomRange(u64 min, u64 max);
|
||||
static u64 GenerateRandomU64();
|
||||
};
|
||||
|
||||
} // namespace Kernel::Board::Nintendo::Nx
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel::Board::Nintendo::Nx {
|
||||
|
||||
class KSystemControl {
|
||||
public:
|
||||
class Init {
|
||||
public:
|
||||
// Initialization.
|
||||
static std::size_t GetRealMemorySize();
|
||||
static std::size_t GetIntendedMemorySize();
|
||||
static PAddr GetKernelPhysicalBaseAddress(u64 base_address);
|
||||
static bool ShouldIncreaseThreadResourceLimit();
|
||||
static std::size_t GetApplicationPoolSize();
|
||||
static std::size_t GetAppletPoolSize();
|
||||
static std::size_t GetMinimumNonSecureSystemPoolSize();
|
||||
};
|
||||
|
||||
static u64 GenerateRandomRange(u64 min, u64 max);
|
||||
static u64 GenerateRandomU64();
|
||||
};
|
||||
|
||||
} // namespace Kernel::Board::Nintendo::Nx
|
||||
|
||||
@@ -1,23 +1,23 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace Kernel::Board::Nintendo::Nx::Smc {
|
||||
|
||||
enum MemorySize {
|
||||
MemorySize_4GB = 0,
|
||||
MemorySize_6GB = 1,
|
||||
MemorySize_8GB = 2,
|
||||
};
|
||||
|
||||
enum MemoryArrangement {
|
||||
MemoryArrangement_4GB = 0,
|
||||
MemoryArrangement_4GBForAppletDev = 1,
|
||||
MemoryArrangement_4GBForSystemDev = 2,
|
||||
MemoryArrangement_6GB = 3,
|
||||
MemoryArrangement_6GBForAppletDev = 4,
|
||||
MemoryArrangement_8GB = 5,
|
||||
};
|
||||
|
||||
} // namespace Kernel::Board::Nintendo::Nx::Smc
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace Kernel::Board::Nintendo::Nx::Smc {
|
||||
|
||||
enum MemorySize {
|
||||
MemorySize_4GB = 0,
|
||||
MemorySize_6GB = 1,
|
||||
MemorySize_8GB = 2,
|
||||
};
|
||||
|
||||
enum MemoryArrangement {
|
||||
MemoryArrangement_4GB = 0,
|
||||
MemoryArrangement_4GBForAppletDev = 1,
|
||||
MemoryArrangement_4GBForSystemDev = 2,
|
||||
MemoryArrangement_6GB = 3,
|
||||
MemoryArrangement_6GBForAppletDev = 4,
|
||||
MemoryArrangement_8GB = 5,
|
||||
};
|
||||
|
||||
} // namespace Kernel::Board::Nintendo::Nx::Smc
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/code_set.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
CodeSet::CodeSet() = default;
|
||||
CodeSet::~CodeSet() = default;
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/code_set.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
CodeSet::CodeSet() = default;
|
||||
CodeSet::~CodeSet() = default;
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,88 +1,88 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/physical_memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
/**
|
||||
* Represents executable data that may be loaded into a kernel process.
|
||||
*
|
||||
* A code set consists of three basic segments:
|
||||
* - A code (AKA text) segment,
|
||||
* - A read-only data segment (rodata)
|
||||
* - A data segment
|
||||
*
|
||||
* The code segment is the portion of the object file that contains
|
||||
* executable instructions.
|
||||
*
|
||||
* The read-only data segment in the portion of the object file that
|
||||
* contains (as one would expect) read-only data, such as fixed constant
|
||||
* values and data structures.
|
||||
*
|
||||
* The data segment is similar to the read-only data segment -- it contains
|
||||
* variables and data structures that have predefined values, however,
|
||||
* entities within this segment can be modified.
|
||||
*/
|
||||
struct CodeSet final {
|
||||
/// A single segment within a code set.
|
||||
struct Segment final {
|
||||
/// The byte offset that this segment is located at.
|
||||
std::size_t offset = 0;
|
||||
|
||||
/// The address to map this segment to.
|
||||
VAddr addr = 0;
|
||||
|
||||
/// The size of this segment in bytes.
|
||||
u32 size = 0;
|
||||
};
|
||||
|
||||
explicit CodeSet();
|
||||
~CodeSet();
|
||||
|
||||
CodeSet(const CodeSet&) = delete;
|
||||
CodeSet& operator=(const CodeSet&) = delete;
|
||||
|
||||
CodeSet(CodeSet&&) = default;
|
||||
CodeSet& operator=(CodeSet&&) = default;
|
||||
|
||||
Segment& CodeSegment() {
|
||||
return segments[0];
|
||||
}
|
||||
|
||||
const Segment& CodeSegment() const {
|
||||
return segments[0];
|
||||
}
|
||||
|
||||
Segment& RODataSegment() {
|
||||
return segments[1];
|
||||
}
|
||||
|
||||
const Segment& RODataSegment() const {
|
||||
return segments[1];
|
||||
}
|
||||
|
||||
Segment& DataSegment() {
|
||||
return segments[2];
|
||||
}
|
||||
|
||||
const Segment& DataSegment() const {
|
||||
return segments[2];
|
||||
}
|
||||
|
||||
/// The overall data that backs this code set.
|
||||
Kernel::PhysicalMemory memory;
|
||||
|
||||
/// The segments that comprise this code set.
|
||||
std::array<Segment, 3> segments;
|
||||
|
||||
/// The entry point address for this code set.
|
||||
VAddr entrypoint = 0;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/physical_memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
/**
|
||||
* Represents executable data that may be loaded into a kernel process.
|
||||
*
|
||||
* A code set consists of three basic segments:
|
||||
* - A code (AKA text) segment,
|
||||
* - A read-only data segment (rodata)
|
||||
* - A data segment
|
||||
*
|
||||
* The code segment is the portion of the object file that contains
|
||||
* executable instructions.
|
||||
*
|
||||
* The read-only data segment in the portion of the object file that
|
||||
* contains (as one would expect) read-only data, such as fixed constant
|
||||
* values and data structures.
|
||||
*
|
||||
* The data segment is similar to the read-only data segment -- it contains
|
||||
* variables and data structures that have predefined values, however,
|
||||
* entities within this segment can be modified.
|
||||
*/
|
||||
struct CodeSet final {
|
||||
/// A single segment within a code set.
|
||||
struct Segment final {
|
||||
/// The byte offset that this segment is located at.
|
||||
std::size_t offset = 0;
|
||||
|
||||
/// The address to map this segment to.
|
||||
VAddr addr = 0;
|
||||
|
||||
/// The size of this segment in bytes.
|
||||
u32 size = 0;
|
||||
};
|
||||
|
||||
explicit CodeSet();
|
||||
~CodeSet();
|
||||
|
||||
CodeSet(const CodeSet&) = delete;
|
||||
CodeSet& operator=(const CodeSet&) = delete;
|
||||
|
||||
CodeSet(CodeSet&&) = default;
|
||||
CodeSet& operator=(CodeSet&&) = default;
|
||||
|
||||
Segment& CodeSegment() {
|
||||
return segments[0];
|
||||
}
|
||||
|
||||
const Segment& CodeSegment() const {
|
||||
return segments[0];
|
||||
}
|
||||
|
||||
Segment& RODataSegment() {
|
||||
return segments[1];
|
||||
}
|
||||
|
||||
const Segment& RODataSegment() const {
|
||||
return segments[1];
|
||||
}
|
||||
|
||||
Segment& DataSegment() {
|
||||
return segments[2];
|
||||
}
|
||||
|
||||
const Segment& DataSegment() const {
|
||||
return segments[2];
|
||||
}
|
||||
|
||||
/// The overall data that backs this code set.
|
||||
Kernel::PhysicalMemory memory;
|
||||
|
||||
/// The segments that comprise this code set.
|
||||
std::array<Segment, 3> segments;
|
||||
|
||||
/// The entry point address for this code set.
|
||||
VAddr entrypoint = 0;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,74 +1,74 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <mutex>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/global_scheduler_context.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/physical_core.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
GlobalSchedulerContext::GlobalSchedulerContext(KernelCore& kernel_)
|
||||
: kernel{kernel_}, scheduler_lock{kernel_} {}
|
||||
|
||||
GlobalSchedulerContext::~GlobalSchedulerContext() = default;
|
||||
|
||||
void GlobalSchedulerContext::AddThread(KThread* thread) {
|
||||
std::scoped_lock lock{global_list_guard};
|
||||
thread_list.push_back(thread);
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::RemoveThread(KThread* thread) {
|
||||
std::scoped_lock lock{global_list_guard};
|
||||
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
|
||||
thread_list.end());
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::PreemptThreads() {
|
||||
// The priority levels at which the global scheduler preempts threads every 10 ms. They are
|
||||
// ordered from Core 0 to Core 3.
|
||||
static constexpr std::array<u32, Core::Hardware::NUM_CPU_CORES> preemption_priorities{
|
||||
59,
|
||||
59,
|
||||
59,
|
||||
63,
|
||||
};
|
||||
|
||||
ASSERT(IsLocked());
|
||||
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
||||
const u32 priority = preemption_priorities[core_id];
|
||||
KScheduler::RotateScheduledQueue(kernel, core_id, priority);
|
||||
}
|
||||
}
|
||||
|
||||
bool GlobalSchedulerContext::IsLocked() const {
|
||||
return scheduler_lock.IsLockedByCurrentThread();
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::RegisterDummyThreadForWakeup(KThread* thread) {
|
||||
ASSERT(IsLocked());
|
||||
|
||||
woken_dummy_threads.insert(thread);
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::UnregisterDummyThreadForWakeup(KThread* thread) {
|
||||
ASSERT(IsLocked());
|
||||
|
||||
woken_dummy_threads.erase(thread);
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::WakeupWaitingDummyThreads() {
|
||||
ASSERT(IsLocked());
|
||||
|
||||
for (auto* thread : woken_dummy_threads) {
|
||||
thread->DummyThreadEndWait();
|
||||
}
|
||||
|
||||
woken_dummy_threads.clear();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <mutex>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/global_scheduler_context.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/physical_core.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
GlobalSchedulerContext::GlobalSchedulerContext(KernelCore& kernel_)
|
||||
: kernel{kernel_}, scheduler_lock{kernel_} {}
|
||||
|
||||
GlobalSchedulerContext::~GlobalSchedulerContext() = default;
|
||||
|
||||
void GlobalSchedulerContext::AddThread(KThread* thread) {
|
||||
std::scoped_lock lock{global_list_guard};
|
||||
thread_list.push_back(thread);
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::RemoveThread(KThread* thread) {
|
||||
std::scoped_lock lock{global_list_guard};
|
||||
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
|
||||
thread_list.end());
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::PreemptThreads() {
|
||||
// The priority levels at which the global scheduler preempts threads every 10 ms. They are
|
||||
// ordered from Core 0 to Core 3.
|
||||
static constexpr std::array<u32, Core::Hardware::NUM_CPU_CORES> preemption_priorities{
|
||||
59,
|
||||
59,
|
||||
59,
|
||||
63,
|
||||
};
|
||||
|
||||
ASSERT(IsLocked());
|
||||
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
||||
const u32 priority = preemption_priorities[core_id];
|
||||
KScheduler::RotateScheduledQueue(kernel, core_id, priority);
|
||||
}
|
||||
}
|
||||
|
||||
bool GlobalSchedulerContext::IsLocked() const {
|
||||
return scheduler_lock.IsLockedByCurrentThread();
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::RegisterDummyThreadForWakeup(KThread* thread) {
|
||||
ASSERT(IsLocked());
|
||||
|
||||
woken_dummy_threads.insert(thread);
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::UnregisterDummyThreadForWakeup(KThread* thread) {
|
||||
ASSERT(IsLocked());
|
||||
|
||||
woken_dummy_threads.erase(thread);
|
||||
}
|
||||
|
||||
void GlobalSchedulerContext::WakeupWaitingDummyThreads() {
|
||||
ASSERT(IsLocked());
|
||||
|
||||
for (auto* thread : woken_dummy_threads) {
|
||||
thread->DummyThreadEndWait();
|
||||
}
|
||||
|
||||
woken_dummy_threads.clear();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,92 +1,92 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hardware_properties.h"
|
||||
#include "core/hle/kernel/k_priority_queue.h"
|
||||
#include "core/hle/kernel/k_scheduler_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/svc_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class SchedulerLock;
|
||||
|
||||
using KSchedulerPriorityQueue =
|
||||
KPriorityQueue<KThread, Core::Hardware::NUM_CPU_CORES, Svc::LowestThreadPriority,
|
||||
Svc::HighestThreadPriority>;
|
||||
|
||||
static constexpr s32 HighestCoreMigrationAllowedPriority = 2;
|
||||
static_assert(Svc::LowestThreadPriority >= HighestCoreMigrationAllowedPriority);
|
||||
static_assert(Svc::HighestThreadPriority <= HighestCoreMigrationAllowedPriority);
|
||||
|
||||
class GlobalSchedulerContext final {
|
||||
friend class KScheduler;
|
||||
|
||||
public:
|
||||
using LockType = KAbstractSchedulerLock<KScheduler>;
|
||||
|
||||
explicit GlobalSchedulerContext(KernelCore& kernel_);
|
||||
~GlobalSchedulerContext();
|
||||
|
||||
/// Adds a new thread to the scheduler
|
||||
void AddThread(KThread* thread);
|
||||
|
||||
/// Removes a thread from the scheduler
|
||||
void RemoveThread(KThread* thread);
|
||||
|
||||
/// Returns a list of all threads managed by the scheduler
|
||||
[[nodiscard]] const std::vector<KThread*>& GetThreadList() const {
|
||||
return thread_list;
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotates the scheduling queues of threads at a preemption priority and then does
|
||||
* some core rebalancing. Preemption priorities can be found in the array
|
||||
* 'preemption_priorities'.
|
||||
*
|
||||
* @note This operation happens every 10ms.
|
||||
*/
|
||||
void PreemptThreads();
|
||||
|
||||
/// Returns true if the global scheduler lock is acquired
|
||||
bool IsLocked() const;
|
||||
|
||||
void UnregisterDummyThreadForWakeup(KThread* thread);
|
||||
void RegisterDummyThreadForWakeup(KThread* thread);
|
||||
void WakeupWaitingDummyThreads();
|
||||
|
||||
[[nodiscard]] LockType& SchedulerLock() {
|
||||
return scheduler_lock;
|
||||
}
|
||||
|
||||
[[nodiscard]] const LockType& SchedulerLock() const {
|
||||
return scheduler_lock;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class KScopedSchedulerLock;
|
||||
friend class KScopedSchedulerLockAndSleep;
|
||||
|
||||
KernelCore& kernel;
|
||||
|
||||
std::atomic_bool scheduler_update_needed{};
|
||||
KSchedulerPriorityQueue priority_queue;
|
||||
LockType scheduler_lock;
|
||||
|
||||
/// Lists dummy threads pending wakeup on lock release
|
||||
std::set<KThread*> woken_dummy_threads;
|
||||
|
||||
/// Lists all thread ids that aren't deleted/etc.
|
||||
std::vector<KThread*> thread_list;
|
||||
std::mutex global_list_guard;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hardware_properties.h"
|
||||
#include "core/hle/kernel/k_priority_queue.h"
|
||||
#include "core/hle/kernel/k_scheduler_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/svc_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class SchedulerLock;
|
||||
|
||||
using KSchedulerPriorityQueue =
|
||||
KPriorityQueue<KThread, Core::Hardware::NUM_CPU_CORES, Svc::LowestThreadPriority,
|
||||
Svc::HighestThreadPriority>;
|
||||
|
||||
static constexpr s32 HighestCoreMigrationAllowedPriority = 2;
|
||||
static_assert(Svc::LowestThreadPriority >= HighestCoreMigrationAllowedPriority);
|
||||
static_assert(Svc::HighestThreadPriority <= HighestCoreMigrationAllowedPriority);
|
||||
|
||||
class GlobalSchedulerContext final {
|
||||
friend class KScheduler;
|
||||
|
||||
public:
|
||||
using LockType = KAbstractSchedulerLock<KScheduler>;
|
||||
|
||||
explicit GlobalSchedulerContext(KernelCore& kernel_);
|
||||
~GlobalSchedulerContext();
|
||||
|
||||
/// Adds a new thread to the scheduler
|
||||
void AddThread(KThread* thread);
|
||||
|
||||
/// Removes a thread from the scheduler
|
||||
void RemoveThread(KThread* thread);
|
||||
|
||||
/// Returns a list of all threads managed by the scheduler
|
||||
[[nodiscard]] const std::vector<KThread*>& GetThreadList() const {
|
||||
return thread_list;
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotates the scheduling queues of threads at a preemption priority and then does
|
||||
* some core rebalancing. Preemption priorities can be found in the array
|
||||
* 'preemption_priorities'.
|
||||
*
|
||||
* @note This operation happens every 10ms.
|
||||
*/
|
||||
void PreemptThreads();
|
||||
|
||||
/// Returns true if the global scheduler lock is acquired
|
||||
bool IsLocked() const;
|
||||
|
||||
void UnregisterDummyThreadForWakeup(KThread* thread);
|
||||
void RegisterDummyThreadForWakeup(KThread* thread);
|
||||
void WakeupWaitingDummyThreads();
|
||||
|
||||
[[nodiscard]] LockType& SchedulerLock() {
|
||||
return scheduler_lock;
|
||||
}
|
||||
|
||||
[[nodiscard]] const LockType& SchedulerLock() const {
|
||||
return scheduler_lock;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class KScopedSchedulerLock;
|
||||
friend class KScopedSchedulerLockAndSleep;
|
||||
|
||||
KernelCore& kernel;
|
||||
|
||||
std::atomic_bool scheduler_update_needed{};
|
||||
KSchedulerPriorityQueue priority_queue;
|
||||
LockType scheduler_lock;
|
||||
|
||||
/// Lists dummy threads pending wakeup on lock release
|
||||
std::set<KThread*> woken_dummy_threads;
|
||||
|
||||
/// Lists all thread ids that aren't deleted/etc.
|
||||
std::vector<KThread*> thread_list;
|
||||
std::mutex global_list_guard;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,400 +1,400 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/concepts.h"
|
||||
#include "common/swap.h"
|
||||
#include "core/hle/ipc.h"
|
||||
#include "core/hle/kernel/svc_common.h"
|
||||
|
||||
union Result;
|
||||
|
||||
namespace Core::Memory {
|
||||
class Memory;
|
||||
}
|
||||
|
||||
namespace IPC {
|
||||
class ResponseBuilder;
|
||||
}
|
||||
|
||||
namespace Service {
|
||||
class ServiceFrameworkBase;
|
||||
}
|
||||
|
||||
enum class ServiceThreadType {
|
||||
Default,
|
||||
CreateNew,
|
||||
};
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class Domain;
|
||||
class HLERequestContext;
|
||||
class KAutoObject;
|
||||
class KernelCore;
|
||||
class KEvent;
|
||||
class KHandleTable;
|
||||
class KServerPort;
|
||||
class KProcess;
|
||||
class KServerSession;
|
||||
class KThread;
|
||||
class KReadableEvent;
|
||||
class KSession;
|
||||
class SessionRequestManager;
|
||||
class ServiceThread;
|
||||
|
||||
enum class ThreadWakeupReason;
|
||||
|
||||
/**
|
||||
* Interface implemented by HLE Session handlers.
|
||||
* This can be provided to a ServerSession in order to hook into several relevant events
|
||||
* (such as a new connection or a SyncRequest) so they can be implemented in the emulator.
|
||||
*/
|
||||
class SessionRequestHandler : public std::enable_shared_from_this<SessionRequestHandler> {
|
||||
public:
|
||||
SessionRequestHandler(KernelCore& kernel_, const char* service_name_,
|
||||
ServiceThreadType thread_type);
|
||||
virtual ~SessionRequestHandler();
|
||||
|
||||
/**
|
||||
* Handles a sync request from the emulated application.
|
||||
* @param server_session The ServerSession that was triggered for this sync request,
|
||||
* it should be used to differentiate which client (As in ClientSession) we're answering to.
|
||||
* TODO(Subv): Use a wrapper structure to hold all the information relevant to
|
||||
* this request (ServerSession, Originator thread, Translated command buffer, etc).
|
||||
* @returns Result the result code of the translate operation.
|
||||
*/
|
||||
virtual Result HandleSyncRequest(Kernel::KServerSession& session,
|
||||
Kernel::HLERequestContext& context) = 0;
|
||||
|
||||
void AcceptSession(KServerPort* server_port);
|
||||
void RegisterSession(KServerSession* server_session,
|
||||
std::shared_ptr<SessionRequestManager> manager);
|
||||
|
||||
std::weak_ptr<ServiceThread> GetServiceThread() const {
|
||||
return service_thread;
|
||||
}
|
||||
|
||||
protected:
|
||||
KernelCore& kernel;
|
||||
std::weak_ptr<ServiceThread> service_thread;
|
||||
};
|
||||
|
||||
using SessionRequestHandlerWeakPtr = std::weak_ptr<SessionRequestHandler>;
|
||||
using SessionRequestHandlerPtr = std::shared_ptr<SessionRequestHandler>;
|
||||
|
||||
/**
|
||||
* Manages the underlying HLE requests for a session, and whether (or not) the session should be
|
||||
* treated as a domain. This is managed separately from server sessions, as this state is shared
|
||||
* when objects are cloned.
|
||||
*/
|
||||
class SessionRequestManager final {
|
||||
public:
|
||||
explicit SessionRequestManager(KernelCore& kernel);
|
||||
~SessionRequestManager();
|
||||
|
||||
bool IsDomain() const {
|
||||
return is_domain;
|
||||
}
|
||||
|
||||
void ConvertToDomain() {
|
||||
domain_handlers = {session_handler};
|
||||
is_domain = true;
|
||||
}
|
||||
|
||||
void ConvertToDomainOnRequestEnd() {
|
||||
convert_to_domain = true;
|
||||
}
|
||||
|
||||
std::size_t DomainHandlerCount() const {
|
||||
return domain_handlers.size();
|
||||
}
|
||||
|
||||
bool HasSessionHandler() const {
|
||||
return session_handler != nullptr;
|
||||
}
|
||||
|
||||
SessionRequestHandler& SessionHandler() {
|
||||
return *session_handler;
|
||||
}
|
||||
|
||||
const SessionRequestHandler& SessionHandler() const {
|
||||
return *session_handler;
|
||||
}
|
||||
|
||||
void CloseDomainHandler(std::size_t index) {
|
||||
if (index < DomainHandlerCount()) {
|
||||
domain_handlers[index] = nullptr;
|
||||
} else {
|
||||
ASSERT_MSG(false, "Unexpected handler index {}", index);
|
||||
}
|
||||
}
|
||||
|
||||
SessionRequestHandlerWeakPtr DomainHandler(std::size_t index) const {
|
||||
ASSERT_MSG(index < DomainHandlerCount(), "Unexpected handler index {}", index);
|
||||
return domain_handlers.at(index);
|
||||
}
|
||||
|
||||
void AppendDomainHandler(SessionRequestHandlerPtr&& handler) {
|
||||
domain_handlers.emplace_back(std::move(handler));
|
||||
}
|
||||
|
||||
void SetSessionHandler(SessionRequestHandlerPtr&& handler) {
|
||||
session_handler = std::move(handler);
|
||||
}
|
||||
|
||||
std::weak_ptr<ServiceThread> GetServiceThread() const {
|
||||
return session_handler->GetServiceThread();
|
||||
}
|
||||
|
||||
bool HasSessionRequestHandler(const HLERequestContext& context) const;
|
||||
|
||||
Result HandleDomainSyncRequest(KServerSession* server_session, HLERequestContext& context);
|
||||
Result CompleteSyncRequest(KServerSession* server_session, HLERequestContext& context);
|
||||
|
||||
private:
|
||||
bool convert_to_domain{};
|
||||
bool is_domain{};
|
||||
SessionRequestHandlerPtr session_handler;
|
||||
std::vector<SessionRequestHandlerPtr> domain_handlers;
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
/**
|
||||
* Class containing information about an in-flight IPC request being handled by an HLE service
|
||||
* implementation. Services should avoid using old global APIs (e.g. Kernel::GetCommandBuffer()) and
|
||||
* when possible use the APIs in this class to service the request.
|
||||
*
|
||||
* HLE handle protocol
|
||||
* ===================
|
||||
*
|
||||
* To avoid needing HLE services to keep a separate handle table, or having to directly modify the
|
||||
* requester's table, a tweaked protocol is used to receive and send handles in requests. The kernel
|
||||
* will decode the incoming handles into object pointers and insert a id in the buffer where the
|
||||
* handle would normally be. The service then calls GetIncomingHandle() with that id to get the
|
||||
* pointer to the object. Similarly, instead of inserting a handle into the command buffer, the
|
||||
* service calls AddOutgoingHandle() and stores the returned id where the handle would normally go.
|
||||
*
|
||||
* The end result is similar to just giving services their own real handle tables, but since these
|
||||
* ids are local to a specific context, it avoids requiring services to manage handles for objects
|
||||
* across multiple calls and ensuring that unneeded handles are cleaned up.
|
||||
*/
|
||||
class HLERequestContext {
|
||||
public:
|
||||
explicit HLERequestContext(KernelCore& kernel, Core::Memory::Memory& memory,
|
||||
KServerSession* session, KThread* thread);
|
||||
~HLERequestContext();
|
||||
|
||||
/// Returns a pointer to the IPC command buffer for this request.
|
||||
u32* CommandBuffer() {
|
||||
return cmd_buf.data();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the session through which this request was made. This can be used as a map key to
|
||||
* access per-client data on services.
|
||||
*/
|
||||
Kernel::KServerSession* Session() {
|
||||
return server_session;
|
||||
}
|
||||
|
||||
/// Populates this context with data from the requesting process/thread.
|
||||
Result PopulateFromIncomingCommandBuffer(const KHandleTable& handle_table, u32_le* src_cmdbuf);
|
||||
|
||||
/// Writes data from this context back to the requesting process/thread.
|
||||
Result WriteToOutgoingCommandBuffer(KThread& requesting_thread);
|
||||
|
||||
u32_le GetHipcCommand() const {
|
||||
return command;
|
||||
}
|
||||
|
||||
u32_le GetTipcCommand() const {
|
||||
return static_cast<u32_le>(command_header->type.Value()) -
|
||||
static_cast<u32_le>(IPC::CommandType::TIPC_CommandRegion);
|
||||
}
|
||||
|
||||
u32_le GetCommand() const {
|
||||
return command_header->IsTipc() ? GetTipcCommand() : GetHipcCommand();
|
||||
}
|
||||
|
||||
bool IsTipc() const {
|
||||
return command_header->IsTipc();
|
||||
}
|
||||
|
||||
IPC::CommandType GetCommandType() const {
|
||||
return command_header->type;
|
||||
}
|
||||
|
||||
u64 GetPID() const {
|
||||
return pid;
|
||||
}
|
||||
|
||||
u32 GetDataPayloadOffset() const {
|
||||
return data_payload_offset;
|
||||
}
|
||||
|
||||
const std::vector<IPC::BufferDescriptorX>& BufferDescriptorX() const {
|
||||
return buffer_x_desciptors;
|
||||
}
|
||||
|
||||
const std::vector<IPC::BufferDescriptorABW>& BufferDescriptorA() const {
|
||||
return buffer_a_desciptors;
|
||||
}
|
||||
|
||||
const std::vector<IPC::BufferDescriptorABW>& BufferDescriptorB() const {
|
||||
return buffer_b_desciptors;
|
||||
}
|
||||
|
||||
const std::vector<IPC::BufferDescriptorC>& BufferDescriptorC() const {
|
||||
return buffer_c_desciptors;
|
||||
}
|
||||
|
||||
const IPC::DomainMessageHeader& GetDomainMessageHeader() const {
|
||||
return domain_message_header.value();
|
||||
}
|
||||
|
||||
bool HasDomainMessageHeader() const {
|
||||
return domain_message_header.has_value();
|
||||
}
|
||||
|
||||
/// Helper function to read a buffer using the appropriate buffer descriptor
|
||||
std::vector<u8> ReadBuffer(std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to write a buffer using the appropriate buffer descriptor
|
||||
std::size_t WriteBuffer(const void* buffer, std::size_t size,
|
||||
std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to write buffer B
|
||||
std::size_t WriteBufferB(const void* buffer, std::size_t size,
|
||||
std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to write buffer C
|
||||
std::size_t WriteBufferC(const void* buffer, std::size_t size,
|
||||
std::size_t buffer_index = 0) const;
|
||||
|
||||
/* Helper function to write a buffer using the appropriate buffer descriptor
|
||||
*
|
||||
* @tparam T an arbitrary container that satisfies the
|
||||
* ContiguousContainer concept in the C++ standard library or a trivially copyable type.
|
||||
*
|
||||
* @param data The container/data to write into a buffer.
|
||||
* @param buffer_index The buffer in particular to write to.
|
||||
*/
|
||||
template <typename T, typename = std::enable_if_t<!std::is_pointer_v<T>>>
|
||||
std::size_t WriteBuffer(const T& data, std::size_t buffer_index = 0) const {
|
||||
if constexpr (Common::IsContiguousContainer<T>) {
|
||||
using ContiguousType = typename T::value_type;
|
||||
static_assert(std::is_trivially_copyable_v<ContiguousType>,
|
||||
"Container to WriteBuffer must contain trivially copyable objects");
|
||||
return WriteBuffer(std::data(data), std::size(data) * sizeof(ContiguousType),
|
||||
buffer_index);
|
||||
} else {
|
||||
static_assert(std::is_trivially_copyable_v<T>, "T must be trivially copyable");
|
||||
return WriteBuffer(&data, sizeof(T), buffer_index);
|
||||
}
|
||||
}
|
||||
|
||||
/// Helper function to get the size of the input buffer
|
||||
std::size_t GetReadBufferSize(std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to get the size of the output buffer
|
||||
std::size_t GetWriteBufferSize(std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to test whether the input buffer at buffer_index can be read
|
||||
bool CanReadBuffer(std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to test whether the output buffer at buffer_index can be written
|
||||
bool CanWriteBuffer(std::size_t buffer_index = 0) const;
|
||||
|
||||
Handle GetCopyHandle(std::size_t index) const {
|
||||
return incoming_copy_handles.at(index);
|
||||
}
|
||||
|
||||
Handle GetMoveHandle(std::size_t index) const {
|
||||
return incoming_move_handles.at(index);
|
||||
}
|
||||
|
||||
void AddMoveObject(KAutoObject* object) {
|
||||
outgoing_move_objects.emplace_back(object);
|
||||
}
|
||||
|
||||
void AddCopyObject(KAutoObject* object) {
|
||||
outgoing_copy_objects.emplace_back(object);
|
||||
}
|
||||
|
||||
void AddDomainObject(SessionRequestHandlerPtr object) {
|
||||
outgoing_domain_objects.emplace_back(std::move(object));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::shared_ptr<T> GetDomainHandler(std::size_t index) const {
|
||||
return std::static_pointer_cast<T>(GetManager()->DomainHandler(index).lock());
|
||||
}
|
||||
|
||||
void SetSessionRequestManager(std::weak_ptr<SessionRequestManager> manager_) {
|
||||
manager = manager_;
|
||||
}
|
||||
|
||||
std::string Description() const;
|
||||
|
||||
KThread& GetThread() {
|
||||
return *thread;
|
||||
}
|
||||
|
||||
std::shared_ptr<SessionRequestManager> GetManager() const {
|
||||
return manager.lock();
|
||||
}
|
||||
|
||||
private:
|
||||
friend class IPC::ResponseBuilder;
|
||||
|
||||
void ParseCommandBuffer(const KHandleTable& handle_table, u32_le* src_cmdbuf, bool incoming);
|
||||
|
||||
std::array<u32, IPC::COMMAND_BUFFER_LENGTH> cmd_buf;
|
||||
Kernel::KServerSession* server_session{};
|
||||
KThread* thread;
|
||||
|
||||
std::vector<Handle> incoming_move_handles;
|
||||
std::vector<Handle> incoming_copy_handles;
|
||||
|
||||
std::vector<KAutoObject*> outgoing_move_objects;
|
||||
std::vector<KAutoObject*> outgoing_copy_objects;
|
||||
std::vector<SessionRequestHandlerPtr> outgoing_domain_objects;
|
||||
|
||||
std::optional<IPC::CommandHeader> command_header;
|
||||
std::optional<IPC::HandleDescriptorHeader> handle_descriptor_header;
|
||||
std::optional<IPC::DataPayloadHeader> data_payload_header;
|
||||
std::optional<IPC::DomainMessageHeader> domain_message_header;
|
||||
std::vector<IPC::BufferDescriptorX> buffer_x_desciptors;
|
||||
std::vector<IPC::BufferDescriptorABW> buffer_a_desciptors;
|
||||
std::vector<IPC::BufferDescriptorABW> buffer_b_desciptors;
|
||||
std::vector<IPC::BufferDescriptorABW> buffer_w_desciptors;
|
||||
std::vector<IPC::BufferDescriptorC> buffer_c_desciptors;
|
||||
|
||||
u32_le command{};
|
||||
u64 pid{};
|
||||
u32 write_size{};
|
||||
u32 data_payload_offset{};
|
||||
u32 handles_offset{};
|
||||
u32 domain_offset{};
|
||||
|
||||
std::weak_ptr<SessionRequestManager> manager{};
|
||||
|
||||
KernelCore& kernel;
|
||||
Core::Memory::Memory& memory;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/concepts.h"
|
||||
#include "common/swap.h"
|
||||
#include "core/hle/ipc.h"
|
||||
#include "core/hle/kernel/svc_common.h"
|
||||
|
||||
union Result;
|
||||
|
||||
namespace Core::Memory {
|
||||
class Memory;
|
||||
}
|
||||
|
||||
namespace IPC {
|
||||
class ResponseBuilder;
|
||||
}
|
||||
|
||||
namespace Service {
|
||||
class ServiceFrameworkBase;
|
||||
}
|
||||
|
||||
enum class ServiceThreadType {
|
||||
Default,
|
||||
CreateNew,
|
||||
};
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class Domain;
|
||||
class HLERequestContext;
|
||||
class KAutoObject;
|
||||
class KernelCore;
|
||||
class KEvent;
|
||||
class KHandleTable;
|
||||
class KServerPort;
|
||||
class KProcess;
|
||||
class KServerSession;
|
||||
class KThread;
|
||||
class KReadableEvent;
|
||||
class KSession;
|
||||
class SessionRequestManager;
|
||||
class ServiceThread;
|
||||
|
||||
enum class ThreadWakeupReason;
|
||||
|
||||
/**
|
||||
* Interface implemented by HLE Session handlers.
|
||||
* This can be provided to a ServerSession in order to hook into several relevant events
|
||||
* (such as a new connection or a SyncRequest) so they can be implemented in the emulator.
|
||||
*/
|
||||
class SessionRequestHandler : public std::enable_shared_from_this<SessionRequestHandler> {
|
||||
public:
|
||||
SessionRequestHandler(KernelCore& kernel_, const char* service_name_,
|
||||
ServiceThreadType thread_type);
|
||||
virtual ~SessionRequestHandler();
|
||||
|
||||
/**
|
||||
* Handles a sync request from the emulated application.
|
||||
* @param server_session The ServerSession that was triggered for this sync request,
|
||||
* it should be used to differentiate which client (As in ClientSession) we're answering to.
|
||||
* TODO(Subv): Use a wrapper structure to hold all the information relevant to
|
||||
* this request (ServerSession, Originator thread, Translated command buffer, etc).
|
||||
* @returns Result the result code of the translate operation.
|
||||
*/
|
||||
virtual Result HandleSyncRequest(Kernel::KServerSession& session,
|
||||
Kernel::HLERequestContext& context) = 0;
|
||||
|
||||
void AcceptSession(KServerPort* server_port);
|
||||
void RegisterSession(KServerSession* server_session,
|
||||
std::shared_ptr<SessionRequestManager> manager);
|
||||
|
||||
std::weak_ptr<ServiceThread> GetServiceThread() const {
|
||||
return service_thread;
|
||||
}
|
||||
|
||||
protected:
|
||||
KernelCore& kernel;
|
||||
std::weak_ptr<ServiceThread> service_thread;
|
||||
};
|
||||
|
||||
using SessionRequestHandlerWeakPtr = std::weak_ptr<SessionRequestHandler>;
|
||||
using SessionRequestHandlerPtr = std::shared_ptr<SessionRequestHandler>;
|
||||
|
||||
/**
|
||||
* Manages the underlying HLE requests for a session, and whether (or not) the session should be
|
||||
* treated as a domain. This is managed separately from server sessions, as this state is shared
|
||||
* when objects are cloned.
|
||||
*/
|
||||
class SessionRequestManager final {
|
||||
public:
|
||||
explicit SessionRequestManager(KernelCore& kernel);
|
||||
~SessionRequestManager();
|
||||
|
||||
bool IsDomain() const {
|
||||
return is_domain;
|
||||
}
|
||||
|
||||
void ConvertToDomain() {
|
||||
domain_handlers = {session_handler};
|
||||
is_domain = true;
|
||||
}
|
||||
|
||||
void ConvertToDomainOnRequestEnd() {
|
||||
convert_to_domain = true;
|
||||
}
|
||||
|
||||
std::size_t DomainHandlerCount() const {
|
||||
return domain_handlers.size();
|
||||
}
|
||||
|
||||
bool HasSessionHandler() const {
|
||||
return session_handler != nullptr;
|
||||
}
|
||||
|
||||
SessionRequestHandler& SessionHandler() {
|
||||
return *session_handler;
|
||||
}
|
||||
|
||||
const SessionRequestHandler& SessionHandler() const {
|
||||
return *session_handler;
|
||||
}
|
||||
|
||||
void CloseDomainHandler(std::size_t index) {
|
||||
if (index < DomainHandlerCount()) {
|
||||
domain_handlers[index] = nullptr;
|
||||
} else {
|
||||
ASSERT_MSG(false, "Unexpected handler index {}", index);
|
||||
}
|
||||
}
|
||||
|
||||
SessionRequestHandlerWeakPtr DomainHandler(std::size_t index) const {
|
||||
ASSERT_MSG(index < DomainHandlerCount(), "Unexpected handler index {}", index);
|
||||
return domain_handlers.at(index);
|
||||
}
|
||||
|
||||
void AppendDomainHandler(SessionRequestHandlerPtr&& handler) {
|
||||
domain_handlers.emplace_back(std::move(handler));
|
||||
}
|
||||
|
||||
void SetSessionHandler(SessionRequestHandlerPtr&& handler) {
|
||||
session_handler = std::move(handler);
|
||||
}
|
||||
|
||||
std::weak_ptr<ServiceThread> GetServiceThread() const {
|
||||
return session_handler->GetServiceThread();
|
||||
}
|
||||
|
||||
bool HasSessionRequestHandler(const HLERequestContext& context) const;
|
||||
|
||||
Result HandleDomainSyncRequest(KServerSession* server_session, HLERequestContext& context);
|
||||
Result CompleteSyncRequest(KServerSession* server_session, HLERequestContext& context);
|
||||
|
||||
private:
|
||||
bool convert_to_domain{};
|
||||
bool is_domain{};
|
||||
SessionRequestHandlerPtr session_handler;
|
||||
std::vector<SessionRequestHandlerPtr> domain_handlers;
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
/**
|
||||
* Class containing information about an in-flight IPC request being handled by an HLE service
|
||||
* implementation. Services should avoid using old global APIs (e.g. Kernel::GetCommandBuffer()) and
|
||||
* when possible use the APIs in this class to service the request.
|
||||
*
|
||||
* HLE handle protocol
|
||||
* ===================
|
||||
*
|
||||
* To avoid needing HLE services to keep a separate handle table, or having to directly modify the
|
||||
* requester's table, a tweaked protocol is used to receive and send handles in requests. The kernel
|
||||
* will decode the incoming handles into object pointers and insert a id in the buffer where the
|
||||
* handle would normally be. The service then calls GetIncomingHandle() with that id to get the
|
||||
* pointer to the object. Similarly, instead of inserting a handle into the command buffer, the
|
||||
* service calls AddOutgoingHandle() and stores the returned id where the handle would normally go.
|
||||
*
|
||||
* The end result is similar to just giving services their own real handle tables, but since these
|
||||
* ids are local to a specific context, it avoids requiring services to manage handles for objects
|
||||
* across multiple calls and ensuring that unneeded handles are cleaned up.
|
||||
*/
|
||||
class HLERequestContext {
|
||||
public:
|
||||
explicit HLERequestContext(KernelCore& kernel, Core::Memory::Memory& memory,
|
||||
KServerSession* session, KThread* thread);
|
||||
~HLERequestContext();
|
||||
|
||||
/// Returns a pointer to the IPC command buffer for this request.
|
||||
u32* CommandBuffer() {
|
||||
return cmd_buf.data();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the session through which this request was made. This can be used as a map key to
|
||||
* access per-client data on services.
|
||||
*/
|
||||
Kernel::KServerSession* Session() {
|
||||
return server_session;
|
||||
}
|
||||
|
||||
/// Populates this context with data from the requesting process/thread.
|
||||
Result PopulateFromIncomingCommandBuffer(const KHandleTable& handle_table, u32_le* src_cmdbuf);
|
||||
|
||||
/// Writes data from this context back to the requesting process/thread.
|
||||
Result WriteToOutgoingCommandBuffer(KThread& requesting_thread);
|
||||
|
||||
u32_le GetHipcCommand() const {
|
||||
return command;
|
||||
}
|
||||
|
||||
u32_le GetTipcCommand() const {
|
||||
return static_cast<u32_le>(command_header->type.Value()) -
|
||||
static_cast<u32_le>(IPC::CommandType::TIPC_CommandRegion);
|
||||
}
|
||||
|
||||
u32_le GetCommand() const {
|
||||
return command_header->IsTipc() ? GetTipcCommand() : GetHipcCommand();
|
||||
}
|
||||
|
||||
bool IsTipc() const {
|
||||
return command_header->IsTipc();
|
||||
}
|
||||
|
||||
IPC::CommandType GetCommandType() const {
|
||||
return command_header->type;
|
||||
}
|
||||
|
||||
u64 GetPID() const {
|
||||
return pid;
|
||||
}
|
||||
|
||||
u32 GetDataPayloadOffset() const {
|
||||
return data_payload_offset;
|
||||
}
|
||||
|
||||
const std::vector<IPC::BufferDescriptorX>& BufferDescriptorX() const {
|
||||
return buffer_x_desciptors;
|
||||
}
|
||||
|
||||
const std::vector<IPC::BufferDescriptorABW>& BufferDescriptorA() const {
|
||||
return buffer_a_desciptors;
|
||||
}
|
||||
|
||||
const std::vector<IPC::BufferDescriptorABW>& BufferDescriptorB() const {
|
||||
return buffer_b_desciptors;
|
||||
}
|
||||
|
||||
const std::vector<IPC::BufferDescriptorC>& BufferDescriptorC() const {
|
||||
return buffer_c_desciptors;
|
||||
}
|
||||
|
||||
const IPC::DomainMessageHeader& GetDomainMessageHeader() const {
|
||||
return domain_message_header.value();
|
||||
}
|
||||
|
||||
bool HasDomainMessageHeader() const {
|
||||
return domain_message_header.has_value();
|
||||
}
|
||||
|
||||
/// Helper function to read a buffer using the appropriate buffer descriptor
|
||||
std::vector<u8> ReadBuffer(std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to write a buffer using the appropriate buffer descriptor
|
||||
std::size_t WriteBuffer(const void* buffer, std::size_t size,
|
||||
std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to write buffer B
|
||||
std::size_t WriteBufferB(const void* buffer, std::size_t size,
|
||||
std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to write buffer C
|
||||
std::size_t WriteBufferC(const void* buffer, std::size_t size,
|
||||
std::size_t buffer_index = 0) const;
|
||||
|
||||
/* Helper function to write a buffer using the appropriate buffer descriptor
|
||||
*
|
||||
* @tparam T an arbitrary container that satisfies the
|
||||
* ContiguousContainer concept in the C++ standard library or a trivially copyable type.
|
||||
*
|
||||
* @param data The container/data to write into a buffer.
|
||||
* @param buffer_index The buffer in particular to write to.
|
||||
*/
|
||||
template <typename T, typename = std::enable_if_t<!std::is_pointer_v<T>>>
|
||||
std::size_t WriteBuffer(const T& data, std::size_t buffer_index = 0) const {
|
||||
if constexpr (Common::IsContiguousContainer<T>) {
|
||||
using ContiguousType = typename T::value_type;
|
||||
static_assert(std::is_trivially_copyable_v<ContiguousType>,
|
||||
"Container to WriteBuffer must contain trivially copyable objects");
|
||||
return WriteBuffer(std::data(data), std::size(data) * sizeof(ContiguousType),
|
||||
buffer_index);
|
||||
} else {
|
||||
static_assert(std::is_trivially_copyable_v<T>, "T must be trivially copyable");
|
||||
return WriteBuffer(&data, sizeof(T), buffer_index);
|
||||
}
|
||||
}
|
||||
|
||||
/// Helper function to get the size of the input buffer
|
||||
std::size_t GetReadBufferSize(std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to get the size of the output buffer
|
||||
std::size_t GetWriteBufferSize(std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to test whether the input buffer at buffer_index can be read
|
||||
bool CanReadBuffer(std::size_t buffer_index = 0) const;
|
||||
|
||||
/// Helper function to test whether the output buffer at buffer_index can be written
|
||||
bool CanWriteBuffer(std::size_t buffer_index = 0) const;
|
||||
|
||||
Handle GetCopyHandle(std::size_t index) const {
|
||||
return incoming_copy_handles.at(index);
|
||||
}
|
||||
|
||||
Handle GetMoveHandle(std::size_t index) const {
|
||||
return incoming_move_handles.at(index);
|
||||
}
|
||||
|
||||
void AddMoveObject(KAutoObject* object) {
|
||||
outgoing_move_objects.emplace_back(object);
|
||||
}
|
||||
|
||||
void AddCopyObject(KAutoObject* object) {
|
||||
outgoing_copy_objects.emplace_back(object);
|
||||
}
|
||||
|
||||
void AddDomainObject(SessionRequestHandlerPtr object) {
|
||||
outgoing_domain_objects.emplace_back(std::move(object));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::shared_ptr<T> GetDomainHandler(std::size_t index) const {
|
||||
return std::static_pointer_cast<T>(GetManager()->DomainHandler(index).lock());
|
||||
}
|
||||
|
||||
void SetSessionRequestManager(std::weak_ptr<SessionRequestManager> manager_) {
|
||||
manager = manager_;
|
||||
}
|
||||
|
||||
std::string Description() const;
|
||||
|
||||
KThread& GetThread() {
|
||||
return *thread;
|
||||
}
|
||||
|
||||
std::shared_ptr<SessionRequestManager> GetManager() const {
|
||||
return manager.lock();
|
||||
}
|
||||
|
||||
private:
|
||||
friend class IPC::ResponseBuilder;
|
||||
|
||||
void ParseCommandBuffer(const KHandleTable& handle_table, u32_le* src_cmdbuf, bool incoming);
|
||||
|
||||
std::array<u32, IPC::COMMAND_BUFFER_LENGTH> cmd_buf;
|
||||
Kernel::KServerSession* server_session{};
|
||||
KThread* thread;
|
||||
|
||||
std::vector<Handle> incoming_move_handles;
|
||||
std::vector<Handle> incoming_copy_handles;
|
||||
|
||||
std::vector<KAutoObject*> outgoing_move_objects;
|
||||
std::vector<KAutoObject*> outgoing_copy_objects;
|
||||
std::vector<SessionRequestHandlerPtr> outgoing_domain_objects;
|
||||
|
||||
std::optional<IPC::CommandHeader> command_header;
|
||||
std::optional<IPC::HandleDescriptorHeader> handle_descriptor_header;
|
||||
std::optional<IPC::DataPayloadHeader> data_payload_header;
|
||||
std::optional<IPC::DomainMessageHeader> domain_message_header;
|
||||
std::vector<IPC::BufferDescriptorX> buffer_x_desciptors;
|
||||
std::vector<IPC::BufferDescriptorABW> buffer_a_desciptors;
|
||||
std::vector<IPC::BufferDescriptorABW> buffer_b_desciptors;
|
||||
std::vector<IPC::BufferDescriptorABW> buffer_w_desciptors;
|
||||
std::vector<IPC::BufferDescriptorC> buffer_c_desciptors;
|
||||
|
||||
u32_le command{};
|
||||
u64 pid{};
|
||||
u32 write_size{};
|
||||
u32 data_payload_offset{};
|
||||
u32 handles_offset{};
|
||||
u32 domain_offset{};
|
||||
|
||||
std::weak_ptr<SessionRequestManager> manager{};
|
||||
|
||||
KernelCore& kernel;
|
||||
Core::Memory::Memory& memory;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,260 +1,260 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/assert.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/core.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hardware_properties.h"
|
||||
#include "core/hle/kernel/init/init_slab_setup.h"
|
||||
#include "core/hle/kernel/k_code_memory.h"
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_memory_manager.h"
|
||||
#include "core/hle/kernel/k_page_buffer.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/k_session_request.h"
|
||||
#include "core/hle/kernel/k_shared_memory.h"
|
||||
#include "core/hle/kernel/k_shared_memory_info.h"
|
||||
#include "core/hle/kernel/k_system_control.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_local_page.h"
|
||||
#include "core/hle/kernel/k_transfer_memory.h"
|
||||
|
||||
namespace Kernel::Init {
|
||||
|
||||
#define SLAB_COUNT(CLASS) kernel.SlabResourceCounts().num_##CLASS
|
||||
|
||||
#define FOREACH_SLAB_TYPE(HANDLER, ...) \
|
||||
HANDLER(KProcess, (SLAB_COUNT(KProcess)), ##__VA_ARGS__) \
|
||||
HANDLER(KThread, (SLAB_COUNT(KThread)), ##__VA_ARGS__) \
|
||||
HANDLER(KEvent, (SLAB_COUNT(KEvent)), ##__VA_ARGS__) \
|
||||
HANDLER(KPort, (SLAB_COUNT(KPort)), ##__VA_ARGS__) \
|
||||
HANDLER(KSessionRequest, (SLAB_COUNT(KSession) * 2), ##__VA_ARGS__) \
|
||||
HANDLER(KSharedMemory, (SLAB_COUNT(KSharedMemory)), ##__VA_ARGS__) \
|
||||
HANDLER(KSharedMemoryInfo, (SLAB_COUNT(KSharedMemory) * 8), ##__VA_ARGS__) \
|
||||
HANDLER(KTransferMemory, (SLAB_COUNT(KTransferMemory)), ##__VA_ARGS__) \
|
||||
HANDLER(KCodeMemory, (SLAB_COUNT(KCodeMemory)), ##__VA_ARGS__) \
|
||||
HANDLER(KSession, (SLAB_COUNT(KSession)), ##__VA_ARGS__) \
|
||||
HANDLER(KThreadLocalPage, \
|
||||
(SLAB_COUNT(KProcess) + (SLAB_COUNT(KProcess) + SLAB_COUNT(KThread)) / 8), \
|
||||
##__VA_ARGS__) \
|
||||
HANDLER(KResourceLimit, (SLAB_COUNT(KResourceLimit)), ##__VA_ARGS__)
|
||||
|
||||
namespace {
|
||||
|
||||
#define DEFINE_SLAB_TYPE_ENUM_MEMBER(NAME, COUNT, ...) KSlabType_##NAME,
|
||||
|
||||
enum KSlabType : u32 {
|
||||
FOREACH_SLAB_TYPE(DEFINE_SLAB_TYPE_ENUM_MEMBER) KSlabType_Count,
|
||||
};
|
||||
|
||||
#undef DEFINE_SLAB_TYPE_ENUM_MEMBER
|
||||
|
||||
// Constexpr counts.
|
||||
constexpr size_t SlabCountKProcess = 80;
|
||||
constexpr size_t SlabCountKThread = 800;
|
||||
constexpr size_t SlabCountKEvent = 900;
|
||||
constexpr size_t SlabCountKInterruptEvent = 100;
|
||||
constexpr size_t SlabCountKPort = 384;
|
||||
constexpr size_t SlabCountKSharedMemory = 80;
|
||||
constexpr size_t SlabCountKTransferMemory = 200;
|
||||
constexpr size_t SlabCountKCodeMemory = 10;
|
||||
constexpr size_t SlabCountKDeviceAddressSpace = 300;
|
||||
constexpr size_t SlabCountKSession = 1133;
|
||||
constexpr size_t SlabCountKLightSession = 100;
|
||||
constexpr size_t SlabCountKObjectName = 7;
|
||||
constexpr size_t SlabCountKResourceLimit = 5;
|
||||
constexpr size_t SlabCountKDebug = Core::Hardware::NUM_CPU_CORES;
|
||||
constexpr size_t SlabCountKIoPool = 1;
|
||||
constexpr size_t SlabCountKIoRegion = 6;
|
||||
|
||||
constexpr size_t SlabCountExtraKThread = 160;
|
||||
|
||||
/// Helper function to translate from the slab virtual address to the reserved location in physical
|
||||
/// memory.
|
||||
static PAddr TranslateSlabAddrToPhysical(KMemoryLayout& memory_layout, VAddr slab_addr) {
|
||||
slab_addr -= memory_layout.GetSlabRegionAddress();
|
||||
return slab_addr + Core::DramMemoryMap::SlabHeapBase;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
VAddr InitializeSlabHeap(Core::System& system, KMemoryLayout& memory_layout, VAddr address,
|
||||
size_t num_objects) {
|
||||
|
||||
const size_t size = Common::AlignUp(sizeof(T) * num_objects, alignof(void*));
|
||||
VAddr start = Common::AlignUp(address, alignof(T));
|
||||
|
||||
// This should use the virtual memory address passed in, but currently, we do not setup the
|
||||
// kernel virtual memory layout. Instead, we simply map these at a region of physical memory
|
||||
// that we reserve for the slab heaps.
|
||||
// TODO(bunnei): Fix this once we support the kernel virtual memory layout.
|
||||
|
||||
if (size > 0) {
|
||||
void* backing_kernel_memory{system.DeviceMemory().GetPointer<void>(
|
||||
TranslateSlabAddrToPhysical(memory_layout, start))};
|
||||
|
||||
const KMemoryRegion* region = memory_layout.FindVirtual(start + size - 1);
|
||||
ASSERT(region != nullptr);
|
||||
ASSERT(region->IsDerivedFrom(KMemoryRegionType_KernelSlab));
|
||||
T::InitializeSlabHeap(system.Kernel(), backing_kernel_memory, size);
|
||||
}
|
||||
|
||||
return start + size;
|
||||
}
|
||||
|
||||
size_t CalculateSlabHeapGapSize() {
|
||||
constexpr size_t KernelSlabHeapGapSize = 2_MiB - 296_KiB;
|
||||
static_assert(KernelSlabHeapGapSize <= KernelSlabHeapGapsSizeMax);
|
||||
return KernelSlabHeapGapSize;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
KSlabResourceCounts KSlabResourceCounts::CreateDefault() {
|
||||
return {
|
||||
.num_KProcess = SlabCountKProcess,
|
||||
.num_KThread = SlabCountKThread,
|
||||
.num_KEvent = SlabCountKEvent,
|
||||
.num_KInterruptEvent = SlabCountKInterruptEvent,
|
||||
.num_KPort = SlabCountKPort,
|
||||
.num_KSharedMemory = SlabCountKSharedMemory,
|
||||
.num_KTransferMemory = SlabCountKTransferMemory,
|
||||
.num_KCodeMemory = SlabCountKCodeMemory,
|
||||
.num_KDeviceAddressSpace = SlabCountKDeviceAddressSpace,
|
||||
.num_KSession = SlabCountKSession,
|
||||
.num_KLightSession = SlabCountKLightSession,
|
||||
.num_KObjectName = SlabCountKObjectName,
|
||||
.num_KResourceLimit = SlabCountKResourceLimit,
|
||||
.num_KDebug = SlabCountKDebug,
|
||||
.num_KIoPool = SlabCountKIoPool,
|
||||
.num_KIoRegion = SlabCountKIoRegion,
|
||||
};
|
||||
}
|
||||
|
||||
void InitializeSlabResourceCounts(KernelCore& kernel) {
|
||||
kernel.SlabResourceCounts() = KSlabResourceCounts::CreateDefault();
|
||||
if (KSystemControl::Init::ShouldIncreaseThreadResourceLimit()) {
|
||||
kernel.SlabResourceCounts().num_KThread += SlabCountExtraKThread;
|
||||
}
|
||||
}
|
||||
|
||||
size_t CalculateTotalSlabHeapSize(const KernelCore& kernel) {
|
||||
size_t size = 0;
|
||||
|
||||
#define ADD_SLAB_SIZE(NAME, COUNT, ...) \
|
||||
{ \
|
||||
size += alignof(NAME); \
|
||||
size += Common::AlignUp(sizeof(NAME) * (COUNT), alignof(void*)); \
|
||||
};
|
||||
|
||||
// Add the size required for each slab.
|
||||
FOREACH_SLAB_TYPE(ADD_SLAB_SIZE)
|
||||
|
||||
#undef ADD_SLAB_SIZE
|
||||
|
||||
// Add the reserved size.
|
||||
size += CalculateSlabHeapGapSize();
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
void InitializeKPageBufferSlabHeap(Core::System& system) {
|
||||
auto& kernel = system.Kernel();
|
||||
|
||||
const auto& counts = kernel.SlabResourceCounts();
|
||||
const size_t num_pages =
|
||||
counts.num_KProcess + counts.num_KThread + (counts.num_KProcess + counts.num_KThread) / 8;
|
||||
const size_t slab_size = num_pages * PageSize;
|
||||
|
||||
// Reserve memory from the system resource limit.
|
||||
ASSERT(kernel.GetSystemResourceLimit()->Reserve(LimitableResource::PhysicalMemory, slab_size));
|
||||
|
||||
// Allocate memory for the slab.
|
||||
constexpr auto AllocateOption = KMemoryManager::EncodeOption(
|
||||
KMemoryManager::Pool::System, KMemoryManager::Direction::FromFront);
|
||||
const PAddr slab_address =
|
||||
kernel.MemoryManager().AllocateAndOpenContinuous(num_pages, 1, AllocateOption);
|
||||
ASSERT(slab_address != 0);
|
||||
|
||||
// Initialize the slabheap.
|
||||
KPageBuffer::InitializeSlabHeap(kernel, system.DeviceMemory().GetPointer<void>(slab_address),
|
||||
slab_size);
|
||||
}
|
||||
|
||||
void InitializeSlabHeaps(Core::System& system, KMemoryLayout& memory_layout) {
|
||||
auto& kernel = system.Kernel();
|
||||
|
||||
// Get the start of the slab region, since that's where we'll be working.
|
||||
VAddr address = memory_layout.GetSlabRegionAddress();
|
||||
|
||||
// Initialize slab type array to be in sorted order.
|
||||
std::array<KSlabType, KSlabType_Count> slab_types;
|
||||
for (size_t i = 0; i < slab_types.size(); i++) {
|
||||
slab_types[i] = static_cast<KSlabType>(i);
|
||||
}
|
||||
|
||||
// N shuffles the slab type array with the following simple algorithm.
|
||||
for (size_t i = 0; i < slab_types.size(); i++) {
|
||||
const size_t rnd = KSystemControl::GenerateRandomRange(0, slab_types.size() - 1);
|
||||
std::swap(slab_types[i], slab_types[rnd]);
|
||||
}
|
||||
|
||||
// Create an array to represent the gaps between the slabs.
|
||||
const size_t total_gap_size = CalculateSlabHeapGapSize();
|
||||
std::array<size_t, slab_types.size()> slab_gaps;
|
||||
for (auto& slab_gap : slab_gaps) {
|
||||
// Note: This is an off-by-one error from Nintendo's intention, because GenerateRandomRange
|
||||
// is inclusive. However, Nintendo also has the off-by-one error, and it's "harmless", so we
|
||||
// will include it ourselves.
|
||||
slab_gap = KSystemControl::GenerateRandomRange(0, total_gap_size);
|
||||
}
|
||||
|
||||
// Sort the array, so that we can treat differences between values as offsets to the starts of
|
||||
// slabs.
|
||||
for (size_t i = 1; i < slab_gaps.size(); i++) {
|
||||
for (size_t j = i; j > 0 && slab_gaps[j - 1] > slab_gaps[j]; j--) {
|
||||
std::swap(slab_gaps[j], slab_gaps[j - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Track the gaps, so that we can free them to the unused slab tree.
|
||||
VAddr gap_start = address;
|
||||
size_t gap_size = 0;
|
||||
|
||||
for (size_t i = 0; i < slab_gaps.size(); i++) {
|
||||
// Add the random gap to the address.
|
||||
const auto cur_gap = (i == 0) ? slab_gaps[0] : slab_gaps[i] - slab_gaps[i - 1];
|
||||
address += cur_gap;
|
||||
gap_size += cur_gap;
|
||||
|
||||
#define INITIALIZE_SLAB_HEAP(NAME, COUNT, ...) \
|
||||
case KSlabType_##NAME: \
|
||||
if (COUNT > 0) { \
|
||||
address = InitializeSlabHeap<NAME>(system, memory_layout, address, COUNT); \
|
||||
} \
|
||||
break;
|
||||
|
||||
// Initialize the slabheap.
|
||||
switch (slab_types[i]) {
|
||||
// For each of the slab types, we want to initialize that heap.
|
||||
FOREACH_SLAB_TYPE(INITIALIZE_SLAB_HEAP)
|
||||
// If we somehow get an invalid type, abort.
|
||||
default:
|
||||
ASSERT_MSG(false, "Unknown slab type: {}", slab_types[i]);
|
||||
}
|
||||
|
||||
// If we've hit the end of a gap, free it.
|
||||
if (gap_start + gap_size != address) {
|
||||
gap_start = address;
|
||||
gap_size = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel::Init
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/assert.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/core.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hardware_properties.h"
|
||||
#include "core/hle/kernel/init/init_slab_setup.h"
|
||||
#include "core/hle/kernel/k_code_memory.h"
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_memory_manager.h"
|
||||
#include "core/hle/kernel/k_page_buffer.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/k_session_request.h"
|
||||
#include "core/hle/kernel/k_shared_memory.h"
|
||||
#include "core/hle/kernel/k_shared_memory_info.h"
|
||||
#include "core/hle/kernel/k_system_control.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_local_page.h"
|
||||
#include "core/hle/kernel/k_transfer_memory.h"
|
||||
|
||||
namespace Kernel::Init {
|
||||
|
||||
#define SLAB_COUNT(CLASS) kernel.SlabResourceCounts().num_##CLASS
|
||||
|
||||
#define FOREACH_SLAB_TYPE(HANDLER, ...) \
|
||||
HANDLER(KProcess, (SLAB_COUNT(KProcess)), ##__VA_ARGS__) \
|
||||
HANDLER(KThread, (SLAB_COUNT(KThread)), ##__VA_ARGS__) \
|
||||
HANDLER(KEvent, (SLAB_COUNT(KEvent)), ##__VA_ARGS__) \
|
||||
HANDLER(KPort, (SLAB_COUNT(KPort)), ##__VA_ARGS__) \
|
||||
HANDLER(KSessionRequest, (SLAB_COUNT(KSession) * 2), ##__VA_ARGS__) \
|
||||
HANDLER(KSharedMemory, (SLAB_COUNT(KSharedMemory)), ##__VA_ARGS__) \
|
||||
HANDLER(KSharedMemoryInfo, (SLAB_COUNT(KSharedMemory) * 8), ##__VA_ARGS__) \
|
||||
HANDLER(KTransferMemory, (SLAB_COUNT(KTransferMemory)), ##__VA_ARGS__) \
|
||||
HANDLER(KCodeMemory, (SLAB_COUNT(KCodeMemory)), ##__VA_ARGS__) \
|
||||
HANDLER(KSession, (SLAB_COUNT(KSession)), ##__VA_ARGS__) \
|
||||
HANDLER(KThreadLocalPage, \
|
||||
(SLAB_COUNT(KProcess) + (SLAB_COUNT(KProcess) + SLAB_COUNT(KThread)) / 8), \
|
||||
##__VA_ARGS__) \
|
||||
HANDLER(KResourceLimit, (SLAB_COUNT(KResourceLimit)), ##__VA_ARGS__)
|
||||
|
||||
namespace {
|
||||
|
||||
#define DEFINE_SLAB_TYPE_ENUM_MEMBER(NAME, COUNT, ...) KSlabType_##NAME,
|
||||
|
||||
enum KSlabType : u32 {
|
||||
FOREACH_SLAB_TYPE(DEFINE_SLAB_TYPE_ENUM_MEMBER) KSlabType_Count,
|
||||
};
|
||||
|
||||
#undef DEFINE_SLAB_TYPE_ENUM_MEMBER
|
||||
|
||||
// Constexpr counts.
|
||||
constexpr size_t SlabCountKProcess = 80;
|
||||
constexpr size_t SlabCountKThread = 800;
|
||||
constexpr size_t SlabCountKEvent = 900;
|
||||
constexpr size_t SlabCountKInterruptEvent = 100;
|
||||
constexpr size_t SlabCountKPort = 384;
|
||||
constexpr size_t SlabCountKSharedMemory = 80;
|
||||
constexpr size_t SlabCountKTransferMemory = 200;
|
||||
constexpr size_t SlabCountKCodeMemory = 10;
|
||||
constexpr size_t SlabCountKDeviceAddressSpace = 300;
|
||||
constexpr size_t SlabCountKSession = 1133;
|
||||
constexpr size_t SlabCountKLightSession = 100;
|
||||
constexpr size_t SlabCountKObjectName = 7;
|
||||
constexpr size_t SlabCountKResourceLimit = 5;
|
||||
constexpr size_t SlabCountKDebug = Core::Hardware::NUM_CPU_CORES;
|
||||
constexpr size_t SlabCountKIoPool = 1;
|
||||
constexpr size_t SlabCountKIoRegion = 6;
|
||||
|
||||
constexpr size_t SlabCountExtraKThread = 160;
|
||||
|
||||
/// Helper function to translate from the slab virtual address to the reserved location in physical
|
||||
/// memory.
|
||||
static PAddr TranslateSlabAddrToPhysical(KMemoryLayout& memory_layout, VAddr slab_addr) {
|
||||
slab_addr -= memory_layout.GetSlabRegionAddress();
|
||||
return slab_addr + Core::DramMemoryMap::SlabHeapBase;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
VAddr InitializeSlabHeap(Core::System& system, KMemoryLayout& memory_layout, VAddr address,
|
||||
size_t num_objects) {
|
||||
|
||||
const size_t size = Common::AlignUp(sizeof(T) * num_objects, alignof(void*));
|
||||
VAddr start = Common::AlignUp(address, alignof(T));
|
||||
|
||||
// This should use the virtual memory address passed in, but currently, we do not setup the
|
||||
// kernel virtual memory layout. Instead, we simply map these at a region of physical memory
|
||||
// that we reserve for the slab heaps.
|
||||
// TODO(bunnei): Fix this once we support the kernel virtual memory layout.
|
||||
|
||||
if (size > 0) {
|
||||
void* backing_kernel_memory{system.DeviceMemory().GetPointer<void>(
|
||||
TranslateSlabAddrToPhysical(memory_layout, start))};
|
||||
|
||||
const KMemoryRegion* region = memory_layout.FindVirtual(start + size - 1);
|
||||
ASSERT(region != nullptr);
|
||||
ASSERT(region->IsDerivedFrom(KMemoryRegionType_KernelSlab));
|
||||
T::InitializeSlabHeap(system.Kernel(), backing_kernel_memory, size);
|
||||
}
|
||||
|
||||
return start + size;
|
||||
}
|
||||
|
||||
size_t CalculateSlabHeapGapSize() {
|
||||
constexpr size_t KernelSlabHeapGapSize = 2_MiB - 296_KiB;
|
||||
static_assert(KernelSlabHeapGapSize <= KernelSlabHeapGapsSizeMax);
|
||||
return KernelSlabHeapGapSize;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
KSlabResourceCounts KSlabResourceCounts::CreateDefault() {
|
||||
return {
|
||||
.num_KProcess = SlabCountKProcess,
|
||||
.num_KThread = SlabCountKThread,
|
||||
.num_KEvent = SlabCountKEvent,
|
||||
.num_KInterruptEvent = SlabCountKInterruptEvent,
|
||||
.num_KPort = SlabCountKPort,
|
||||
.num_KSharedMemory = SlabCountKSharedMemory,
|
||||
.num_KTransferMemory = SlabCountKTransferMemory,
|
||||
.num_KCodeMemory = SlabCountKCodeMemory,
|
||||
.num_KDeviceAddressSpace = SlabCountKDeviceAddressSpace,
|
||||
.num_KSession = SlabCountKSession,
|
||||
.num_KLightSession = SlabCountKLightSession,
|
||||
.num_KObjectName = SlabCountKObjectName,
|
||||
.num_KResourceLimit = SlabCountKResourceLimit,
|
||||
.num_KDebug = SlabCountKDebug,
|
||||
.num_KIoPool = SlabCountKIoPool,
|
||||
.num_KIoRegion = SlabCountKIoRegion,
|
||||
};
|
||||
}
|
||||
|
||||
void InitializeSlabResourceCounts(KernelCore& kernel) {
|
||||
kernel.SlabResourceCounts() = KSlabResourceCounts::CreateDefault();
|
||||
if (KSystemControl::Init::ShouldIncreaseThreadResourceLimit()) {
|
||||
kernel.SlabResourceCounts().num_KThread += SlabCountExtraKThread;
|
||||
}
|
||||
}
|
||||
|
||||
size_t CalculateTotalSlabHeapSize(const KernelCore& kernel) {
|
||||
size_t size = 0;
|
||||
|
||||
#define ADD_SLAB_SIZE(NAME, COUNT, ...) \
|
||||
{ \
|
||||
size += alignof(NAME); \
|
||||
size += Common::AlignUp(sizeof(NAME) * (COUNT), alignof(void*)); \
|
||||
};
|
||||
|
||||
// Add the size required for each slab.
|
||||
FOREACH_SLAB_TYPE(ADD_SLAB_SIZE)
|
||||
|
||||
#undef ADD_SLAB_SIZE
|
||||
|
||||
// Add the reserved size.
|
||||
size += CalculateSlabHeapGapSize();
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
void InitializeKPageBufferSlabHeap(Core::System& system) {
|
||||
auto& kernel = system.Kernel();
|
||||
|
||||
const auto& counts = kernel.SlabResourceCounts();
|
||||
const size_t num_pages =
|
||||
counts.num_KProcess + counts.num_KThread + (counts.num_KProcess + counts.num_KThread) / 8;
|
||||
const size_t slab_size = num_pages * PageSize;
|
||||
|
||||
// Reserve memory from the system resource limit.
|
||||
ASSERT(kernel.GetSystemResourceLimit()->Reserve(LimitableResource::PhysicalMemory, slab_size));
|
||||
|
||||
// Allocate memory for the slab.
|
||||
constexpr auto AllocateOption = KMemoryManager::EncodeOption(
|
||||
KMemoryManager::Pool::System, KMemoryManager::Direction::FromFront);
|
||||
const PAddr slab_address =
|
||||
kernel.MemoryManager().AllocateAndOpenContinuous(num_pages, 1, AllocateOption);
|
||||
ASSERT(slab_address != 0);
|
||||
|
||||
// Initialize the slabheap.
|
||||
KPageBuffer::InitializeSlabHeap(kernel, system.DeviceMemory().GetPointer<void>(slab_address),
|
||||
slab_size);
|
||||
}
|
||||
|
||||
void InitializeSlabHeaps(Core::System& system, KMemoryLayout& memory_layout) {
|
||||
auto& kernel = system.Kernel();
|
||||
|
||||
// Get the start of the slab region, since that's where we'll be working.
|
||||
VAddr address = memory_layout.GetSlabRegionAddress();
|
||||
|
||||
// Initialize slab type array to be in sorted order.
|
||||
std::array<KSlabType, KSlabType_Count> slab_types;
|
||||
for (size_t i = 0; i < slab_types.size(); i++) {
|
||||
slab_types[i] = static_cast<KSlabType>(i);
|
||||
}
|
||||
|
||||
// N shuffles the slab type array with the following simple algorithm.
|
||||
for (size_t i = 0; i < slab_types.size(); i++) {
|
||||
const size_t rnd = KSystemControl::GenerateRandomRange(0, slab_types.size() - 1);
|
||||
std::swap(slab_types[i], slab_types[rnd]);
|
||||
}
|
||||
|
||||
// Create an array to represent the gaps between the slabs.
|
||||
const size_t total_gap_size = CalculateSlabHeapGapSize();
|
||||
std::array<size_t, slab_types.size()> slab_gaps;
|
||||
for (auto& slab_gap : slab_gaps) {
|
||||
// Note: This is an off-by-one error from Nintendo's intention, because GenerateRandomRange
|
||||
// is inclusive. However, Nintendo also has the off-by-one error, and it's "harmless", so we
|
||||
// will include it ourselves.
|
||||
slab_gap = KSystemControl::GenerateRandomRange(0, total_gap_size);
|
||||
}
|
||||
|
||||
// Sort the array, so that we can treat differences between values as offsets to the starts of
|
||||
// slabs.
|
||||
for (size_t i = 1; i < slab_gaps.size(); i++) {
|
||||
for (size_t j = i; j > 0 && slab_gaps[j - 1] > slab_gaps[j]; j--) {
|
||||
std::swap(slab_gaps[j], slab_gaps[j - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Track the gaps, so that we can free them to the unused slab tree.
|
||||
VAddr gap_start = address;
|
||||
size_t gap_size = 0;
|
||||
|
||||
for (size_t i = 0; i < slab_gaps.size(); i++) {
|
||||
// Add the random gap to the address.
|
||||
const auto cur_gap = (i == 0) ? slab_gaps[0] : slab_gaps[i] - slab_gaps[i - 1];
|
||||
address += cur_gap;
|
||||
gap_size += cur_gap;
|
||||
|
||||
#define INITIALIZE_SLAB_HEAP(NAME, COUNT, ...) \
|
||||
case KSlabType_##NAME: \
|
||||
if (COUNT > 0) { \
|
||||
address = InitializeSlabHeap<NAME>(system, memory_layout, address, COUNT); \
|
||||
} \
|
||||
break;
|
||||
|
||||
// Initialize the slabheap.
|
||||
switch (slab_types[i]) {
|
||||
// For each of the slab types, we want to initialize that heap.
|
||||
FOREACH_SLAB_TYPE(INITIALIZE_SLAB_HEAP)
|
||||
// If we somehow get an invalid type, abort.
|
||||
default:
|
||||
ASSERT_MSG(false, "Unknown slab type: {}", slab_types[i]);
|
||||
}
|
||||
|
||||
// If we've hit the end of a gap, free it.
|
||||
if (gap_start + gap_size != address) {
|
||||
gap_start = address;
|
||||
gap_size = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel::Init
|
||||
|
||||
@@ -1,43 +1,43 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
} // namespace Core
|
||||
|
||||
namespace Kernel {
|
||||
class KernelCore;
|
||||
class KMemoryLayout;
|
||||
} // namespace Kernel
|
||||
|
||||
namespace Kernel::Init {
|
||||
|
||||
struct KSlabResourceCounts {
|
||||
static KSlabResourceCounts CreateDefault();
|
||||
|
||||
size_t num_KProcess;
|
||||
size_t num_KThread;
|
||||
size_t num_KEvent;
|
||||
size_t num_KInterruptEvent;
|
||||
size_t num_KPort;
|
||||
size_t num_KSharedMemory;
|
||||
size_t num_KTransferMemory;
|
||||
size_t num_KCodeMemory;
|
||||
size_t num_KDeviceAddressSpace;
|
||||
size_t num_KSession;
|
||||
size_t num_KLightSession;
|
||||
size_t num_KObjectName;
|
||||
size_t num_KResourceLimit;
|
||||
size_t num_KDebug;
|
||||
size_t num_KIoPool;
|
||||
size_t num_KIoRegion;
|
||||
};
|
||||
|
||||
void InitializeSlabResourceCounts(KernelCore& kernel);
|
||||
size_t CalculateTotalSlabHeapSize(const KernelCore& kernel);
|
||||
void InitializeKPageBufferSlabHeap(Core::System& system);
|
||||
void InitializeSlabHeaps(Core::System& system, KMemoryLayout& memory_layout);
|
||||
|
||||
} // namespace Kernel::Init
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
} // namespace Core
|
||||
|
||||
namespace Kernel {
|
||||
class KernelCore;
|
||||
class KMemoryLayout;
|
||||
} // namespace Kernel
|
||||
|
||||
namespace Kernel::Init {
|
||||
|
||||
struct KSlabResourceCounts {
|
||||
static KSlabResourceCounts CreateDefault();
|
||||
|
||||
size_t num_KProcess;
|
||||
size_t num_KThread;
|
||||
size_t num_KEvent;
|
||||
size_t num_KInterruptEvent;
|
||||
size_t num_KPort;
|
||||
size_t num_KSharedMemory;
|
||||
size_t num_KTransferMemory;
|
||||
size_t num_KCodeMemory;
|
||||
size_t num_KDeviceAddressSpace;
|
||||
size_t num_KSession;
|
||||
size_t num_KLightSession;
|
||||
size_t num_KObjectName;
|
||||
size_t num_KResourceLimit;
|
||||
size_t num_KDebug;
|
||||
size_t num_KIoPool;
|
||||
size_t num_KIoRegion;
|
||||
};
|
||||
|
||||
void InitializeSlabResourceCounts(KernelCore& kernel);
|
||||
size_t CalculateTotalSlabHeapSize(const KernelCore& kernel);
|
||||
void InitializeKPageBufferSlabHeap(Core::System& system);
|
||||
void InitializeSlabHeaps(Core::System& system, KMemoryLayout& memory_layout);
|
||||
|
||||
} // namespace Kernel::Init
|
||||
|
||||
@@ -1,22 +1,22 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "common/literals.h"
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_memory_layout.h"
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_system_control.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
constexpr std::size_t InitialProcessBinarySizeMax = 12_MiB;
|
||||
|
||||
static inline PAddr GetInitialProcessBinaryPhysicalAddress() {
|
||||
return Kernel::Board::Nintendo::Nx::KSystemControl::Init::GetKernelPhysicalBaseAddress(
|
||||
MainMemoryAddress);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "common/literals.h"
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_memory_layout.h"
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_system_control.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
constexpr std::size_t InitialProcessBinarySizeMax = 12_MiB;
|
||||
|
||||
static inline PAddr GetInitialProcessBinaryPhysicalAddress() {
|
||||
return Kernel::Board::Nintendo::Nx::KSystemControl::Init::GetKernelPhysicalBaseAddress(
|
||||
MainMemoryAddress);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,333 +1,333 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/arm/exclusive_monitor.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/k_address_arbiter.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
#include "core/hle/kernel/time_manager.h"
|
||||
#include "core/memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KAddressArbiter::KAddressArbiter(Core::System& system_)
|
||||
: system{system_}, kernel{system.Kernel()} {}
|
||||
KAddressArbiter::~KAddressArbiter() = default;
|
||||
|
||||
namespace {
|
||||
|
||||
bool ReadFromUser(Core::System& system, s32* out, VAddr address) {
|
||||
*out = system.Memory().Read32(address);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 value) {
|
||||
auto& monitor = system.Monitor();
|
||||
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
|
||||
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
// TODO(bunnei): We should call CanAccessAtomic(..) here.
|
||||
|
||||
// Load the value from the address.
|
||||
const s32 current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
|
||||
|
||||
// Compare it to the desired one.
|
||||
if (current_value < value) {
|
||||
// If less than, we want to try to decrement.
|
||||
const s32 decrement_value = current_value - 1;
|
||||
|
||||
// Decrement and try to store.
|
||||
if (!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(decrement_value))) {
|
||||
// If we failed to store, try again.
|
||||
DecrementIfLessThan(system, out, address, value);
|
||||
}
|
||||
} else {
|
||||
// Otherwise, clear our exclusive hold and finish
|
||||
monitor.ClearExclusive(current_core);
|
||||
}
|
||||
|
||||
// We're done.
|
||||
*out = current_value;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32 new_value) {
|
||||
auto& monitor = system.Monitor();
|
||||
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
|
||||
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
// TODO(bunnei): We should call CanAccessAtomic(..) here.
|
||||
|
||||
// Load the value from the address.
|
||||
const s32 current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
|
||||
|
||||
// Compare it to the desired one.
|
||||
if (current_value == value) {
|
||||
// If equal, we want to try to write the new value.
|
||||
|
||||
// Try to store.
|
||||
if (!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(new_value))) {
|
||||
// If we failed to store, try again.
|
||||
UpdateIfEqual(system, out, address, value, new_value);
|
||||
}
|
||||
} else {
|
||||
// Otherwise, clear our exclusive hold and finish.
|
||||
monitor.ClearExclusive(current_core);
|
||||
}
|
||||
|
||||
// We're done.
|
||||
*out = current_value;
|
||||
return true;
|
||||
}
|
||||
|
||||
class ThreadQueueImplForKAddressArbiter final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKAddressArbiter(KernelCore& kernel_, KAddressArbiter::ThreadTree* t)
|
||||
: KThreadQueue(kernel_), m_tree(t) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// If the thread is waiting on an address arbiter, remove it from the tree.
|
||||
if (waiting_thread->IsWaitingForAddressArbiter()) {
|
||||
m_tree->erase(m_tree->iterator_to(*waiting_thread));
|
||||
waiting_thread->ClearAddressArbiter();
|
||||
}
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KAddressArbiter::ThreadTree* m_tree;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
Result KAddressArbiter::Signal(VAddr addr, s32 count) {
|
||||
// Perform signaling.
|
||||
s32 num_waiters{};
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
auto it = thread_tree.nfind_key({addr, -1});
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetAddressArbiterKey() == addr)) {
|
||||
// End the thread's wait.
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
target_thread->EndWait(ResultSuccess);
|
||||
|
||||
ASSERT(target_thread->IsWaitingForAddressArbiter());
|
||||
target_thread->ClearAddressArbiter();
|
||||
|
||||
it = thread_tree.erase(it);
|
||||
++num_waiters;
|
||||
}
|
||||
}
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count) {
|
||||
// Perform signaling.
|
||||
s32 num_waiters{};
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Check the userspace value.
|
||||
s32 user_value{};
|
||||
if (!UpdateIfEqual(system, &user_value, addr, value, value + 1)) {
|
||||
LOG_ERROR(Kernel, "Invalid current memory!");
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
if (user_value != value) {
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
auto it = thread_tree.nfind_key({addr, -1});
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetAddressArbiterKey() == addr)) {
|
||||
// End the thread's wait.
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
target_thread->EndWait(ResultSuccess);
|
||||
|
||||
ASSERT(target_thread->IsWaitingForAddressArbiter());
|
||||
target_thread->ClearAddressArbiter();
|
||||
|
||||
it = thread_tree.erase(it);
|
||||
++num_waiters;
|
||||
}
|
||||
}
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count) {
|
||||
// Perform signaling.
|
||||
s32 num_waiters{};
|
||||
{
|
||||
[[maybe_unused]] const KScopedSchedulerLock sl(kernel);
|
||||
|
||||
auto it = thread_tree.nfind_key({addr, -1});
|
||||
// Determine the updated value.
|
||||
s32 new_value{};
|
||||
if (count <= 0) {
|
||||
if (it != thread_tree.end() && it->GetAddressArbiterKey() == addr) {
|
||||
new_value = value - 2;
|
||||
} else {
|
||||
new_value = value + 1;
|
||||
}
|
||||
} else {
|
||||
if (it != thread_tree.end() && it->GetAddressArbiterKey() == addr) {
|
||||
auto tmp_it = it;
|
||||
s32 tmp_num_waiters{};
|
||||
while (++tmp_it != thread_tree.end() && tmp_it->GetAddressArbiterKey() == addr) {
|
||||
if (tmp_num_waiters++ >= count) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (tmp_num_waiters < count) {
|
||||
new_value = value - 1;
|
||||
} else {
|
||||
new_value = value;
|
||||
}
|
||||
} else {
|
||||
new_value = value + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Check the userspace value.
|
||||
s32 user_value{};
|
||||
bool succeeded{};
|
||||
if (value != new_value) {
|
||||
succeeded = UpdateIfEqual(system, &user_value, addr, value, new_value);
|
||||
} else {
|
||||
succeeded = ReadFromUser(system, &user_value, addr);
|
||||
}
|
||||
|
||||
if (!succeeded) {
|
||||
LOG_ERROR(Kernel, "Invalid current memory!");
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
if (user_value != value) {
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetAddressArbiterKey() == addr)) {
|
||||
// End the thread's wait.
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
target_thread->EndWait(ResultSuccess);
|
||||
|
||||
ASSERT(target_thread->IsWaitingForAddressArbiter());
|
||||
target_thread->ClearAddressArbiter();
|
||||
|
||||
it = thread_tree.erase(it);
|
||||
++num_waiters;
|
||||
}
|
||||
}
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
|
||||
// Prepare to wait.
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
|
||||
|
||||
{
|
||||
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
|
||||
|
||||
// Check that the thread isn't terminating.
|
||||
if (cur_thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Read the value from userspace.
|
||||
s32 user_value{};
|
||||
bool succeeded{};
|
||||
if (decrement) {
|
||||
succeeded = DecrementIfLessThan(system, &user_value, addr, value);
|
||||
} else {
|
||||
succeeded = ReadFromUser(system, &user_value, addr);
|
||||
}
|
||||
|
||||
if (!succeeded) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
|
||||
// Check that the value is less than the specified one.
|
||||
if (user_value >= value) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
// Check that the timeout is non-zero.
|
||||
if (timeout == 0) {
|
||||
slp.CancelSleep();
|
||||
return ResultTimedOut;
|
||||
}
|
||||
|
||||
// Set the arbiter.
|
||||
cur_thread->SetAddressArbiter(&thread_tree, addr);
|
||||
thread_tree.insert(*cur_thread);
|
||||
|
||||
// Wait for the thread to finish.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
|
||||
}
|
||||
|
||||
// Get the result.
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
Result KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
|
||||
// Prepare to wait.
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
|
||||
|
||||
{
|
||||
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
|
||||
|
||||
// Check that the thread isn't terminating.
|
||||
if (cur_thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Read the value from userspace.
|
||||
s32 user_value{};
|
||||
if (!ReadFromUser(system, &user_value, addr)) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
|
||||
// Check that the value is equal.
|
||||
if (value != user_value) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
// Check that the timeout is non-zero.
|
||||
if (timeout == 0) {
|
||||
slp.CancelSleep();
|
||||
return ResultTimedOut;
|
||||
}
|
||||
|
||||
// Set the arbiter.
|
||||
cur_thread->SetAddressArbiter(&thread_tree, addr);
|
||||
thread_tree.insert(*cur_thread);
|
||||
|
||||
// Wait for the thread to finish.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
|
||||
}
|
||||
|
||||
// Get the result.
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/arm/exclusive_monitor.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/k_address_arbiter.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
#include "core/hle/kernel/time_manager.h"
|
||||
#include "core/memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KAddressArbiter::KAddressArbiter(Core::System& system_)
|
||||
: system{system_}, kernel{system.Kernel()} {}
|
||||
KAddressArbiter::~KAddressArbiter() = default;
|
||||
|
||||
namespace {
|
||||
|
||||
bool ReadFromUser(Core::System& system, s32* out, VAddr address) {
|
||||
*out = system.Memory().Read32(address);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 value) {
|
||||
auto& monitor = system.Monitor();
|
||||
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
|
||||
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
// TODO(bunnei): We should call CanAccessAtomic(..) here.
|
||||
|
||||
// Load the value from the address.
|
||||
const s32 current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
|
||||
|
||||
// Compare it to the desired one.
|
||||
if (current_value < value) {
|
||||
// If less than, we want to try to decrement.
|
||||
const s32 decrement_value = current_value - 1;
|
||||
|
||||
// Decrement and try to store.
|
||||
if (!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(decrement_value))) {
|
||||
// If we failed to store, try again.
|
||||
DecrementIfLessThan(system, out, address, value);
|
||||
}
|
||||
} else {
|
||||
// Otherwise, clear our exclusive hold and finish
|
||||
monitor.ClearExclusive(current_core);
|
||||
}
|
||||
|
||||
// We're done.
|
||||
*out = current_value;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32 new_value) {
|
||||
auto& monitor = system.Monitor();
|
||||
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
|
||||
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
// TODO(bunnei): We should call CanAccessAtomic(..) here.
|
||||
|
||||
// Load the value from the address.
|
||||
const s32 current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
|
||||
|
||||
// Compare it to the desired one.
|
||||
if (current_value == value) {
|
||||
// If equal, we want to try to write the new value.
|
||||
|
||||
// Try to store.
|
||||
if (!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(new_value))) {
|
||||
// If we failed to store, try again.
|
||||
UpdateIfEqual(system, out, address, value, new_value);
|
||||
}
|
||||
} else {
|
||||
// Otherwise, clear our exclusive hold and finish.
|
||||
monitor.ClearExclusive(current_core);
|
||||
}
|
||||
|
||||
// We're done.
|
||||
*out = current_value;
|
||||
return true;
|
||||
}
|
||||
|
||||
class ThreadQueueImplForKAddressArbiter final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKAddressArbiter(KernelCore& kernel_, KAddressArbiter::ThreadTree* t)
|
||||
: KThreadQueue(kernel_), m_tree(t) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// If the thread is waiting on an address arbiter, remove it from the tree.
|
||||
if (waiting_thread->IsWaitingForAddressArbiter()) {
|
||||
m_tree->erase(m_tree->iterator_to(*waiting_thread));
|
||||
waiting_thread->ClearAddressArbiter();
|
||||
}
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KAddressArbiter::ThreadTree* m_tree;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
Result KAddressArbiter::Signal(VAddr addr, s32 count) {
|
||||
// Perform signaling.
|
||||
s32 num_waiters{};
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
auto it = thread_tree.nfind_key({addr, -1});
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetAddressArbiterKey() == addr)) {
|
||||
// End the thread's wait.
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
target_thread->EndWait(ResultSuccess);
|
||||
|
||||
ASSERT(target_thread->IsWaitingForAddressArbiter());
|
||||
target_thread->ClearAddressArbiter();
|
||||
|
||||
it = thread_tree.erase(it);
|
||||
++num_waiters;
|
||||
}
|
||||
}
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count) {
|
||||
// Perform signaling.
|
||||
s32 num_waiters{};
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Check the userspace value.
|
||||
s32 user_value{};
|
||||
if (!UpdateIfEqual(system, &user_value, addr, value, value + 1)) {
|
||||
LOG_ERROR(Kernel, "Invalid current memory!");
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
if (user_value != value) {
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
auto it = thread_tree.nfind_key({addr, -1});
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetAddressArbiterKey() == addr)) {
|
||||
// End the thread's wait.
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
target_thread->EndWait(ResultSuccess);
|
||||
|
||||
ASSERT(target_thread->IsWaitingForAddressArbiter());
|
||||
target_thread->ClearAddressArbiter();
|
||||
|
||||
it = thread_tree.erase(it);
|
||||
++num_waiters;
|
||||
}
|
||||
}
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count) {
|
||||
// Perform signaling.
|
||||
s32 num_waiters{};
|
||||
{
|
||||
[[maybe_unused]] const KScopedSchedulerLock sl(kernel);
|
||||
|
||||
auto it = thread_tree.nfind_key({addr, -1});
|
||||
// Determine the updated value.
|
||||
s32 new_value{};
|
||||
if (count <= 0) {
|
||||
if (it != thread_tree.end() && it->GetAddressArbiterKey() == addr) {
|
||||
new_value = value - 2;
|
||||
} else {
|
||||
new_value = value + 1;
|
||||
}
|
||||
} else {
|
||||
if (it != thread_tree.end() && it->GetAddressArbiterKey() == addr) {
|
||||
auto tmp_it = it;
|
||||
s32 tmp_num_waiters{};
|
||||
while (++tmp_it != thread_tree.end() && tmp_it->GetAddressArbiterKey() == addr) {
|
||||
if (tmp_num_waiters++ >= count) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (tmp_num_waiters < count) {
|
||||
new_value = value - 1;
|
||||
} else {
|
||||
new_value = value;
|
||||
}
|
||||
} else {
|
||||
new_value = value + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Check the userspace value.
|
||||
s32 user_value{};
|
||||
bool succeeded{};
|
||||
if (value != new_value) {
|
||||
succeeded = UpdateIfEqual(system, &user_value, addr, value, new_value);
|
||||
} else {
|
||||
succeeded = ReadFromUser(system, &user_value, addr);
|
||||
}
|
||||
|
||||
if (!succeeded) {
|
||||
LOG_ERROR(Kernel, "Invalid current memory!");
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
if (user_value != value) {
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetAddressArbiterKey() == addr)) {
|
||||
// End the thread's wait.
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
target_thread->EndWait(ResultSuccess);
|
||||
|
||||
ASSERT(target_thread->IsWaitingForAddressArbiter());
|
||||
target_thread->ClearAddressArbiter();
|
||||
|
||||
it = thread_tree.erase(it);
|
||||
++num_waiters;
|
||||
}
|
||||
}
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
|
||||
// Prepare to wait.
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
|
||||
|
||||
{
|
||||
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
|
||||
|
||||
// Check that the thread isn't terminating.
|
||||
if (cur_thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Read the value from userspace.
|
||||
s32 user_value{};
|
||||
bool succeeded{};
|
||||
if (decrement) {
|
||||
succeeded = DecrementIfLessThan(system, &user_value, addr, value);
|
||||
} else {
|
||||
succeeded = ReadFromUser(system, &user_value, addr);
|
||||
}
|
||||
|
||||
if (!succeeded) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
|
||||
// Check that the value is less than the specified one.
|
||||
if (user_value >= value) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
// Check that the timeout is non-zero.
|
||||
if (timeout == 0) {
|
||||
slp.CancelSleep();
|
||||
return ResultTimedOut;
|
||||
}
|
||||
|
||||
// Set the arbiter.
|
||||
cur_thread->SetAddressArbiter(&thread_tree, addr);
|
||||
thread_tree.insert(*cur_thread);
|
||||
|
||||
// Wait for the thread to finish.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
|
||||
}
|
||||
|
||||
// Get the result.
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
Result KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
|
||||
// Prepare to wait.
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
|
||||
|
||||
{
|
||||
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
|
||||
|
||||
// Check that the thread isn't terminating.
|
||||
if (cur_thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Read the value from userspace.
|
||||
s32 user_value{};
|
||||
if (!ReadFromUser(system, &user_value, addr)) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
|
||||
// Check that the value is equal.
|
||||
if (value != user_value) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
// Check that the timeout is non-zero.
|
||||
if (timeout == 0) {
|
||||
slp.CancelSleep();
|
||||
return ResultTimedOut;
|
||||
}
|
||||
|
||||
// Set the arbiter.
|
||||
cur_thread->SetAddressArbiter(&thread_tree, addr);
|
||||
thread_tree.insert(*cur_thread);
|
||||
|
||||
// Wait for the thread to finish.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
|
||||
}
|
||||
|
||||
// Get the result.
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,68 +1,68 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_condition_variable.h"
|
||||
#include "core/hle/kernel/svc_types.h"
|
||||
|
||||
union Result;
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KAddressArbiter {
|
||||
public:
|
||||
using ThreadTree = KConditionVariable::ThreadTree;
|
||||
|
||||
explicit KAddressArbiter(Core::System& system_);
|
||||
~KAddressArbiter();
|
||||
|
||||
[[nodiscard]] Result SignalToAddress(VAddr addr, Svc::SignalType type, s32 value, s32 count) {
|
||||
switch (type) {
|
||||
case Svc::SignalType::Signal:
|
||||
return Signal(addr, count);
|
||||
case Svc::SignalType::SignalAndIncrementIfEqual:
|
||||
return SignalAndIncrementIfEqual(addr, value, count);
|
||||
case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual:
|
||||
return SignalAndModifyByWaitingCountIfEqual(addr, value, count);
|
||||
}
|
||||
ASSERT(false);
|
||||
return ResultUnknown;
|
||||
}
|
||||
|
||||
[[nodiscard]] Result WaitForAddress(VAddr addr, Svc::ArbitrationType type, s32 value,
|
||||
s64 timeout) {
|
||||
switch (type) {
|
||||
case Svc::ArbitrationType::WaitIfLessThan:
|
||||
return WaitIfLessThan(addr, value, false, timeout);
|
||||
case Svc::ArbitrationType::DecrementAndWaitIfLessThan:
|
||||
return WaitIfLessThan(addr, value, true, timeout);
|
||||
case Svc::ArbitrationType::WaitIfEqual:
|
||||
return WaitIfEqual(addr, value, timeout);
|
||||
}
|
||||
ASSERT(false);
|
||||
return ResultUnknown;
|
||||
}
|
||||
|
||||
private:
|
||||
[[nodiscard]] Result Signal(VAddr addr, s32 count);
|
||||
[[nodiscard]] Result SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count);
|
||||
[[nodiscard]] Result SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count);
|
||||
[[nodiscard]] Result WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout);
|
||||
[[nodiscard]] Result WaitIfEqual(VAddr addr, s32 value, s64 timeout);
|
||||
|
||||
ThreadTree thread_tree;
|
||||
|
||||
Core::System& system;
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_condition_variable.h"
|
||||
#include "core/hle/kernel/svc_types.h"
|
||||
|
||||
union Result;
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KAddressArbiter {
|
||||
public:
|
||||
using ThreadTree = KConditionVariable::ThreadTree;
|
||||
|
||||
explicit KAddressArbiter(Core::System& system_);
|
||||
~KAddressArbiter();
|
||||
|
||||
[[nodiscard]] Result SignalToAddress(VAddr addr, Svc::SignalType type, s32 value, s32 count) {
|
||||
switch (type) {
|
||||
case Svc::SignalType::Signal:
|
||||
return Signal(addr, count);
|
||||
case Svc::SignalType::SignalAndIncrementIfEqual:
|
||||
return SignalAndIncrementIfEqual(addr, value, count);
|
||||
case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual:
|
||||
return SignalAndModifyByWaitingCountIfEqual(addr, value, count);
|
||||
}
|
||||
ASSERT(false);
|
||||
return ResultUnknown;
|
||||
}
|
||||
|
||||
[[nodiscard]] Result WaitForAddress(VAddr addr, Svc::ArbitrationType type, s32 value,
|
||||
s64 timeout) {
|
||||
switch (type) {
|
||||
case Svc::ArbitrationType::WaitIfLessThan:
|
||||
return WaitIfLessThan(addr, value, false, timeout);
|
||||
case Svc::ArbitrationType::DecrementAndWaitIfLessThan:
|
||||
return WaitIfLessThan(addr, value, true, timeout);
|
||||
case Svc::ArbitrationType::WaitIfEqual:
|
||||
return WaitIfEqual(addr, value, timeout);
|
||||
}
|
||||
ASSERT(false);
|
||||
return ResultUnknown;
|
||||
}
|
||||
|
||||
private:
|
||||
[[nodiscard]] Result Signal(VAddr addr, s32 count);
|
||||
[[nodiscard]] Result SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count);
|
||||
[[nodiscard]] Result SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count);
|
||||
[[nodiscard]] Result WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout);
|
||||
[[nodiscard]] Result WaitIfEqual(VAddr addr, s32 value, s64 timeout);
|
||||
|
||||
ThreadTree thread_tree;
|
||||
|
||||
Core::System& system;
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,108 +1,108 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/literals.h"
|
||||
#include "core/hle/kernel/k_address_space_info.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
constexpr u64 Size_Invalid = UINT64_MAX;
|
||||
|
||||
// clang-format off
|
||||
constexpr std::array<KAddressSpaceInfo, 13> AddressSpaceInfos{{
|
||||
{ .bit_width = 32, .address = 2_MiB , .size = 1_GiB - 2_MiB , .type = KAddressSpaceInfo::Type::MapSmall, },
|
||||
{ .bit_width = 32, .address = 1_GiB , .size = 4_GiB - 1_GiB , .type = KAddressSpaceInfo::Type::MapLarge, },
|
||||
{ .bit_width = 32, .address = Size_Invalid, .size = 1_GiB , .type = KAddressSpaceInfo::Type::Alias, },
|
||||
{ .bit_width = 32, .address = Size_Invalid, .size = 1_GiB , .type = KAddressSpaceInfo::Type::Heap, },
|
||||
{ .bit_width = 36, .address = 128_MiB , .size = 2_GiB - 128_MiB, .type = KAddressSpaceInfo::Type::MapSmall, },
|
||||
{ .bit_width = 36, .address = 2_GiB , .size = 64_GiB - 2_GiB , .type = KAddressSpaceInfo::Type::MapLarge, },
|
||||
{ .bit_width = 36, .address = Size_Invalid, .size = 6_GiB , .type = KAddressSpaceInfo::Type::Heap, },
|
||||
{ .bit_width = 36, .address = Size_Invalid, .size = 6_GiB , .type = KAddressSpaceInfo::Type::Alias, },
|
||||
{ .bit_width = 39, .address = 128_MiB , .size = 512_GiB - 128_MiB, .type = KAddressSpaceInfo::Type::Map39Bit, },
|
||||
{ .bit_width = 39, .address = Size_Invalid, .size = 64_GiB , .type = KAddressSpaceInfo::Type::MapSmall },
|
||||
{ .bit_width = 39, .address = Size_Invalid, .size = 6_GiB , .type = KAddressSpaceInfo::Type::Heap, },
|
||||
{ .bit_width = 39, .address = Size_Invalid, .size = 64_GiB , .type = KAddressSpaceInfo::Type::Alias, },
|
||||
{ .bit_width = 39, .address = Size_Invalid, .size = 2_GiB , .type = KAddressSpaceInfo::Type::Stack, },
|
||||
}};
|
||||
// clang-format on
|
||||
|
||||
constexpr bool IsAllowedIndexForAddress(std::size_t index) {
|
||||
return index < AddressSpaceInfos.size() && AddressSpaceInfos[index].address != Size_Invalid;
|
||||
}
|
||||
|
||||
using IndexArray =
|
||||
std::array<std::size_t, static_cast<std::size_t>(KAddressSpaceInfo::Type::Count)>;
|
||||
|
||||
constexpr IndexArray AddressSpaceIndices32Bit{
|
||||
0, 1, 0, 2, 0, 3,
|
||||
};
|
||||
|
||||
constexpr IndexArray AddressSpaceIndices36Bit{
|
||||
4, 5, 4, 6, 4, 7,
|
||||
};
|
||||
|
||||
constexpr IndexArray AddressSpaceIndices39Bit{
|
||||
9, 8, 8, 10, 12, 11,
|
||||
};
|
||||
|
||||
constexpr bool IsAllowed32BitType(KAddressSpaceInfo::Type type) {
|
||||
return type < KAddressSpaceInfo::Type::Count && type != KAddressSpaceInfo::Type::Map39Bit &&
|
||||
type != KAddressSpaceInfo::Type::Stack;
|
||||
}
|
||||
|
||||
constexpr bool IsAllowed36BitType(KAddressSpaceInfo::Type type) {
|
||||
return type < KAddressSpaceInfo::Type::Count && type != KAddressSpaceInfo::Type::Map39Bit &&
|
||||
type != KAddressSpaceInfo::Type::Stack;
|
||||
}
|
||||
|
||||
constexpr bool IsAllowed39BitType(KAddressSpaceInfo::Type type) {
|
||||
return type < KAddressSpaceInfo::Type::Count && type != KAddressSpaceInfo::Type::MapLarge;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
u64 KAddressSpaceInfo::GetAddressSpaceStart(std::size_t width, Type type) {
|
||||
const std::size_t index{static_cast<std::size_t>(type)};
|
||||
switch (width) {
|
||||
case 32:
|
||||
ASSERT(IsAllowed32BitType(type));
|
||||
ASSERT(IsAllowedIndexForAddress(AddressSpaceIndices32Bit[index]));
|
||||
return AddressSpaceInfos[AddressSpaceIndices32Bit[index]].address;
|
||||
case 36:
|
||||
ASSERT(IsAllowed36BitType(type));
|
||||
ASSERT(IsAllowedIndexForAddress(AddressSpaceIndices36Bit[index]));
|
||||
return AddressSpaceInfos[AddressSpaceIndices36Bit[index]].address;
|
||||
case 39:
|
||||
ASSERT(IsAllowed39BitType(type));
|
||||
ASSERT(IsAllowedIndexForAddress(AddressSpaceIndices39Bit[index]));
|
||||
return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].address;
|
||||
}
|
||||
ASSERT(false);
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::size_t KAddressSpaceInfo::GetAddressSpaceSize(std::size_t width, Type type) {
|
||||
const std::size_t index{static_cast<std::size_t>(type)};
|
||||
switch (width) {
|
||||
case 32:
|
||||
ASSERT(IsAllowed32BitType(type));
|
||||
return AddressSpaceInfos[AddressSpaceIndices32Bit[index]].size;
|
||||
case 36:
|
||||
ASSERT(IsAllowed36BitType(type));
|
||||
return AddressSpaceInfos[AddressSpaceIndices36Bit[index]].size;
|
||||
case 39:
|
||||
ASSERT(IsAllowed39BitType(type));
|
||||
return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].size;
|
||||
}
|
||||
ASSERT(false);
|
||||
return 0;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/literals.h"
|
||||
#include "core/hle/kernel/k_address_space_info.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
constexpr u64 Size_Invalid = UINT64_MAX;
|
||||
|
||||
// clang-format off
|
||||
constexpr std::array<KAddressSpaceInfo, 13> AddressSpaceInfos{{
|
||||
{ .bit_width = 32, .address = 2_MiB , .size = 1_GiB - 2_MiB , .type = KAddressSpaceInfo::Type::MapSmall, },
|
||||
{ .bit_width = 32, .address = 1_GiB , .size = 4_GiB - 1_GiB , .type = KAddressSpaceInfo::Type::MapLarge, },
|
||||
{ .bit_width = 32, .address = Size_Invalid, .size = 1_GiB , .type = KAddressSpaceInfo::Type::Alias, },
|
||||
{ .bit_width = 32, .address = Size_Invalid, .size = 1_GiB , .type = KAddressSpaceInfo::Type::Heap, },
|
||||
{ .bit_width = 36, .address = 128_MiB , .size = 2_GiB - 128_MiB, .type = KAddressSpaceInfo::Type::MapSmall, },
|
||||
{ .bit_width = 36, .address = 2_GiB , .size = 64_GiB - 2_GiB , .type = KAddressSpaceInfo::Type::MapLarge, },
|
||||
{ .bit_width = 36, .address = Size_Invalid, .size = 6_GiB , .type = KAddressSpaceInfo::Type::Heap, },
|
||||
{ .bit_width = 36, .address = Size_Invalid, .size = 6_GiB , .type = KAddressSpaceInfo::Type::Alias, },
|
||||
{ .bit_width = 39, .address = 128_MiB , .size = 512_GiB - 128_MiB, .type = KAddressSpaceInfo::Type::Map39Bit, },
|
||||
{ .bit_width = 39, .address = Size_Invalid, .size = 64_GiB , .type = KAddressSpaceInfo::Type::MapSmall },
|
||||
{ .bit_width = 39, .address = Size_Invalid, .size = 6_GiB , .type = KAddressSpaceInfo::Type::Heap, },
|
||||
{ .bit_width = 39, .address = Size_Invalid, .size = 64_GiB , .type = KAddressSpaceInfo::Type::Alias, },
|
||||
{ .bit_width = 39, .address = Size_Invalid, .size = 2_GiB , .type = KAddressSpaceInfo::Type::Stack, },
|
||||
}};
|
||||
// clang-format on
|
||||
|
||||
constexpr bool IsAllowedIndexForAddress(std::size_t index) {
|
||||
return index < AddressSpaceInfos.size() && AddressSpaceInfos[index].address != Size_Invalid;
|
||||
}
|
||||
|
||||
using IndexArray =
|
||||
std::array<std::size_t, static_cast<std::size_t>(KAddressSpaceInfo::Type::Count)>;
|
||||
|
||||
constexpr IndexArray AddressSpaceIndices32Bit{
|
||||
0, 1, 0, 2, 0, 3,
|
||||
};
|
||||
|
||||
constexpr IndexArray AddressSpaceIndices36Bit{
|
||||
4, 5, 4, 6, 4, 7,
|
||||
};
|
||||
|
||||
constexpr IndexArray AddressSpaceIndices39Bit{
|
||||
9, 8, 8, 10, 12, 11,
|
||||
};
|
||||
|
||||
constexpr bool IsAllowed32BitType(KAddressSpaceInfo::Type type) {
|
||||
return type < KAddressSpaceInfo::Type::Count && type != KAddressSpaceInfo::Type::Map39Bit &&
|
||||
type != KAddressSpaceInfo::Type::Stack;
|
||||
}
|
||||
|
||||
constexpr bool IsAllowed36BitType(KAddressSpaceInfo::Type type) {
|
||||
return type < KAddressSpaceInfo::Type::Count && type != KAddressSpaceInfo::Type::Map39Bit &&
|
||||
type != KAddressSpaceInfo::Type::Stack;
|
||||
}
|
||||
|
||||
constexpr bool IsAllowed39BitType(KAddressSpaceInfo::Type type) {
|
||||
return type < KAddressSpaceInfo::Type::Count && type != KAddressSpaceInfo::Type::MapLarge;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
u64 KAddressSpaceInfo::GetAddressSpaceStart(std::size_t width, Type type) {
|
||||
const std::size_t index{static_cast<std::size_t>(type)};
|
||||
switch (width) {
|
||||
case 32:
|
||||
ASSERT(IsAllowed32BitType(type));
|
||||
ASSERT(IsAllowedIndexForAddress(AddressSpaceIndices32Bit[index]));
|
||||
return AddressSpaceInfos[AddressSpaceIndices32Bit[index]].address;
|
||||
case 36:
|
||||
ASSERT(IsAllowed36BitType(type));
|
||||
ASSERT(IsAllowedIndexForAddress(AddressSpaceIndices36Bit[index]));
|
||||
return AddressSpaceInfos[AddressSpaceIndices36Bit[index]].address;
|
||||
case 39:
|
||||
ASSERT(IsAllowed39BitType(type));
|
||||
ASSERT(IsAllowedIndexForAddress(AddressSpaceIndices39Bit[index]));
|
||||
return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].address;
|
||||
}
|
||||
ASSERT(false);
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::size_t KAddressSpaceInfo::GetAddressSpaceSize(std::size_t width, Type type) {
|
||||
const std::size_t index{static_cast<std::size_t>(type)};
|
||||
switch (width) {
|
||||
case 32:
|
||||
ASSERT(IsAllowed32BitType(type));
|
||||
return AddressSpaceInfos[AddressSpaceIndices32Bit[index]].size;
|
||||
case 36:
|
||||
ASSERT(IsAllowed36BitType(type));
|
||||
return AddressSpaceInfos[AddressSpaceIndices36Bit[index]].size;
|
||||
case 39:
|
||||
ASSERT(IsAllowed39BitType(type));
|
||||
return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].size;
|
||||
}
|
||||
ASSERT(false);
|
||||
return 0;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,30 +1,30 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
struct KAddressSpaceInfo final {
|
||||
enum class Type : u32 {
|
||||
MapSmall = 0,
|
||||
MapLarge = 1,
|
||||
Map39Bit = 2,
|
||||
Heap = 3,
|
||||
Stack = 4,
|
||||
Alias = 5,
|
||||
Count,
|
||||
};
|
||||
|
||||
static u64 GetAddressSpaceStart(std::size_t width, Type type);
|
||||
static std::size_t GetAddressSpaceSize(std::size_t width, Type type);
|
||||
|
||||
const std::size_t bit_width{};
|
||||
const std::size_t address{};
|
||||
const std::size_t size{};
|
||||
const Type type{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
struct KAddressSpaceInfo final {
|
||||
enum class Type : u32 {
|
||||
MapSmall = 0,
|
||||
MapLarge = 1,
|
||||
Map39Bit = 2,
|
||||
Heap = 3,
|
||||
Stack = 4,
|
||||
Alias = 5,
|
||||
Count,
|
||||
};
|
||||
|
||||
static u64 GetAddressSpaceStart(std::size_t width, Type type);
|
||||
static std::size_t GetAddressSpaceSize(std::size_t width, Type type);
|
||||
|
||||
const std::size_t bit_width{};
|
||||
const std::size_t address{};
|
||||
const std::size_t size{};
|
||||
const Type type{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,52 +1,52 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hardware_properties.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KAffinityMask {
|
||||
public:
|
||||
constexpr KAffinityMask() = default;
|
||||
|
||||
[[nodiscard]] constexpr u64 GetAffinityMask() const {
|
||||
return this->mask;
|
||||
}
|
||||
|
||||
constexpr void SetAffinityMask(u64 new_mask) {
|
||||
ASSERT((new_mask & ~AllowedAffinityMask) == 0);
|
||||
this->mask = new_mask;
|
||||
}
|
||||
|
||||
[[nodiscard]] constexpr bool GetAffinity(s32 core) const {
|
||||
return (this->mask & GetCoreBit(core)) != 0;
|
||||
}
|
||||
|
||||
constexpr void SetAffinity(s32 core, bool set) {
|
||||
if (set) {
|
||||
this->mask |= GetCoreBit(core);
|
||||
} else {
|
||||
this->mask &= ~GetCoreBit(core);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void SetAll() {
|
||||
this->mask = AllowedAffinityMask;
|
||||
}
|
||||
|
||||
private:
|
||||
[[nodiscard]] static constexpr u64 GetCoreBit(s32 core) {
|
||||
ASSERT(0 <= core && core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
|
||||
return (1ULL << core);
|
||||
}
|
||||
|
||||
static constexpr u64 AllowedAffinityMask = (1ULL << Core::Hardware::NUM_CPU_CORES) - 1;
|
||||
|
||||
u64 mask{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hardware_properties.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KAffinityMask {
|
||||
public:
|
||||
constexpr KAffinityMask() = default;
|
||||
|
||||
[[nodiscard]] constexpr u64 GetAffinityMask() const {
|
||||
return this->mask;
|
||||
}
|
||||
|
||||
constexpr void SetAffinityMask(u64 new_mask) {
|
||||
ASSERT((new_mask & ~AllowedAffinityMask) == 0);
|
||||
this->mask = new_mask;
|
||||
}
|
||||
|
||||
[[nodiscard]] constexpr bool GetAffinity(s32 core) const {
|
||||
return (this->mask & GetCoreBit(core)) != 0;
|
||||
}
|
||||
|
||||
constexpr void SetAffinity(s32 core, bool set) {
|
||||
if (set) {
|
||||
this->mask |= GetCoreBit(core);
|
||||
} else {
|
||||
this->mask &= ~GetCoreBit(core);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void SetAll() {
|
||||
this->mask = AllowedAffinityMask;
|
||||
}
|
||||
|
||||
private:
|
||||
[[nodiscard]] static constexpr u64 GetCoreBit(s32 core) {
|
||||
ASSERT(0 <= core && core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
|
||||
return (1ULL << core);
|
||||
}
|
||||
|
||||
static constexpr u64 AllowedAffinityMask = (1ULL << Core::Hardware::NUM_CPU_CORES) - 1;
|
||||
|
||||
u64 mask{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,22 +1,22 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KAutoObject* KAutoObject::Create(KAutoObject* obj) {
|
||||
obj->m_ref_count = 1;
|
||||
return obj;
|
||||
}
|
||||
|
||||
void KAutoObject::RegisterWithKernel() {
|
||||
kernel.RegisterKernelObject(this);
|
||||
}
|
||||
|
||||
void KAutoObject::UnregisterWithKernel() {
|
||||
kernel.UnregisterKernelObject(this);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KAutoObject* KAutoObject::Create(KAutoObject* obj) {
|
||||
obj->m_ref_count = 1;
|
||||
return obj;
|
||||
}
|
||||
|
||||
void KAutoObject::RegisterWithKernel() {
|
||||
kernel.RegisterKernelObject(this);
|
||||
}
|
||||
|
||||
void KAutoObject::UnregisterWithKernel() {
|
||||
kernel.UnregisterKernelObject(this);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,319 +1,319 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <string>
|
||||
|
||||
#include <boost/intrusive/rbtree.hpp>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_class_token.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KProcess;
|
||||
|
||||
#define KERNEL_AUTOOBJECT_TRAITS_IMPL(CLASS, BASE_CLASS, ATTRIBUTE) \
|
||||
\
|
||||
private: \
|
||||
friend class ::Kernel::KClassTokenGenerator; \
|
||||
static constexpr inline auto ObjectType = ::Kernel::KClassTokenGenerator::ObjectType::CLASS; \
|
||||
static constexpr inline const char* const TypeName = #CLASS; \
|
||||
static constexpr inline ClassTokenType ClassToken() { \
|
||||
return ::Kernel::ClassToken<CLASS>; \
|
||||
} \
|
||||
\
|
||||
public: \
|
||||
YUZU_NON_COPYABLE(CLASS); \
|
||||
YUZU_NON_MOVEABLE(CLASS); \
|
||||
\
|
||||
using BaseClass = BASE_CLASS; \
|
||||
static constexpr TypeObj GetStaticTypeObj() { \
|
||||
constexpr ClassTokenType Token = ClassToken(); \
|
||||
return TypeObj(TypeName, Token); \
|
||||
} \
|
||||
static constexpr const char* GetStaticTypeName() { \
|
||||
return TypeName; \
|
||||
} \
|
||||
virtual TypeObj GetTypeObj() ATTRIBUTE { \
|
||||
return GetStaticTypeObj(); \
|
||||
} \
|
||||
virtual const char* GetTypeName() ATTRIBUTE { \
|
||||
return GetStaticTypeName(); \
|
||||
} \
|
||||
\
|
||||
private: \
|
||||
constexpr bool operator!=(const TypeObj& rhs)
|
||||
|
||||
#define KERNEL_AUTOOBJECT_TRAITS(CLASS, BASE_CLASS) \
|
||||
KERNEL_AUTOOBJECT_TRAITS_IMPL(CLASS, BASE_CLASS, const override)
|
||||
|
||||
class KAutoObject {
|
||||
protected:
|
||||
class TypeObj {
|
||||
public:
|
||||
constexpr explicit TypeObj(const char* n, ClassTokenType tok)
|
||||
: m_name(n), m_class_token(tok) {}
|
||||
|
||||
constexpr const char* GetName() const {
|
||||
return m_name;
|
||||
}
|
||||
constexpr ClassTokenType GetClassToken() const {
|
||||
return m_class_token;
|
||||
}
|
||||
|
||||
constexpr bool operator==(const TypeObj& rhs) const {
|
||||
return this->GetClassToken() == rhs.GetClassToken();
|
||||
}
|
||||
|
||||
constexpr bool operator!=(const TypeObj& rhs) const {
|
||||
return this->GetClassToken() != rhs.GetClassToken();
|
||||
}
|
||||
|
||||
constexpr bool IsDerivedFrom(const TypeObj& rhs) const {
|
||||
return (this->GetClassToken() | rhs.GetClassToken()) == this->GetClassToken();
|
||||
}
|
||||
|
||||
private:
|
||||
const char* m_name;
|
||||
ClassTokenType m_class_token;
|
||||
};
|
||||
|
||||
private:
|
||||
KERNEL_AUTOOBJECT_TRAITS_IMPL(KAutoObject, KAutoObject, const);
|
||||
|
||||
public:
|
||||
explicit KAutoObject(KernelCore& kernel_) : kernel(kernel_) {
|
||||
RegisterWithKernel();
|
||||
}
|
||||
virtual ~KAutoObject() = default;
|
||||
|
||||
static KAutoObject* Create(KAutoObject* ptr);
|
||||
|
||||
// Destroy is responsible for destroying the auto object's resources when ref_count hits zero.
|
||||
virtual void Destroy() {
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
// Finalize is responsible for cleaning up resource, but does not destroy the object.
|
||||
virtual void Finalize() {}
|
||||
|
||||
virtual KProcess* GetOwner() const {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
u32 GetReferenceCount() const {
|
||||
return m_ref_count.load();
|
||||
}
|
||||
|
||||
bool IsDerivedFrom(const TypeObj& rhs) const {
|
||||
return this->GetTypeObj().IsDerivedFrom(rhs);
|
||||
}
|
||||
|
||||
bool IsDerivedFrom(const KAutoObject& rhs) const {
|
||||
return this->IsDerivedFrom(rhs.GetTypeObj());
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
Derived DynamicCast() {
|
||||
static_assert(std::is_pointer_v<Derived>);
|
||||
using DerivedType = std::remove_pointer_t<Derived>;
|
||||
|
||||
if (this->IsDerivedFrom(DerivedType::GetStaticTypeObj())) {
|
||||
return static_cast<Derived>(this);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
const Derived DynamicCast() const {
|
||||
static_assert(std::is_pointer_v<Derived>);
|
||||
using DerivedType = std::remove_pointer_t<Derived>;
|
||||
|
||||
if (this->IsDerivedFrom(DerivedType::GetStaticTypeObj())) {
|
||||
return static_cast<Derived>(this);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
bool Open() {
|
||||
// Atomically increment the reference count, only if it's positive.
|
||||
u32 cur_ref_count = m_ref_count.load(std::memory_order_acquire);
|
||||
do {
|
||||
if (cur_ref_count == 0) {
|
||||
return false;
|
||||
}
|
||||
ASSERT(cur_ref_count < cur_ref_count + 1);
|
||||
} while (!m_ref_count.compare_exchange_weak(cur_ref_count, cur_ref_count + 1,
|
||||
std::memory_order_relaxed));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void Close() {
|
||||
// Atomically decrement the reference count, not allowing it to become negative.
|
||||
u32 cur_ref_count = m_ref_count.load(std::memory_order_acquire);
|
||||
do {
|
||||
ASSERT(cur_ref_count > 0);
|
||||
} while (!m_ref_count.compare_exchange_weak(cur_ref_count, cur_ref_count - 1,
|
||||
std::memory_order_acq_rel));
|
||||
|
||||
// If ref count hits zero, destroy the object.
|
||||
if (cur_ref_count - 1 == 0) {
|
||||
this->Destroy();
|
||||
this->UnregisterWithKernel();
|
||||
}
|
||||
}
|
||||
|
||||
const std::string& GetName() const {
|
||||
return name;
|
||||
}
|
||||
|
||||
private:
|
||||
void RegisterWithKernel();
|
||||
void UnregisterWithKernel();
|
||||
|
||||
protected:
|
||||
KernelCore& kernel;
|
||||
std::string name;
|
||||
|
||||
private:
|
||||
std::atomic<u32> m_ref_count{};
|
||||
};
|
||||
|
||||
class KAutoObjectWithListContainer;
|
||||
|
||||
class KAutoObjectWithList : public KAutoObject, public boost::intrusive::set_base_hook<> {
|
||||
public:
|
||||
explicit KAutoObjectWithList(KernelCore& kernel_) : KAutoObject(kernel_) {}
|
||||
|
||||
static int Compare(const KAutoObjectWithList& lhs, const KAutoObjectWithList& rhs) {
|
||||
const u64 lid = lhs.GetId();
|
||||
const u64 rid = rhs.GetId();
|
||||
|
||||
if (lid < rid) {
|
||||
return -1;
|
||||
} else if (lid > rid) {
|
||||
return 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
friend bool operator<(const KAutoObjectWithList& left, const KAutoObjectWithList& right) {
|
||||
return &left < &right;
|
||||
}
|
||||
|
||||
public:
|
||||
virtual u64 GetId() const {
|
||||
return reinterpret_cast<u64>(this);
|
||||
}
|
||||
|
||||
virtual const std::string& GetName() const {
|
||||
return name;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class KAutoObjectWithListContainer;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class KScopedAutoObject {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KScopedAutoObject);
|
||||
|
||||
constexpr KScopedAutoObject() = default;
|
||||
|
||||
constexpr KScopedAutoObject(T* o) : m_obj(o) {
|
||||
if (m_obj != nullptr) {
|
||||
m_obj->Open();
|
||||
}
|
||||
}
|
||||
|
||||
~KScopedAutoObject() {
|
||||
if (m_obj != nullptr) {
|
||||
m_obj->Close();
|
||||
}
|
||||
m_obj = nullptr;
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
requires(std::derived_from<T, U> ||
|
||||
std::derived_from<U, T>) constexpr KScopedAutoObject(KScopedAutoObject<U>&& rhs) {
|
||||
if constexpr (std::derived_from<U, T>) {
|
||||
// Upcast.
|
||||
m_obj = rhs.m_obj;
|
||||
rhs.m_obj = nullptr;
|
||||
} else {
|
||||
// Downcast.
|
||||
T* derived = nullptr;
|
||||
if (rhs.m_obj != nullptr) {
|
||||
derived = rhs.m_obj->template DynamicCast<T*>();
|
||||
if (derived == nullptr) {
|
||||
rhs.m_obj->Close();
|
||||
}
|
||||
}
|
||||
|
||||
m_obj = derived;
|
||||
rhs.m_obj = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr KScopedAutoObject<T>& operator=(KScopedAutoObject<T>&& rhs) {
|
||||
rhs.Swap(*this);
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr T* operator->() {
|
||||
return m_obj;
|
||||
}
|
||||
constexpr T& operator*() {
|
||||
return *m_obj;
|
||||
}
|
||||
|
||||
constexpr void Reset(T* o) {
|
||||
KScopedAutoObject(o).Swap(*this);
|
||||
}
|
||||
|
||||
constexpr T* GetPointerUnsafe() {
|
||||
return m_obj;
|
||||
}
|
||||
|
||||
constexpr T* GetPointerUnsafe() const {
|
||||
return m_obj;
|
||||
}
|
||||
|
||||
constexpr T* ReleasePointerUnsafe() {
|
||||
T* ret = m_obj;
|
||||
m_obj = nullptr;
|
||||
return ret;
|
||||
}
|
||||
|
||||
constexpr bool IsNull() const {
|
||||
return m_obj == nullptr;
|
||||
}
|
||||
constexpr bool IsNotNull() const {
|
||||
return m_obj != nullptr;
|
||||
}
|
||||
|
||||
private:
|
||||
template <typename U>
|
||||
friend class KScopedAutoObject;
|
||||
|
||||
private:
|
||||
T* m_obj{};
|
||||
|
||||
private:
|
||||
constexpr void Swap(KScopedAutoObject& rhs) noexcept {
|
||||
std::swap(m_obj, rhs.m_obj);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <string>
|
||||
|
||||
#include <boost/intrusive/rbtree.hpp>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_class_token.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KProcess;
|
||||
|
||||
#define KERNEL_AUTOOBJECT_TRAITS_IMPL(CLASS, BASE_CLASS, ATTRIBUTE) \
|
||||
\
|
||||
private: \
|
||||
friend class ::Kernel::KClassTokenGenerator; \
|
||||
static constexpr inline auto ObjectType = ::Kernel::KClassTokenGenerator::ObjectType::CLASS; \
|
||||
static constexpr inline const char* const TypeName = #CLASS; \
|
||||
static constexpr inline ClassTokenType ClassToken() { \
|
||||
return ::Kernel::ClassToken<CLASS>; \
|
||||
} \
|
||||
\
|
||||
public: \
|
||||
YUZU_NON_COPYABLE(CLASS); \
|
||||
YUZU_NON_MOVEABLE(CLASS); \
|
||||
\
|
||||
using BaseClass = BASE_CLASS; \
|
||||
static constexpr TypeObj GetStaticTypeObj() { \
|
||||
constexpr ClassTokenType Token = ClassToken(); \
|
||||
return TypeObj(TypeName, Token); \
|
||||
} \
|
||||
static constexpr const char* GetStaticTypeName() { \
|
||||
return TypeName; \
|
||||
} \
|
||||
virtual TypeObj GetTypeObj() ATTRIBUTE { \
|
||||
return GetStaticTypeObj(); \
|
||||
} \
|
||||
virtual const char* GetTypeName() ATTRIBUTE { \
|
||||
return GetStaticTypeName(); \
|
||||
} \
|
||||
\
|
||||
private: \
|
||||
constexpr bool operator!=(const TypeObj& rhs)
|
||||
|
||||
#define KERNEL_AUTOOBJECT_TRAITS(CLASS, BASE_CLASS) \
|
||||
KERNEL_AUTOOBJECT_TRAITS_IMPL(CLASS, BASE_CLASS, const override)
|
||||
|
||||
class KAutoObject {
|
||||
protected:
|
||||
class TypeObj {
|
||||
public:
|
||||
constexpr explicit TypeObj(const char* n, ClassTokenType tok)
|
||||
: m_name(n), m_class_token(tok) {}
|
||||
|
||||
constexpr const char* GetName() const {
|
||||
return m_name;
|
||||
}
|
||||
constexpr ClassTokenType GetClassToken() const {
|
||||
return m_class_token;
|
||||
}
|
||||
|
||||
constexpr bool operator==(const TypeObj& rhs) const {
|
||||
return this->GetClassToken() == rhs.GetClassToken();
|
||||
}
|
||||
|
||||
constexpr bool operator!=(const TypeObj& rhs) const {
|
||||
return this->GetClassToken() != rhs.GetClassToken();
|
||||
}
|
||||
|
||||
constexpr bool IsDerivedFrom(const TypeObj& rhs) const {
|
||||
return (this->GetClassToken() | rhs.GetClassToken()) == this->GetClassToken();
|
||||
}
|
||||
|
||||
private:
|
||||
const char* m_name;
|
||||
ClassTokenType m_class_token;
|
||||
};
|
||||
|
||||
private:
|
||||
KERNEL_AUTOOBJECT_TRAITS_IMPL(KAutoObject, KAutoObject, const);
|
||||
|
||||
public:
|
||||
explicit KAutoObject(KernelCore& kernel_) : kernel(kernel_) {
|
||||
RegisterWithKernel();
|
||||
}
|
||||
virtual ~KAutoObject() = default;
|
||||
|
||||
static KAutoObject* Create(KAutoObject* ptr);
|
||||
|
||||
// Destroy is responsible for destroying the auto object's resources when ref_count hits zero.
|
||||
virtual void Destroy() {
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
// Finalize is responsible for cleaning up resource, but does not destroy the object.
|
||||
virtual void Finalize() {}
|
||||
|
||||
virtual KProcess* GetOwner() const {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
u32 GetReferenceCount() const {
|
||||
return m_ref_count.load();
|
||||
}
|
||||
|
||||
bool IsDerivedFrom(const TypeObj& rhs) const {
|
||||
return this->GetTypeObj().IsDerivedFrom(rhs);
|
||||
}
|
||||
|
||||
bool IsDerivedFrom(const KAutoObject& rhs) const {
|
||||
return this->IsDerivedFrom(rhs.GetTypeObj());
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
Derived DynamicCast() {
|
||||
static_assert(std::is_pointer_v<Derived>);
|
||||
using DerivedType = std::remove_pointer_t<Derived>;
|
||||
|
||||
if (this->IsDerivedFrom(DerivedType::GetStaticTypeObj())) {
|
||||
return static_cast<Derived>(this);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
const Derived DynamicCast() const {
|
||||
static_assert(std::is_pointer_v<Derived>);
|
||||
using DerivedType = std::remove_pointer_t<Derived>;
|
||||
|
||||
if (this->IsDerivedFrom(DerivedType::GetStaticTypeObj())) {
|
||||
return static_cast<Derived>(this);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
bool Open() {
|
||||
// Atomically increment the reference count, only if it's positive.
|
||||
u32 cur_ref_count = m_ref_count.load(std::memory_order_acquire);
|
||||
do {
|
||||
if (cur_ref_count == 0) {
|
||||
return false;
|
||||
}
|
||||
ASSERT(cur_ref_count < cur_ref_count + 1);
|
||||
} while (!m_ref_count.compare_exchange_weak(cur_ref_count, cur_ref_count + 1,
|
||||
std::memory_order_relaxed));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void Close() {
|
||||
// Atomically decrement the reference count, not allowing it to become negative.
|
||||
u32 cur_ref_count = m_ref_count.load(std::memory_order_acquire);
|
||||
do {
|
||||
ASSERT(cur_ref_count > 0);
|
||||
} while (!m_ref_count.compare_exchange_weak(cur_ref_count, cur_ref_count - 1,
|
||||
std::memory_order_acq_rel));
|
||||
|
||||
// If ref count hits zero, destroy the object.
|
||||
if (cur_ref_count - 1 == 0) {
|
||||
this->Destroy();
|
||||
this->UnregisterWithKernel();
|
||||
}
|
||||
}
|
||||
|
||||
const std::string& GetName() const {
|
||||
return name;
|
||||
}
|
||||
|
||||
private:
|
||||
void RegisterWithKernel();
|
||||
void UnregisterWithKernel();
|
||||
|
||||
protected:
|
||||
KernelCore& kernel;
|
||||
std::string name;
|
||||
|
||||
private:
|
||||
std::atomic<u32> m_ref_count{};
|
||||
};
|
||||
|
||||
class KAutoObjectWithListContainer;
|
||||
|
||||
class KAutoObjectWithList : public KAutoObject, public boost::intrusive::set_base_hook<> {
|
||||
public:
|
||||
explicit KAutoObjectWithList(KernelCore& kernel_) : KAutoObject(kernel_) {}
|
||||
|
||||
static int Compare(const KAutoObjectWithList& lhs, const KAutoObjectWithList& rhs) {
|
||||
const u64 lid = lhs.GetId();
|
||||
const u64 rid = rhs.GetId();
|
||||
|
||||
if (lid < rid) {
|
||||
return -1;
|
||||
} else if (lid > rid) {
|
||||
return 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
friend bool operator<(const KAutoObjectWithList& left, const KAutoObjectWithList& right) {
|
||||
return &left < &right;
|
||||
}
|
||||
|
||||
public:
|
||||
virtual u64 GetId() const {
|
||||
return reinterpret_cast<u64>(this);
|
||||
}
|
||||
|
||||
virtual const std::string& GetName() const {
|
||||
return name;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class KAutoObjectWithListContainer;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class KScopedAutoObject {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KScopedAutoObject);
|
||||
|
||||
constexpr KScopedAutoObject() = default;
|
||||
|
||||
constexpr KScopedAutoObject(T* o) : m_obj(o) {
|
||||
if (m_obj != nullptr) {
|
||||
m_obj->Open();
|
||||
}
|
||||
}
|
||||
|
||||
~KScopedAutoObject() {
|
||||
if (m_obj != nullptr) {
|
||||
m_obj->Close();
|
||||
}
|
||||
m_obj = nullptr;
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
requires(std::derived_from<T, U> ||
|
||||
std::derived_from<U, T>) constexpr KScopedAutoObject(KScopedAutoObject<U>&& rhs) {
|
||||
if constexpr (std::derived_from<U, T>) {
|
||||
// Upcast.
|
||||
m_obj = rhs.m_obj;
|
||||
rhs.m_obj = nullptr;
|
||||
} else {
|
||||
// Downcast.
|
||||
T* derived = nullptr;
|
||||
if (rhs.m_obj != nullptr) {
|
||||
derived = rhs.m_obj->template DynamicCast<T*>();
|
||||
if (derived == nullptr) {
|
||||
rhs.m_obj->Close();
|
||||
}
|
||||
}
|
||||
|
||||
m_obj = derived;
|
||||
rhs.m_obj = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr KScopedAutoObject<T>& operator=(KScopedAutoObject<T>&& rhs) {
|
||||
rhs.Swap(*this);
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr T* operator->() {
|
||||
return m_obj;
|
||||
}
|
||||
constexpr T& operator*() {
|
||||
return *m_obj;
|
||||
}
|
||||
|
||||
constexpr void Reset(T* o) {
|
||||
KScopedAutoObject(o).Swap(*this);
|
||||
}
|
||||
|
||||
constexpr T* GetPointerUnsafe() {
|
||||
return m_obj;
|
||||
}
|
||||
|
||||
constexpr T* GetPointerUnsafe() const {
|
||||
return m_obj;
|
||||
}
|
||||
|
||||
constexpr T* ReleasePointerUnsafe() {
|
||||
T* ret = m_obj;
|
||||
m_obj = nullptr;
|
||||
return ret;
|
||||
}
|
||||
|
||||
constexpr bool IsNull() const {
|
||||
return m_obj == nullptr;
|
||||
}
|
||||
constexpr bool IsNotNull() const {
|
||||
return m_obj != nullptr;
|
||||
}
|
||||
|
||||
private:
|
||||
template <typename U>
|
||||
friend class KScopedAutoObject;
|
||||
|
||||
private:
|
||||
T* m_obj{};
|
||||
|
||||
private:
|
||||
constexpr void Swap(KScopedAutoObject& rhs) noexcept {
|
||||
std::swap(m_obj, rhs.m_obj);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,29 +1,29 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "core/hle/kernel/k_auto_object_container.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
void KAutoObjectWithListContainer::Register(KAutoObjectWithList* obj) {
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
m_object_list.insert_unique(*obj);
|
||||
}
|
||||
|
||||
void KAutoObjectWithListContainer::Unregister(KAutoObjectWithList* obj) {
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
m_object_list.erase(*obj);
|
||||
}
|
||||
|
||||
size_t KAutoObjectWithListContainer::GetOwnedCount(KProcess* owner) {
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
return std::count_if(m_object_list.begin(), m_object_list.end(),
|
||||
[&](const auto& obj) { return obj.GetOwner() == owner; });
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "core/hle/kernel/k_auto_object_container.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
void KAutoObjectWithListContainer::Register(KAutoObjectWithList* obj) {
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
m_object_list.insert_unique(*obj);
|
||||
}
|
||||
|
||||
void KAutoObjectWithListContainer::Unregister(KAutoObjectWithList* obj) {
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
m_object_list.erase(*obj);
|
||||
}
|
||||
|
||||
size_t KAutoObjectWithListContainer::GetOwnedCount(KProcess* owner) {
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
return std::count_if(m_object_list.begin(), m_object_list.end(),
|
||||
[&](const auto& obj) { return obj.GetOwner() == owner; });
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,63 +1,63 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/intrusive/rbtree.hpp>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KProcess;
|
||||
|
||||
class KAutoObjectWithListContainer {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KAutoObjectWithListContainer);
|
||||
YUZU_NON_MOVEABLE(KAutoObjectWithListContainer);
|
||||
|
||||
using ListType = boost::intrusive::rbtree<KAutoObjectWithList>;
|
||||
|
||||
class ListAccessor : public KScopedLightLock {
|
||||
public:
|
||||
explicit ListAccessor(KAutoObjectWithListContainer* container)
|
||||
: KScopedLightLock(container->m_lock), m_list(container->m_object_list) {}
|
||||
explicit ListAccessor(KAutoObjectWithListContainer& container)
|
||||
: KScopedLightLock(container.m_lock), m_list(container.m_object_list) {}
|
||||
|
||||
typename ListType::iterator begin() const {
|
||||
return m_list.begin();
|
||||
}
|
||||
|
||||
typename ListType::iterator end() const {
|
||||
return m_list.end();
|
||||
}
|
||||
|
||||
typename ListType::iterator find(typename ListType::const_reference ref) const {
|
||||
return m_list.find(ref);
|
||||
}
|
||||
|
||||
private:
|
||||
ListType& m_list;
|
||||
};
|
||||
|
||||
friend class ListAccessor;
|
||||
|
||||
KAutoObjectWithListContainer(KernelCore& kernel) : m_lock(kernel), m_object_list() {}
|
||||
|
||||
void Initialize() {}
|
||||
void Finalize() {}
|
||||
|
||||
void Register(KAutoObjectWithList* obj);
|
||||
void Unregister(KAutoObjectWithList* obj);
|
||||
size_t GetOwnedCount(KProcess* owner);
|
||||
|
||||
private:
|
||||
KLightLock m_lock;
|
||||
ListType m_object_list;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/intrusive/rbtree.hpp>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KProcess;
|
||||
|
||||
class KAutoObjectWithListContainer {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KAutoObjectWithListContainer);
|
||||
YUZU_NON_MOVEABLE(KAutoObjectWithListContainer);
|
||||
|
||||
using ListType = boost::intrusive::rbtree<KAutoObjectWithList>;
|
||||
|
||||
class ListAccessor : public KScopedLightLock {
|
||||
public:
|
||||
explicit ListAccessor(KAutoObjectWithListContainer* container)
|
||||
: KScopedLightLock(container->m_lock), m_list(container->m_object_list) {}
|
||||
explicit ListAccessor(KAutoObjectWithListContainer& container)
|
||||
: KScopedLightLock(container.m_lock), m_list(container.m_object_list) {}
|
||||
|
||||
typename ListType::iterator begin() const {
|
||||
return m_list.begin();
|
||||
}
|
||||
|
||||
typename ListType::iterator end() const {
|
||||
return m_list.end();
|
||||
}
|
||||
|
||||
typename ListType::iterator find(typename ListType::const_reference ref) const {
|
||||
return m_list.find(ref);
|
||||
}
|
||||
|
||||
private:
|
||||
ListType& m_list;
|
||||
};
|
||||
|
||||
friend class ListAccessor;
|
||||
|
||||
KAutoObjectWithListContainer(KernelCore& kernel) : m_lock(kernel), m_object_list() {}
|
||||
|
||||
void Initialize() {}
|
||||
void Finalize() {}
|
||||
|
||||
void Register(KAutoObjectWithList* obj);
|
||||
void Unregister(KAutoObjectWithList* obj);
|
||||
size_t GetOwnedCount(KProcess* owner);
|
||||
|
||||
private:
|
||||
KLightLock m_lock;
|
||||
ListType m_object_list;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,122 +1,122 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_class_token.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_client_session.h"
|
||||
#include "core/hle/kernel/k_code_memory.h"
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_readable_event.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
#include "core/hle/kernel/k_server_port.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/k_shared_memory.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_transfer_memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
// Ensure that we generate correct class tokens for all types.
|
||||
|
||||
// Ensure that the absolute token values are correct.
|
||||
static_assert(ClassToken<KAutoObject> == 0b00000000'00000000);
|
||||
static_assert(ClassToken<KSynchronizationObject> == 0b00000000'00000001);
|
||||
static_assert(ClassToken<KReadableEvent> == 0b00000000'00000011);
|
||||
// static_assert(ClassToken<KInterruptEvent> == 0b00000111'00000011);
|
||||
// static_assert(ClassToken<KDebug> == 0b00001011'00000001);
|
||||
static_assert(ClassToken<KThread> == 0b00010011'00000001);
|
||||
static_assert(ClassToken<KServerPort> == 0b00100011'00000001);
|
||||
static_assert(ClassToken<KServerSession> == 0b01000011'00000001);
|
||||
static_assert(ClassToken<KClientPort> == 0b10000011'00000001);
|
||||
static_assert(ClassToken<KClientSession> == 0b00001101'00000000);
|
||||
static_assert(ClassToken<KProcess> == 0b00010101'00000001);
|
||||
static_assert(ClassToken<KResourceLimit> == 0b00100101'00000000);
|
||||
// static_assert(ClassToken<KLightSession> == 0b01000101'00000000);
|
||||
static_assert(ClassToken<KPort> == 0b10000101'00000000);
|
||||
static_assert(ClassToken<KSession> == 0b00011001'00000000);
|
||||
static_assert(ClassToken<KSharedMemory> == 0b00101001'00000000);
|
||||
static_assert(ClassToken<KEvent> == 0b01001001'00000000);
|
||||
// static_assert(ClassToken<KLightClientSession> == 0b00110001'00000000);
|
||||
// static_assert(ClassToken<KLightServerSession> == 0b01010001'00000000);
|
||||
static_assert(ClassToken<KTransferMemory> == 0b01010001'00000000);
|
||||
// static_assert(ClassToken<KDeviceAddressSpace> == 0b01100001'00000000);
|
||||
// static_assert(ClassToken<KSessionRequest> == 0b10100001'00000000);
|
||||
static_assert(ClassToken<KCodeMemory> == 0b10100001'00000000);
|
||||
|
||||
// Ensure that the token hierarchy is correct.
|
||||
|
||||
// Base classes
|
||||
static_assert(ClassToken<KAutoObject> == (0b00000000));
|
||||
static_assert(ClassToken<KSynchronizationObject> == (0b00000001 | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KReadableEvent> == (0b00000010 | ClassToken<KSynchronizationObject>));
|
||||
|
||||
// Final classes
|
||||
// static_assert(ClassToken<KInterruptEvent> == ((0b00000111 << 8) | ClassToken<KReadableEvent>));
|
||||
// static_assert(ClassToken<KDebug> == ((0b00001011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KThread> == ((0b00010011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KServerPort> == ((0b00100011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KServerSession> ==
|
||||
((0b01000011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KClientPort> == ((0b10000011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KClientSession> == ((0b00001101 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KProcess> == ((0b00010101 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KResourceLimit> == ((0b00100101 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KLightSession> == ((0b01000101 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KPort> == ((0b10000101 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KSession> == ((0b00011001 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KSharedMemory> == ((0b00101001 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KEvent> == ((0b01001001 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KLightClientSession> == ((0b00110001 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KLightServerSession> == ((0b01010001 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KTransferMemory> == ((0b01010001 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KDeviceAddressSpace> == ((0b01100001 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KSessionRequest> == ((0b10100001 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KCodeMemory> == ((0b10100001 << 8) | ClassToken<KAutoObject>));
|
||||
|
||||
// Ensure that the token hierarchy reflects the class hierarchy.
|
||||
|
||||
// Base classes.
|
||||
static_assert(!std::is_final_v<KSynchronizationObject> &&
|
||||
std::is_base_of_v<KAutoObject, KSynchronizationObject>);
|
||||
static_assert(!std::is_final_v<KReadableEvent> &&
|
||||
std::is_base_of_v<KSynchronizationObject, KReadableEvent>);
|
||||
|
||||
// Final classes
|
||||
// static_assert(std::is_final_v<KInterruptEvent> &&
|
||||
// std::is_base_of_v<KReadableEvent, KInterruptEvent>);
|
||||
// static_assert(std::is_final_v<KDebug> &&
|
||||
// std::is_base_of_v<KSynchronizationObject, KDebug>);
|
||||
static_assert(std::is_final_v<KThread> && std::is_base_of_v<KSynchronizationObject, KThread>);
|
||||
static_assert(std::is_final_v<KServerPort> &&
|
||||
std::is_base_of_v<KSynchronizationObject, KServerPort>);
|
||||
static_assert(std::is_final_v<KServerSession> &&
|
||||
std::is_base_of_v<KSynchronizationObject, KServerSession>);
|
||||
static_assert(std::is_final_v<KClientPort> &&
|
||||
std::is_base_of_v<KSynchronizationObject, KClientPort>);
|
||||
static_assert(std::is_final_v<KClientSession> && std::is_base_of_v<KAutoObject, KClientSession>);
|
||||
static_assert(std::is_final_v<KProcess> && std::is_base_of_v<KSynchronizationObject, KProcess>);
|
||||
static_assert(std::is_final_v<KResourceLimit> && std::is_base_of_v<KAutoObject, KResourceLimit>);
|
||||
// static_assert(std::is_final_v<KLightSession> &&
|
||||
// std::is_base_of_v<KAutoObject, KLightSession>);
|
||||
static_assert(std::is_final_v<KPort> && std::is_base_of_v<KAutoObject, KPort>);
|
||||
static_assert(std::is_final_v<KSession> && std::is_base_of_v<KAutoObject, KSession>);
|
||||
static_assert(std::is_final_v<KSharedMemory> && std::is_base_of_v<KAutoObject, KSharedMemory>);
|
||||
static_assert(std::is_final_v<KEvent> && std::is_base_of_v<KAutoObject, KEvent>);
|
||||
// static_assert(std::is_final_v<KLightClientSession> &&
|
||||
// std::is_base_of_v<KAutoObject, KLightClientSession>);
|
||||
// static_assert(std::is_final_v<KLightServerSession> &&
|
||||
// std::is_base_of_v<KAutoObject, KLightServerSession>);
|
||||
static_assert(std::is_final_v<KTransferMemory> && std::is_base_of_v<KAutoObject, KTransferMemory>);
|
||||
// static_assert(std::is_final_v<KDeviceAddressSpace> &&
|
||||
// std::is_base_of_v<KAutoObject, KDeviceAddressSpace>);
|
||||
// static_assert(std::is_final_v<KSessionRequest> &&
|
||||
// std::is_base_of_v<KAutoObject, KSessionRequest>);
|
||||
// static_assert(std::is_final_v<KCodeMemory> &&
|
||||
// std::is_base_of_v<KAutoObject, KCodeMemory>);
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_class_token.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_client_session.h"
|
||||
#include "core/hle/kernel/k_code_memory.h"
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_readable_event.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
#include "core/hle/kernel/k_server_port.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/k_shared_memory.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_transfer_memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
// Ensure that we generate correct class tokens for all types.
|
||||
|
||||
// Ensure that the absolute token values are correct.
|
||||
static_assert(ClassToken<KAutoObject> == 0b00000000'00000000);
|
||||
static_assert(ClassToken<KSynchronizationObject> == 0b00000000'00000001);
|
||||
static_assert(ClassToken<KReadableEvent> == 0b00000000'00000011);
|
||||
// static_assert(ClassToken<KInterruptEvent> == 0b00000111'00000011);
|
||||
// static_assert(ClassToken<KDebug> == 0b00001011'00000001);
|
||||
static_assert(ClassToken<KThread> == 0b00010011'00000001);
|
||||
static_assert(ClassToken<KServerPort> == 0b00100011'00000001);
|
||||
static_assert(ClassToken<KServerSession> == 0b01000011'00000001);
|
||||
static_assert(ClassToken<KClientPort> == 0b10000011'00000001);
|
||||
static_assert(ClassToken<KClientSession> == 0b00001101'00000000);
|
||||
static_assert(ClassToken<KProcess> == 0b00010101'00000001);
|
||||
static_assert(ClassToken<KResourceLimit> == 0b00100101'00000000);
|
||||
// static_assert(ClassToken<KLightSession> == 0b01000101'00000000);
|
||||
static_assert(ClassToken<KPort> == 0b10000101'00000000);
|
||||
static_assert(ClassToken<KSession> == 0b00011001'00000000);
|
||||
static_assert(ClassToken<KSharedMemory> == 0b00101001'00000000);
|
||||
static_assert(ClassToken<KEvent> == 0b01001001'00000000);
|
||||
// static_assert(ClassToken<KLightClientSession> == 0b00110001'00000000);
|
||||
// static_assert(ClassToken<KLightServerSession> == 0b01010001'00000000);
|
||||
static_assert(ClassToken<KTransferMemory> == 0b01010001'00000000);
|
||||
// static_assert(ClassToken<KDeviceAddressSpace> == 0b01100001'00000000);
|
||||
// static_assert(ClassToken<KSessionRequest> == 0b10100001'00000000);
|
||||
static_assert(ClassToken<KCodeMemory> == 0b10100001'00000000);
|
||||
|
||||
// Ensure that the token hierarchy is correct.
|
||||
|
||||
// Base classes
|
||||
static_assert(ClassToken<KAutoObject> == (0b00000000));
|
||||
static_assert(ClassToken<KSynchronizationObject> == (0b00000001 | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KReadableEvent> == (0b00000010 | ClassToken<KSynchronizationObject>));
|
||||
|
||||
// Final classes
|
||||
// static_assert(ClassToken<KInterruptEvent> == ((0b00000111 << 8) | ClassToken<KReadableEvent>));
|
||||
// static_assert(ClassToken<KDebug> == ((0b00001011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KThread> == ((0b00010011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KServerPort> == ((0b00100011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KServerSession> ==
|
||||
((0b01000011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KClientPort> == ((0b10000011 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KClientSession> == ((0b00001101 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KProcess> == ((0b00010101 << 8) | ClassToken<KSynchronizationObject>));
|
||||
static_assert(ClassToken<KResourceLimit> == ((0b00100101 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KLightSession> == ((0b01000101 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KPort> == ((0b10000101 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KSession> == ((0b00011001 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KSharedMemory> == ((0b00101001 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KEvent> == ((0b01001001 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KLightClientSession> == ((0b00110001 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KLightServerSession> == ((0b01010001 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KTransferMemory> == ((0b01010001 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KDeviceAddressSpace> == ((0b01100001 << 8) | ClassToken<KAutoObject>));
|
||||
// static_assert(ClassToken<KSessionRequest> == ((0b10100001 << 8) | ClassToken<KAutoObject>));
|
||||
static_assert(ClassToken<KCodeMemory> == ((0b10100001 << 8) | ClassToken<KAutoObject>));
|
||||
|
||||
// Ensure that the token hierarchy reflects the class hierarchy.
|
||||
|
||||
// Base classes.
|
||||
static_assert(!std::is_final_v<KSynchronizationObject> &&
|
||||
std::is_base_of_v<KAutoObject, KSynchronizationObject>);
|
||||
static_assert(!std::is_final_v<KReadableEvent> &&
|
||||
std::is_base_of_v<KSynchronizationObject, KReadableEvent>);
|
||||
|
||||
// Final classes
|
||||
// static_assert(std::is_final_v<KInterruptEvent> &&
|
||||
// std::is_base_of_v<KReadableEvent, KInterruptEvent>);
|
||||
// static_assert(std::is_final_v<KDebug> &&
|
||||
// std::is_base_of_v<KSynchronizationObject, KDebug>);
|
||||
static_assert(std::is_final_v<KThread> && std::is_base_of_v<KSynchronizationObject, KThread>);
|
||||
static_assert(std::is_final_v<KServerPort> &&
|
||||
std::is_base_of_v<KSynchronizationObject, KServerPort>);
|
||||
static_assert(std::is_final_v<KServerSession> &&
|
||||
std::is_base_of_v<KSynchronizationObject, KServerSession>);
|
||||
static_assert(std::is_final_v<KClientPort> &&
|
||||
std::is_base_of_v<KSynchronizationObject, KClientPort>);
|
||||
static_assert(std::is_final_v<KClientSession> && std::is_base_of_v<KAutoObject, KClientSession>);
|
||||
static_assert(std::is_final_v<KProcess> && std::is_base_of_v<KSynchronizationObject, KProcess>);
|
||||
static_assert(std::is_final_v<KResourceLimit> && std::is_base_of_v<KAutoObject, KResourceLimit>);
|
||||
// static_assert(std::is_final_v<KLightSession> &&
|
||||
// std::is_base_of_v<KAutoObject, KLightSession>);
|
||||
static_assert(std::is_final_v<KPort> && std::is_base_of_v<KAutoObject, KPort>);
|
||||
static_assert(std::is_final_v<KSession> && std::is_base_of_v<KAutoObject, KSession>);
|
||||
static_assert(std::is_final_v<KSharedMemory> && std::is_base_of_v<KAutoObject, KSharedMemory>);
|
||||
static_assert(std::is_final_v<KEvent> && std::is_base_of_v<KAutoObject, KEvent>);
|
||||
// static_assert(std::is_final_v<KLightClientSession> &&
|
||||
// std::is_base_of_v<KAutoObject, KLightClientSession>);
|
||||
// static_assert(std::is_final_v<KLightServerSession> &&
|
||||
// std::is_base_of_v<KAutoObject, KLightServerSession>);
|
||||
static_assert(std::is_final_v<KTransferMemory> && std::is_base_of_v<KAutoObject, KTransferMemory>);
|
||||
// static_assert(std::is_final_v<KDeviceAddressSpace> &&
|
||||
// std::is_base_of_v<KAutoObject, KDeviceAddressSpace>);
|
||||
// static_assert(std::is_final_v<KSessionRequest> &&
|
||||
// std::is_base_of_v<KAutoObject, KSessionRequest>);
|
||||
// static_assert(std::is_final_v<KCodeMemory> &&
|
||||
// std::is_base_of_v<KAutoObject, KCodeMemory>);
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,127 +1,127 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/bit_util.h"
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KAutoObject;
|
||||
|
||||
class KClassTokenGenerator {
|
||||
public:
|
||||
using TokenBaseType = u16;
|
||||
|
||||
public:
|
||||
static constexpr size_t BaseClassBits = 8;
|
||||
static constexpr size_t FinalClassBits = (sizeof(TokenBaseType) * CHAR_BIT) - BaseClassBits;
|
||||
// One bit per base class.
|
||||
static constexpr size_t NumBaseClasses = BaseClassBits;
|
||||
// Final classes are permutations of three bits.
|
||||
static constexpr size_t NumFinalClasses = [] {
|
||||
TokenBaseType index = 0;
|
||||
for (size_t i = 0; i < FinalClassBits; i++) {
|
||||
for (size_t j = i + 1; j < FinalClassBits; j++) {
|
||||
for (size_t k = j + 1; k < FinalClassBits; k++) {
|
||||
index++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return index;
|
||||
}();
|
||||
|
||||
private:
|
||||
template <TokenBaseType Index>
|
||||
static constexpr inline TokenBaseType BaseClassToken = 1U << Index;
|
||||
|
||||
template <TokenBaseType Index>
|
||||
static constexpr inline TokenBaseType FinalClassToken = [] {
|
||||
TokenBaseType index = 0;
|
||||
for (size_t i = 0; i < FinalClassBits; i++) {
|
||||
for (size_t j = i + 1; j < FinalClassBits; j++) {
|
||||
for (size_t k = j + 1; k < FinalClassBits; k++) {
|
||||
if ((index++) == Index) {
|
||||
return static_cast<TokenBaseType>(((1ULL << i) | (1ULL << j) | (1ULL << k))
|
||||
<< BaseClassBits);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
UNREACHABLE();
|
||||
}();
|
||||
|
||||
template <typename T>
|
||||
static constexpr inline TokenBaseType GetClassToken() {
|
||||
static_assert(std::is_base_of<KAutoObject, T>::value);
|
||||
if constexpr (std::is_same<T, KAutoObject>::value) {
|
||||
static_assert(T::ObjectType == ObjectType::KAutoObject);
|
||||
return 0;
|
||||
} else if constexpr (!std::is_final<T>::value) {
|
||||
static_assert(ObjectType::BaseClassesStart <= T::ObjectType &&
|
||||
T::ObjectType < ObjectType::BaseClassesEnd);
|
||||
constexpr auto ClassIndex = static_cast<TokenBaseType>(T::ObjectType) -
|
||||
static_cast<TokenBaseType>(ObjectType::BaseClassesStart);
|
||||
return BaseClassToken<ClassIndex> | GetClassToken<typename T::BaseClass>();
|
||||
} else if constexpr (ObjectType::FinalClassesStart <= T::ObjectType &&
|
||||
T::ObjectType < ObjectType::FinalClassesEnd) {
|
||||
constexpr auto ClassIndex = static_cast<TokenBaseType>(T::ObjectType) -
|
||||
static_cast<TokenBaseType>(ObjectType::FinalClassesStart);
|
||||
return FinalClassToken<ClassIndex> | GetClassToken<typename T::BaseClass>();
|
||||
} else {
|
||||
static_assert(!std::is_same<T, T>::value, "GetClassToken: Invalid Type");
|
||||
}
|
||||
};
|
||||
|
||||
public:
|
||||
enum class ObjectType {
|
||||
KAutoObject,
|
||||
|
||||
BaseClassesStart,
|
||||
|
||||
KSynchronizationObject = BaseClassesStart,
|
||||
KReadableEvent,
|
||||
|
||||
BaseClassesEnd,
|
||||
|
||||
FinalClassesStart = BaseClassesEnd,
|
||||
|
||||
KInterruptEvent = FinalClassesStart,
|
||||
KDebug,
|
||||
KThread,
|
||||
KServerPort,
|
||||
KServerSession,
|
||||
KClientPort,
|
||||
KClientSession,
|
||||
KProcess,
|
||||
KResourceLimit,
|
||||
KLightSession,
|
||||
KPort,
|
||||
KSession,
|
||||
KSharedMemory,
|
||||
KEvent,
|
||||
KLightClientSession,
|
||||
KLightServerSession,
|
||||
KTransferMemory,
|
||||
KDeviceAddressSpace,
|
||||
KSessionRequest,
|
||||
KCodeMemory,
|
||||
|
||||
// NOTE: True order for these has not been determined yet.
|
||||
KAlpha,
|
||||
KBeta,
|
||||
|
||||
FinalClassesEnd = FinalClassesStart + NumFinalClasses,
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
static constexpr inline TokenBaseType ClassToken = GetClassToken<T>();
|
||||
};
|
||||
|
||||
using ClassTokenType = KClassTokenGenerator::TokenBaseType;
|
||||
|
||||
template <typename T>
|
||||
static constexpr inline ClassTokenType ClassToken = KClassTokenGenerator::ClassToken<T>;
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/bit_util.h"
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KAutoObject;
|
||||
|
||||
class KClassTokenGenerator {
|
||||
public:
|
||||
using TokenBaseType = u16;
|
||||
|
||||
public:
|
||||
static constexpr size_t BaseClassBits = 8;
|
||||
static constexpr size_t FinalClassBits = (sizeof(TokenBaseType) * CHAR_BIT) - BaseClassBits;
|
||||
// One bit per base class.
|
||||
static constexpr size_t NumBaseClasses = BaseClassBits;
|
||||
// Final classes are permutations of three bits.
|
||||
static constexpr size_t NumFinalClasses = [] {
|
||||
TokenBaseType index = 0;
|
||||
for (size_t i = 0; i < FinalClassBits; i++) {
|
||||
for (size_t j = i + 1; j < FinalClassBits; j++) {
|
||||
for (size_t k = j + 1; k < FinalClassBits; k++) {
|
||||
index++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return index;
|
||||
}();
|
||||
|
||||
private:
|
||||
template <TokenBaseType Index>
|
||||
static constexpr inline TokenBaseType BaseClassToken = 1U << Index;
|
||||
|
||||
template <TokenBaseType Index>
|
||||
static constexpr inline TokenBaseType FinalClassToken = [] {
|
||||
TokenBaseType index = 0;
|
||||
for (size_t i = 0; i < FinalClassBits; i++) {
|
||||
for (size_t j = i + 1; j < FinalClassBits; j++) {
|
||||
for (size_t k = j + 1; k < FinalClassBits; k++) {
|
||||
if ((index++) == Index) {
|
||||
return static_cast<TokenBaseType>(((1ULL << i) | (1ULL << j) | (1ULL << k))
|
||||
<< BaseClassBits);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
UNREACHABLE();
|
||||
}();
|
||||
|
||||
template <typename T>
|
||||
static constexpr inline TokenBaseType GetClassToken() {
|
||||
static_assert(std::is_base_of<KAutoObject, T>::value);
|
||||
if constexpr (std::is_same<T, KAutoObject>::value) {
|
||||
static_assert(T::ObjectType == ObjectType::KAutoObject);
|
||||
return 0;
|
||||
} else if constexpr (!std::is_final<T>::value) {
|
||||
static_assert(ObjectType::BaseClassesStart <= T::ObjectType &&
|
||||
T::ObjectType < ObjectType::BaseClassesEnd);
|
||||
constexpr auto ClassIndex = static_cast<TokenBaseType>(T::ObjectType) -
|
||||
static_cast<TokenBaseType>(ObjectType::BaseClassesStart);
|
||||
return BaseClassToken<ClassIndex> | GetClassToken<typename T::BaseClass>();
|
||||
} else if constexpr (ObjectType::FinalClassesStart <= T::ObjectType &&
|
||||
T::ObjectType < ObjectType::FinalClassesEnd) {
|
||||
constexpr auto ClassIndex = static_cast<TokenBaseType>(T::ObjectType) -
|
||||
static_cast<TokenBaseType>(ObjectType::FinalClassesStart);
|
||||
return FinalClassToken<ClassIndex> | GetClassToken<typename T::BaseClass>();
|
||||
} else {
|
||||
static_assert(!std::is_same<T, T>::value, "GetClassToken: Invalid Type");
|
||||
}
|
||||
};
|
||||
|
||||
public:
|
||||
enum class ObjectType {
|
||||
KAutoObject,
|
||||
|
||||
BaseClassesStart,
|
||||
|
||||
KSynchronizationObject = BaseClassesStart,
|
||||
KReadableEvent,
|
||||
|
||||
BaseClassesEnd,
|
||||
|
||||
FinalClassesStart = BaseClassesEnd,
|
||||
|
||||
KInterruptEvent = FinalClassesStart,
|
||||
KDebug,
|
||||
KThread,
|
||||
KServerPort,
|
||||
KServerSession,
|
||||
KClientPort,
|
||||
KClientSession,
|
||||
KProcess,
|
||||
KResourceLimit,
|
||||
KLightSession,
|
||||
KPort,
|
||||
KSession,
|
||||
KSharedMemory,
|
||||
KEvent,
|
||||
KLightClientSession,
|
||||
KLightServerSession,
|
||||
KTransferMemory,
|
||||
KDeviceAddressSpace,
|
||||
KSessionRequest,
|
||||
KCodeMemory,
|
||||
|
||||
// NOTE: True order for these has not been determined yet.
|
||||
KAlpha,
|
||||
KBeta,
|
||||
|
||||
FinalClassesEnd = FinalClassesStart + NumFinalClasses,
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
static constexpr inline TokenBaseType ClassToken = GetClassToken<T>();
|
||||
};
|
||||
|
||||
using ClassTokenType = KClassTokenGenerator::TokenBaseType;
|
||||
|
||||
template <typename T>
|
||||
static constexpr inline ClassTokenType ClassToken = KClassTokenGenerator::ClassToken<T>;
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,127 +1,127 @@
|
||||
// SPDX-FileCopyrightText: 2021 Citra Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/scope_exit.h"
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_resource_reservation.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KClientPort::KClientPort(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
|
||||
KClientPort::~KClientPort() = default;
|
||||
|
||||
void KClientPort::Initialize(KPort* parent_port_, s32 max_sessions_, std::string&& name_) {
|
||||
// Set member variables.
|
||||
num_sessions = 0;
|
||||
peak_sessions = 0;
|
||||
parent = parent_port_;
|
||||
max_sessions = max_sessions_;
|
||||
name = std::move(name_);
|
||||
}
|
||||
|
||||
void KClientPort::OnSessionFinalized() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// This might happen if a session was improperly used with this port.
|
||||
ASSERT_MSG(num_sessions > 0, "num_sessions is invalid");
|
||||
|
||||
const auto prev = num_sessions--;
|
||||
if (prev == max_sessions) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
}
|
||||
|
||||
void KClientPort::OnServerClosed() {}
|
||||
|
||||
bool KClientPort::IsLight() const {
|
||||
return this->GetParent()->IsLight();
|
||||
}
|
||||
|
||||
bool KClientPort::IsServerClosed() const {
|
||||
return this->GetParent()->IsServerClosed();
|
||||
}
|
||||
|
||||
void KClientPort::Destroy() {
|
||||
// Note with our parent that we're closed.
|
||||
parent->OnClientClosed();
|
||||
|
||||
// Close our reference to our parent.
|
||||
parent->Close();
|
||||
}
|
||||
|
||||
bool KClientPort::IsSignaled() const {
|
||||
return num_sessions < max_sessions;
|
||||
}
|
||||
|
||||
Result KClientPort::CreateSession(KClientSession** out) {
|
||||
// Reserve a new session from the resource limit.
|
||||
KScopedResourceReservation session_reservation(kernel.CurrentProcess()->GetResourceLimit(),
|
||||
LimitableResource::Sessions);
|
||||
R_UNLESS(session_reservation.Succeeded(), ResultLimitReached);
|
||||
|
||||
// Update the session counts.
|
||||
{
|
||||
// Atomically increment the number of sessions.
|
||||
s32 new_sessions{};
|
||||
{
|
||||
const auto max = max_sessions;
|
||||
auto cur_sessions = num_sessions.load(std::memory_order_acquire);
|
||||
do {
|
||||
R_UNLESS(cur_sessions < max, ResultOutOfSessions);
|
||||
new_sessions = cur_sessions + 1;
|
||||
} while (!num_sessions.compare_exchange_weak(cur_sessions, new_sessions,
|
||||
std::memory_order_relaxed));
|
||||
}
|
||||
|
||||
// Atomically update the peak session tracking.
|
||||
{
|
||||
auto peak = peak_sessions.load(std::memory_order_acquire);
|
||||
do {
|
||||
if (peak >= new_sessions) {
|
||||
break;
|
||||
}
|
||||
} while (!peak_sessions.compare_exchange_weak(peak, new_sessions,
|
||||
std::memory_order_relaxed));
|
||||
}
|
||||
}
|
||||
|
||||
// Create a new session.
|
||||
KSession* session = KSession::Create(kernel);
|
||||
if (session == nullptr) {
|
||||
// Decrement the session count.
|
||||
const auto prev = num_sessions--;
|
||||
if (prev == max_sessions) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
|
||||
return ResultOutOfResource;
|
||||
}
|
||||
|
||||
// Initialize the session.
|
||||
session->Initialize(this, parent->GetName());
|
||||
|
||||
// Commit the session reservation.
|
||||
session_reservation.Commit();
|
||||
|
||||
// Register the session.
|
||||
KSession::Register(kernel, session);
|
||||
auto session_guard = SCOPE_GUARD({
|
||||
session->GetClientSession().Close();
|
||||
session->GetServerSession().Close();
|
||||
});
|
||||
|
||||
// Enqueue the session with our parent.
|
||||
R_TRY(parent->EnqueueSession(std::addressof(session->GetServerSession())));
|
||||
|
||||
// We succeeded, so set the output.
|
||||
session_guard.Cancel();
|
||||
*out = std::addressof(session->GetClientSession());
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: 2021 Citra Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/scope_exit.h"
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_resource_reservation.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KClientPort::KClientPort(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
|
||||
KClientPort::~KClientPort() = default;
|
||||
|
||||
void KClientPort::Initialize(KPort* parent_port_, s32 max_sessions_, std::string&& name_) {
|
||||
// Set member variables.
|
||||
num_sessions = 0;
|
||||
peak_sessions = 0;
|
||||
parent = parent_port_;
|
||||
max_sessions = max_sessions_;
|
||||
name = std::move(name_);
|
||||
}
|
||||
|
||||
void KClientPort::OnSessionFinalized() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// This might happen if a session was improperly used with this port.
|
||||
ASSERT_MSG(num_sessions > 0, "num_sessions is invalid");
|
||||
|
||||
const auto prev = num_sessions--;
|
||||
if (prev == max_sessions) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
}
|
||||
|
||||
void KClientPort::OnServerClosed() {}
|
||||
|
||||
bool KClientPort::IsLight() const {
|
||||
return this->GetParent()->IsLight();
|
||||
}
|
||||
|
||||
bool KClientPort::IsServerClosed() const {
|
||||
return this->GetParent()->IsServerClosed();
|
||||
}
|
||||
|
||||
void KClientPort::Destroy() {
|
||||
// Note with our parent that we're closed.
|
||||
parent->OnClientClosed();
|
||||
|
||||
// Close our reference to our parent.
|
||||
parent->Close();
|
||||
}
|
||||
|
||||
bool KClientPort::IsSignaled() const {
|
||||
return num_sessions < max_sessions;
|
||||
}
|
||||
|
||||
Result KClientPort::CreateSession(KClientSession** out) {
|
||||
// Reserve a new session from the resource limit.
|
||||
KScopedResourceReservation session_reservation(kernel.CurrentProcess()->GetResourceLimit(),
|
||||
LimitableResource::Sessions);
|
||||
R_UNLESS(session_reservation.Succeeded(), ResultLimitReached);
|
||||
|
||||
// Update the session counts.
|
||||
{
|
||||
// Atomically increment the number of sessions.
|
||||
s32 new_sessions{};
|
||||
{
|
||||
const auto max = max_sessions;
|
||||
auto cur_sessions = num_sessions.load(std::memory_order_acquire);
|
||||
do {
|
||||
R_UNLESS(cur_sessions < max, ResultOutOfSessions);
|
||||
new_sessions = cur_sessions + 1;
|
||||
} while (!num_sessions.compare_exchange_weak(cur_sessions, new_sessions,
|
||||
std::memory_order_relaxed));
|
||||
}
|
||||
|
||||
// Atomically update the peak session tracking.
|
||||
{
|
||||
auto peak = peak_sessions.load(std::memory_order_acquire);
|
||||
do {
|
||||
if (peak >= new_sessions) {
|
||||
break;
|
||||
}
|
||||
} while (!peak_sessions.compare_exchange_weak(peak, new_sessions,
|
||||
std::memory_order_relaxed));
|
||||
}
|
||||
}
|
||||
|
||||
// Create a new session.
|
||||
KSession* session = KSession::Create(kernel);
|
||||
if (session == nullptr) {
|
||||
// Decrement the session count.
|
||||
const auto prev = num_sessions--;
|
||||
if (prev == max_sessions) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
|
||||
return ResultOutOfResource;
|
||||
}
|
||||
|
||||
// Initialize the session.
|
||||
session->Initialize(this, parent->GetName());
|
||||
|
||||
// Commit the session reservation.
|
||||
session_reservation.Commit();
|
||||
|
||||
// Register the session.
|
||||
KSession::Register(kernel, session);
|
||||
auto session_guard = SCOPE_GUARD({
|
||||
session->GetClientSession().Close();
|
||||
session->GetServerSession().Close();
|
||||
});
|
||||
|
||||
// Enqueue the session with our parent.
|
||||
R_TRY(parent->EnqueueSession(std::addressof(session->GetServerSession())));
|
||||
|
||||
// We succeeded, so set the output.
|
||||
session_guard.Cancel();
|
||||
*out = std::addressof(session->GetClientSession());
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,64 +1,64 @@
|
||||
// SPDX-FileCopyrightText: 2016 Citra Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KClientSession;
|
||||
class KernelCore;
|
||||
class KPort;
|
||||
class SessionRequestManager;
|
||||
|
||||
class KClientPort final : public KSynchronizationObject {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KClientPort, KSynchronizationObject);
|
||||
|
||||
public:
|
||||
explicit KClientPort(KernelCore& kernel_);
|
||||
~KClientPort() override;
|
||||
|
||||
void Initialize(KPort* parent_, s32 max_sessions_, std::string&& name_);
|
||||
void OnSessionFinalized();
|
||||
void OnServerClosed();
|
||||
|
||||
const KPort* GetParent() const {
|
||||
return parent;
|
||||
}
|
||||
KPort* GetParent() {
|
||||
return parent;
|
||||
}
|
||||
|
||||
s32 GetNumSessions() const {
|
||||
return num_sessions;
|
||||
}
|
||||
s32 GetPeakSessions() const {
|
||||
return peak_sessions;
|
||||
}
|
||||
s32 GetMaxSessions() const {
|
||||
return max_sessions;
|
||||
}
|
||||
|
||||
bool IsLight() const;
|
||||
bool IsServerClosed() const;
|
||||
|
||||
// Overridden virtual functions.
|
||||
void Destroy() override;
|
||||
bool IsSignaled() const override;
|
||||
|
||||
Result CreateSession(KClientSession** out);
|
||||
|
||||
private:
|
||||
std::atomic<s32> num_sessions{};
|
||||
std::atomic<s32> peak_sessions{};
|
||||
s32 max_sessions{};
|
||||
KPort* parent{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: 2016 Citra Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KClientSession;
|
||||
class KernelCore;
|
||||
class KPort;
|
||||
class SessionRequestManager;
|
||||
|
||||
class KClientPort final : public KSynchronizationObject {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KClientPort, KSynchronizationObject);
|
||||
|
||||
public:
|
||||
explicit KClientPort(KernelCore& kernel_);
|
||||
~KClientPort() override;
|
||||
|
||||
void Initialize(KPort* parent_, s32 max_sessions_, std::string&& name_);
|
||||
void OnSessionFinalized();
|
||||
void OnServerClosed();
|
||||
|
||||
const KPort* GetParent() const {
|
||||
return parent;
|
||||
}
|
||||
KPort* GetParent() {
|
||||
return parent;
|
||||
}
|
||||
|
||||
s32 GetNumSessions() const {
|
||||
return num_sessions;
|
||||
}
|
||||
s32 GetPeakSessions() const {
|
||||
return peak_sessions;
|
||||
}
|
||||
s32 GetMaxSessions() const {
|
||||
return max_sessions;
|
||||
}
|
||||
|
||||
bool IsLight() const;
|
||||
bool IsServerClosed() const;
|
||||
|
||||
// Overridden virtual functions.
|
||||
void Destroy() override;
|
||||
bool IsSignaled() const override;
|
||||
|
||||
Result CreateSession(KClientSession** out);
|
||||
|
||||
private:
|
||||
std::atomic<s32> num_sessions{};
|
||||
std::atomic<s32> peak_sessions{};
|
||||
s32 max_sessions{};
|
||||
KPort* parent{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,40 +1,40 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/scope_exit.h"
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_client_session.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
static constexpr u32 MessageBufferSize = 0x100;
|
||||
|
||||
KClientSession::KClientSession(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_} {}
|
||||
KClientSession::~KClientSession() = default;
|
||||
|
||||
void KClientSession::Destroy() {
|
||||
parent->OnClientClosed();
|
||||
parent->Close();
|
||||
}
|
||||
|
||||
void KClientSession::OnServerClosed() {}
|
||||
|
||||
Result KClientSession::SendSyncRequest() {
|
||||
// Create a session request.
|
||||
KSessionRequest* request = KSessionRequest::Create(kernel);
|
||||
R_UNLESS(request != nullptr, ResultOutOfResource);
|
||||
SCOPE_EXIT({ request->Close(); });
|
||||
|
||||
// Initialize the request.
|
||||
request->Initialize(nullptr, GetCurrentThread(kernel).GetTLSAddress(), MessageBufferSize);
|
||||
|
||||
// Send the request.
|
||||
return parent->GetServerSession().OnRequest(request);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/scope_exit.h"
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_client_session.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
static constexpr u32 MessageBufferSize = 0x100;
|
||||
|
||||
KClientSession::KClientSession(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_} {}
|
||||
KClientSession::~KClientSession() = default;
|
||||
|
||||
void KClientSession::Destroy() {
|
||||
parent->OnClientClosed();
|
||||
parent->Close();
|
||||
}
|
||||
|
||||
void KClientSession::OnServerClosed() {}
|
||||
|
||||
Result KClientSession::SendSyncRequest() {
|
||||
// Create a session request.
|
||||
KSessionRequest* request = KSessionRequest::Create(kernel);
|
||||
R_UNLESS(request != nullptr, ResultOutOfResource);
|
||||
SCOPE_EXIT({ request->Close(); });
|
||||
|
||||
// Initialize the request.
|
||||
request->Initialize(nullptr, GetCurrentThread(kernel).GetTLSAddress(), MessageBufferSize);
|
||||
|
||||
// Send the request.
|
||||
return parent->GetServerSession().OnRequest(request);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,57 +1,57 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
union Result;
|
||||
|
||||
namespace Core::Memory {
|
||||
class Memory;
|
||||
}
|
||||
|
||||
namespace Core::Timing {
|
||||
class CoreTiming;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KSession;
|
||||
class KThread;
|
||||
|
||||
class KClientSession final
|
||||
: public KAutoObjectWithSlabHeapAndContainer<KClientSession, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KClientSession, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KClientSession(KernelCore& kernel_);
|
||||
~KClientSession() override;
|
||||
|
||||
void Initialize(KSession* parent_session_, std::string&& name_) {
|
||||
// Set member variables.
|
||||
parent = parent_session_;
|
||||
name = std::move(name_);
|
||||
}
|
||||
|
||||
void Destroy() override;
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
KSession* GetParent() const {
|
||||
return parent;
|
||||
}
|
||||
|
||||
Result SendSyncRequest();
|
||||
|
||||
void OnServerClosed();
|
||||
|
||||
private:
|
||||
KSession* parent{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
union Result;
|
||||
|
||||
namespace Core::Memory {
|
||||
class Memory;
|
||||
}
|
||||
|
||||
namespace Core::Timing {
|
||||
class CoreTiming;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KSession;
|
||||
class KThread;
|
||||
|
||||
class KClientSession final
|
||||
: public KAutoObjectWithSlabHeapAndContainer<KClientSession, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KClientSession, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KClientSession(KernelCore& kernel_);
|
||||
~KClientSession() override;
|
||||
|
||||
void Initialize(KSession* parent_session_, std::string&& name_) {
|
||||
// Set member variables.
|
||||
parent = parent_session_;
|
||||
name = std::move(name_);
|
||||
}
|
||||
|
||||
void Destroy() override;
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
KSession* GetParent() const {
|
||||
return parent;
|
||||
}
|
||||
|
||||
Result SendSyncRequest();
|
||||
|
||||
void OnServerClosed();
|
||||
|
||||
private:
|
||||
KSession* parent{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,152 +1,152 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_code_memory.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
#include "core/hle/kernel/k_page_group.h"
|
||||
#include "core/hle/kernel/k_page_table.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/kernel/svc_types.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KCodeMemory::KCodeMemory(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_lock(kernel_) {}
|
||||
|
||||
Result KCodeMemory::Initialize(Core::DeviceMemory& device_memory, VAddr addr, size_t size) {
|
||||
// Set members.
|
||||
m_owner = kernel.CurrentProcess();
|
||||
|
||||
// Get the owner page table.
|
||||
auto& page_table = m_owner->PageTable();
|
||||
|
||||
// Construct the page group.
|
||||
m_page_group = {};
|
||||
|
||||
// Lock the memory.
|
||||
R_TRY(page_table.LockForCodeMemory(&m_page_group, addr, size))
|
||||
|
||||
// Clear the memory.
|
||||
for (const auto& block : m_page_group.Nodes()) {
|
||||
std::memset(device_memory.GetPointer<void>(block.GetAddress()), 0xFF, block.GetSize());
|
||||
}
|
||||
|
||||
// Set remaining tracking members.
|
||||
m_owner->Open();
|
||||
m_address = addr;
|
||||
m_is_initialized = true;
|
||||
m_is_owner_mapped = false;
|
||||
m_is_mapped = false;
|
||||
|
||||
// We succeeded.
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KCodeMemory::Finalize() {
|
||||
// Unlock.
|
||||
if (!m_is_mapped && !m_is_owner_mapped) {
|
||||
const size_t size = m_page_group.GetNumPages() * PageSize;
|
||||
m_owner->PageTable().UnlockForCodeMemory(m_address, size, m_page_group);
|
||||
}
|
||||
|
||||
// Close the page group.
|
||||
m_page_group = {};
|
||||
|
||||
// Close our reference to our owner.
|
||||
m_owner->Close();
|
||||
}
|
||||
|
||||
Result KCodeMemory::Map(VAddr address, size_t size) {
|
||||
// Validate the size.
|
||||
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
|
||||
|
||||
// Lock ourselves.
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Ensure we're not already mapped.
|
||||
R_UNLESS(!m_is_mapped, ResultInvalidState);
|
||||
|
||||
// Map the memory.
|
||||
R_TRY(kernel.CurrentProcess()->PageTable().MapPages(
|
||||
address, m_page_group, KMemoryState::CodeOut, KMemoryPermission::UserReadWrite));
|
||||
|
||||
// Mark ourselves as mapped.
|
||||
m_is_mapped = true;
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KCodeMemory::Unmap(VAddr address, size_t size) {
|
||||
// Validate the size.
|
||||
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
|
||||
|
||||
// Lock ourselves.
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Unmap the memory.
|
||||
R_TRY(kernel.CurrentProcess()->PageTable().UnmapPages(address, m_page_group,
|
||||
KMemoryState::CodeOut));
|
||||
|
||||
// Mark ourselves as unmapped.
|
||||
m_is_mapped = false;
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KCodeMemory::MapToOwner(VAddr address, size_t size, Svc::MemoryPermission perm) {
|
||||
// Validate the size.
|
||||
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
|
||||
|
||||
// Lock ourselves.
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Ensure we're not already mapped.
|
||||
R_UNLESS(!m_is_owner_mapped, ResultInvalidState);
|
||||
|
||||
// Convert the memory permission.
|
||||
KMemoryPermission k_perm{};
|
||||
switch (perm) {
|
||||
case Svc::MemoryPermission::Read:
|
||||
k_perm = KMemoryPermission::UserRead;
|
||||
break;
|
||||
case Svc::MemoryPermission::ReadExecute:
|
||||
k_perm = KMemoryPermission::UserReadExecute;
|
||||
break;
|
||||
default:
|
||||
// Already validated by ControlCodeMemory svc
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
// Map the memory.
|
||||
R_TRY(
|
||||
m_owner->PageTable().MapPages(address, m_page_group, KMemoryState::GeneratedCode, k_perm));
|
||||
|
||||
// Mark ourselves as mapped.
|
||||
m_is_owner_mapped = true;
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KCodeMemory::UnmapFromOwner(VAddr address, size_t size) {
|
||||
// Validate the size.
|
||||
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
|
||||
|
||||
// Lock ourselves.
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Unmap the memory.
|
||||
R_TRY(m_owner->PageTable().UnmapPages(address, m_page_group, KMemoryState::GeneratedCode));
|
||||
|
||||
// Mark ourselves as unmapped.
|
||||
m_is_owner_mapped = false;
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_code_memory.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
#include "core/hle/kernel/k_page_group.h"
|
||||
#include "core/hle/kernel/k_page_table.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/kernel/svc_types.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KCodeMemory::KCodeMemory(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_lock(kernel_) {}
|
||||
|
||||
Result KCodeMemory::Initialize(Core::DeviceMemory& device_memory, VAddr addr, size_t size) {
|
||||
// Set members.
|
||||
m_owner = kernel.CurrentProcess();
|
||||
|
||||
// Get the owner page table.
|
||||
auto& page_table = m_owner->PageTable();
|
||||
|
||||
// Construct the page group.
|
||||
m_page_group = {};
|
||||
|
||||
// Lock the memory.
|
||||
R_TRY(page_table.LockForCodeMemory(&m_page_group, addr, size))
|
||||
|
||||
// Clear the memory.
|
||||
for (const auto& block : m_page_group.Nodes()) {
|
||||
std::memset(device_memory.GetPointer<void>(block.GetAddress()), 0xFF, block.GetSize());
|
||||
}
|
||||
|
||||
// Set remaining tracking members.
|
||||
m_owner->Open();
|
||||
m_address = addr;
|
||||
m_is_initialized = true;
|
||||
m_is_owner_mapped = false;
|
||||
m_is_mapped = false;
|
||||
|
||||
// We succeeded.
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KCodeMemory::Finalize() {
|
||||
// Unlock.
|
||||
if (!m_is_mapped && !m_is_owner_mapped) {
|
||||
const size_t size = m_page_group.GetNumPages() * PageSize;
|
||||
m_owner->PageTable().UnlockForCodeMemory(m_address, size, m_page_group);
|
||||
}
|
||||
|
||||
// Close the page group.
|
||||
m_page_group = {};
|
||||
|
||||
// Close our reference to our owner.
|
||||
m_owner->Close();
|
||||
}
|
||||
|
||||
Result KCodeMemory::Map(VAddr address, size_t size) {
|
||||
// Validate the size.
|
||||
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
|
||||
|
||||
// Lock ourselves.
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Ensure we're not already mapped.
|
||||
R_UNLESS(!m_is_mapped, ResultInvalidState);
|
||||
|
||||
// Map the memory.
|
||||
R_TRY(kernel.CurrentProcess()->PageTable().MapPages(
|
||||
address, m_page_group, KMemoryState::CodeOut, KMemoryPermission::UserReadWrite));
|
||||
|
||||
// Mark ourselves as mapped.
|
||||
m_is_mapped = true;
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KCodeMemory::Unmap(VAddr address, size_t size) {
|
||||
// Validate the size.
|
||||
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
|
||||
|
||||
// Lock ourselves.
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Unmap the memory.
|
||||
R_TRY(kernel.CurrentProcess()->PageTable().UnmapPages(address, m_page_group,
|
||||
KMemoryState::CodeOut));
|
||||
|
||||
// Mark ourselves as unmapped.
|
||||
m_is_mapped = false;
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KCodeMemory::MapToOwner(VAddr address, size_t size, Svc::MemoryPermission perm) {
|
||||
// Validate the size.
|
||||
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
|
||||
|
||||
// Lock ourselves.
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Ensure we're not already mapped.
|
||||
R_UNLESS(!m_is_owner_mapped, ResultInvalidState);
|
||||
|
||||
// Convert the memory permission.
|
||||
KMemoryPermission k_perm{};
|
||||
switch (perm) {
|
||||
case Svc::MemoryPermission::Read:
|
||||
k_perm = KMemoryPermission::UserRead;
|
||||
break;
|
||||
case Svc::MemoryPermission::ReadExecute:
|
||||
k_perm = KMemoryPermission::UserReadExecute;
|
||||
break;
|
||||
default:
|
||||
// Already validated by ControlCodeMemory svc
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
// Map the memory.
|
||||
R_TRY(
|
||||
m_owner->PageTable().MapPages(address, m_page_group, KMemoryState::GeneratedCode, k_perm));
|
||||
|
||||
// Mark ourselves as mapped.
|
||||
m_is_owner_mapped = true;
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KCodeMemory::UnmapFromOwner(VAddr address, size_t size) {
|
||||
// Validate the size.
|
||||
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
|
||||
|
||||
// Lock ourselves.
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Unmap the memory.
|
||||
R_TRY(m_owner->PageTable().UnmapPages(address, m_page_group, KMemoryState::GeneratedCode));
|
||||
|
||||
// Mark ourselves as unmapped.
|
||||
m_is_owner_mapped = false;
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,65 +1,65 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_page_group.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/kernel/svc_types.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
enum class CodeMemoryOperation : u32 {
|
||||
Map = 0,
|
||||
MapToOwner = 1,
|
||||
Unmap = 2,
|
||||
UnmapFromOwner = 3,
|
||||
};
|
||||
|
||||
class KCodeMemory final
|
||||
: public KAutoObjectWithSlabHeapAndContainer<KCodeMemory, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KCodeMemory, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KCodeMemory(KernelCore& kernel_);
|
||||
|
||||
Result Initialize(Core::DeviceMemory& device_memory, VAddr address, size_t size);
|
||||
void Finalize() override;
|
||||
|
||||
Result Map(VAddr address, size_t size);
|
||||
Result Unmap(VAddr address, size_t size);
|
||||
Result MapToOwner(VAddr address, size_t size, Svc::MemoryPermission perm);
|
||||
Result UnmapFromOwner(VAddr address, size_t size);
|
||||
|
||||
bool IsInitialized() const override {
|
||||
return m_is_initialized;
|
||||
}
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
KProcess* GetOwner() const override {
|
||||
return m_owner;
|
||||
}
|
||||
VAddr GetSourceAddress() const {
|
||||
return m_address;
|
||||
}
|
||||
size_t GetSize() const {
|
||||
return m_is_initialized ? m_page_group.GetNumPages() * PageSize : 0;
|
||||
}
|
||||
|
||||
private:
|
||||
KPageGroup m_page_group{};
|
||||
KProcess* m_owner{};
|
||||
VAddr m_address{};
|
||||
KLightLock m_lock;
|
||||
bool m_is_initialized{};
|
||||
bool m_is_owner_mapped{};
|
||||
bool m_is_mapped{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_page_group.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/kernel/svc_types.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
enum class CodeMemoryOperation : u32 {
|
||||
Map = 0,
|
||||
MapToOwner = 1,
|
||||
Unmap = 2,
|
||||
UnmapFromOwner = 3,
|
||||
};
|
||||
|
||||
class KCodeMemory final
|
||||
: public KAutoObjectWithSlabHeapAndContainer<KCodeMemory, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KCodeMemory, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KCodeMemory(KernelCore& kernel_);
|
||||
|
||||
Result Initialize(Core::DeviceMemory& device_memory, VAddr address, size_t size);
|
||||
void Finalize() override;
|
||||
|
||||
Result Map(VAddr address, size_t size);
|
||||
Result Unmap(VAddr address, size_t size);
|
||||
Result MapToOwner(VAddr address, size_t size, Svc::MemoryPermission perm);
|
||||
Result UnmapFromOwner(VAddr address, size_t size);
|
||||
|
||||
bool IsInitialized() const override {
|
||||
return m_is_initialized;
|
||||
}
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
KProcess* GetOwner() const override {
|
||||
return m_owner;
|
||||
}
|
||||
VAddr GetSourceAddress() const {
|
||||
return m_address;
|
||||
}
|
||||
size_t GetSize() const {
|
||||
return m_is_initialized ? m_page_group.GetNumPages() * PageSize : 0;
|
||||
}
|
||||
|
||||
private:
|
||||
KPageGroup m_page_group{};
|
||||
KProcess* m_owner{};
|
||||
VAddr m_address{};
|
||||
KLightLock m_lock;
|
||||
bool m_is_initialized{};
|
||||
bool m_is_owner_mapped{};
|
||||
bool m_is_mapped{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,328 +1,328 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/arm/exclusive_monitor.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/k_condition_variable.h"
|
||||
#include "core/hle/kernel/k_linked_list.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_common.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
#include "core/memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
bool ReadFromUser(Core::System& system, u32* out, VAddr address) {
|
||||
*out = system.Memory().Read32(address);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool WriteToUser(Core::System& system, VAddr address, const u32* p) {
|
||||
system.Memory().Write32(address, *p);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero,
|
||||
u32 new_orr_mask) {
|
||||
auto& monitor = system.Monitor();
|
||||
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
|
||||
|
||||
// Load the value from the address.
|
||||
const auto expected = monitor.ExclusiveRead32(current_core, address);
|
||||
|
||||
// Orr in the new mask.
|
||||
u32 value = expected | new_orr_mask;
|
||||
|
||||
// If the value is zero, use the if_zero value, otherwise use the newly orr'd value.
|
||||
if (!expected) {
|
||||
value = if_zero;
|
||||
}
|
||||
|
||||
// Try to store.
|
||||
if (!monitor.ExclusiveWrite32(current_core, address, value)) {
|
||||
// If we failed to store, try again.
|
||||
return UpdateLockAtomic(system, out, address, if_zero, new_orr_mask);
|
||||
}
|
||||
|
||||
// We're done.
|
||||
*out = expected;
|
||||
return true;
|
||||
}
|
||||
|
||||
class ThreadQueueImplForKConditionVariableWaitForAddress final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKConditionVariableWaitForAddress(KernelCore& kernel_)
|
||||
: KThreadQueue(kernel_) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Remove the thread as a waiter from its owner.
|
||||
waiting_thread->GetLockOwner()->RemoveWaiter(waiting_thread);
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
};
|
||||
|
||||
class ThreadQueueImplForKConditionVariableWaitConditionVariable final : public KThreadQueue {
|
||||
private:
|
||||
KConditionVariable::ThreadTree* m_tree;
|
||||
|
||||
public:
|
||||
explicit ThreadQueueImplForKConditionVariableWaitConditionVariable(
|
||||
KernelCore& kernel_, KConditionVariable::ThreadTree* t)
|
||||
: KThreadQueue(kernel_), m_tree(t) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Remove the thread as a waiter from its owner.
|
||||
if (KThread* owner = waiting_thread->GetLockOwner(); owner != nullptr) {
|
||||
owner->RemoveWaiter(waiting_thread);
|
||||
}
|
||||
|
||||
// If the thread is waiting on a condvar, remove it from the tree.
|
||||
if (waiting_thread->IsWaitingForConditionVariable()) {
|
||||
m_tree->erase(m_tree->iterator_to(*waiting_thread));
|
||||
waiting_thread->ClearConditionVariable();
|
||||
}
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
KConditionVariable::KConditionVariable(Core::System& system_)
|
||||
: system{system_}, kernel{system.Kernel()} {}
|
||||
|
||||
KConditionVariable::~KConditionVariable() = default;
|
||||
|
||||
Result KConditionVariable::SignalToAddress(VAddr addr) {
|
||||
KThread* owner_thread = GetCurrentThreadPointer(kernel);
|
||||
|
||||
// Signal the address.
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Remove waiter thread.
|
||||
s32 num_waiters{};
|
||||
KThread* next_owner_thread =
|
||||
owner_thread->RemoveWaiterByKey(std::addressof(num_waiters), addr);
|
||||
|
||||
// Determine the next tag.
|
||||
u32 next_value{};
|
||||
if (next_owner_thread != nullptr) {
|
||||
next_value = next_owner_thread->GetAddressKeyValue();
|
||||
if (num_waiters > 1) {
|
||||
next_value |= Svc::HandleWaitMask;
|
||||
}
|
||||
|
||||
// Write the value to userspace.
|
||||
Result result{ResultSuccess};
|
||||
if (WriteToUser(system, addr, std::addressof(next_value))) [[likely]] {
|
||||
result = ResultSuccess;
|
||||
} else {
|
||||
result = ResultInvalidCurrentMemory;
|
||||
}
|
||||
|
||||
// Signal the next owner thread.
|
||||
next_owner_thread->EndWait(result);
|
||||
return result;
|
||||
} else {
|
||||
// Just write the value to userspace.
|
||||
R_UNLESS(WriteToUser(system, addr, std::addressof(next_value)),
|
||||
ResultInvalidCurrentMemory);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Result KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) {
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(kernel);
|
||||
|
||||
// Wait for the address.
|
||||
KThread* owner_thread{};
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Check if the thread should terminate.
|
||||
R_UNLESS(!cur_thread->IsTerminationRequested(), ResultTerminationRequested);
|
||||
|
||||
// Read the tag from userspace.
|
||||
u32 test_tag{};
|
||||
R_UNLESS(ReadFromUser(system, std::addressof(test_tag), addr), ResultInvalidCurrentMemory);
|
||||
|
||||
// If the tag isn't the handle (with wait mask), we're done.
|
||||
R_SUCCEED_IF(test_tag != (handle | Svc::HandleWaitMask));
|
||||
|
||||
// Get the lock owner thread.
|
||||
owner_thread = kernel.CurrentProcess()
|
||||
->GetHandleTable()
|
||||
.GetObjectWithoutPseudoHandle<KThread>(handle)
|
||||
.ReleasePointerUnsafe();
|
||||
R_UNLESS(owner_thread != nullptr, ResultInvalidHandle);
|
||||
|
||||
// Update the lock.
|
||||
cur_thread->SetAddressKey(addr, value);
|
||||
owner_thread->AddWaiter(cur_thread);
|
||||
|
||||
// Begin waiting.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
|
||||
cur_thread->SetMutexWaitAddressForDebugging(addr);
|
||||
}
|
||||
|
||||
// Close our reference to the owner thread, now that the wait is over.
|
||||
owner_thread->Close();
|
||||
|
||||
// Get the wait result.
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
void KConditionVariable::SignalImpl(KThread* thread) {
|
||||
// Check pre-conditions.
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
|
||||
// Update the tag.
|
||||
VAddr address = thread->GetAddressKey();
|
||||
u32 own_tag = thread->GetAddressKeyValue();
|
||||
|
||||
u32 prev_tag{};
|
||||
bool can_access{};
|
||||
{
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
// TODO(bunnei): We should call CanAccessAtomic(..) here.
|
||||
can_access = true;
|
||||
if (can_access) [[likely]] {
|
||||
UpdateLockAtomic(system, std::addressof(prev_tag), address, own_tag,
|
||||
Svc::HandleWaitMask);
|
||||
}
|
||||
}
|
||||
|
||||
if (can_access) [[likely]] {
|
||||
if (prev_tag == Svc::InvalidHandle) {
|
||||
// If nobody held the lock previously, we're all good.
|
||||
thread->EndWait(ResultSuccess);
|
||||
} else {
|
||||
// Get the previous owner.
|
||||
KThread* owner_thread = kernel.CurrentProcess()
|
||||
->GetHandleTable()
|
||||
.GetObjectWithoutPseudoHandle<KThread>(
|
||||
static_cast<Handle>(prev_tag & ~Svc::HandleWaitMask))
|
||||
.ReleasePointerUnsafe();
|
||||
|
||||
if (owner_thread) [[likely]] {
|
||||
// Add the thread as a waiter on the owner.
|
||||
owner_thread->AddWaiter(thread);
|
||||
owner_thread->Close();
|
||||
} else {
|
||||
// The lock was tagged with a thread that doesn't exist.
|
||||
thread->EndWait(ResultInvalidState);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// If the address wasn't accessible, note so.
|
||||
thread->EndWait(ResultInvalidCurrentMemory);
|
||||
}
|
||||
}
|
||||
|
||||
void KConditionVariable::Signal(u64 cv_key, s32 count) {
|
||||
// Perform signaling.
|
||||
s32 num_waiters{};
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
auto it = thread_tree.nfind_key({cv_key, -1});
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetConditionVariableKey() == cv_key)) {
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
|
||||
this->SignalImpl(target_thread);
|
||||
it = thread_tree.erase(it);
|
||||
target_thread->ClearConditionVariable();
|
||||
++num_waiters;
|
||||
}
|
||||
|
||||
// If we have no waiters, clear the has waiter flag.
|
||||
if (it == thread_tree.end() || it->GetConditionVariableKey() != cv_key) {
|
||||
const u32 has_waiter_flag{};
|
||||
WriteToUser(system, cv_key, std::addressof(has_waiter_flag));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Result KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
|
||||
// Prepare to wait.
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ThreadQueueImplForKConditionVariableWaitConditionVariable wait_queue(
|
||||
kernel, std::addressof(thread_tree));
|
||||
|
||||
{
|
||||
KScopedSchedulerLockAndSleep slp(kernel, cur_thread, timeout);
|
||||
|
||||
// Check that the thread isn't terminating.
|
||||
if (cur_thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Update the value and process for the next owner.
|
||||
{
|
||||
// Remove waiter thread.
|
||||
s32 num_waiters{};
|
||||
KThread* next_owner_thread =
|
||||
cur_thread->RemoveWaiterByKey(std::addressof(num_waiters), addr);
|
||||
|
||||
// Update for the next owner thread.
|
||||
u32 next_value{};
|
||||
if (next_owner_thread != nullptr) {
|
||||
// Get the next tag value.
|
||||
next_value = next_owner_thread->GetAddressKeyValue();
|
||||
if (num_waiters > 1) {
|
||||
next_value |= Svc::HandleWaitMask;
|
||||
}
|
||||
|
||||
// Wake up the next owner.
|
||||
next_owner_thread->EndWait(ResultSuccess);
|
||||
}
|
||||
|
||||
// Write to the cv key.
|
||||
{
|
||||
const u32 has_waiter_flag = 1;
|
||||
WriteToUser(system, key, std::addressof(has_waiter_flag));
|
||||
// TODO(bunnei): We should call DataMemoryBarrier(..) here.
|
||||
}
|
||||
|
||||
// Write the value to userspace.
|
||||
if (!WriteToUser(system, addr, std::addressof(next_value))) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
}
|
||||
|
||||
// If timeout is zero, time out.
|
||||
R_UNLESS(timeout != 0, ResultTimedOut);
|
||||
|
||||
// Update condition variable tracking.
|
||||
cur_thread->SetConditionVariable(std::addressof(thread_tree), addr, key, value);
|
||||
thread_tree.insert(*cur_thread);
|
||||
|
||||
// Begin waiting.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
|
||||
cur_thread->SetMutexWaitAddressForDebugging(addr);
|
||||
}
|
||||
|
||||
// Get the wait result.
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/arm/exclusive_monitor.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/k_condition_variable.h"
|
||||
#include "core/hle/kernel/k_linked_list.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_common.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
#include "core/memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
bool ReadFromUser(Core::System& system, u32* out, VAddr address) {
|
||||
*out = system.Memory().Read32(address);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool WriteToUser(Core::System& system, VAddr address, const u32* p) {
|
||||
system.Memory().Write32(address, *p);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero,
|
||||
u32 new_orr_mask) {
|
||||
auto& monitor = system.Monitor();
|
||||
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
|
||||
|
||||
// Load the value from the address.
|
||||
const auto expected = monitor.ExclusiveRead32(current_core, address);
|
||||
|
||||
// Orr in the new mask.
|
||||
u32 value = expected | new_orr_mask;
|
||||
|
||||
// If the value is zero, use the if_zero value, otherwise use the newly orr'd value.
|
||||
if (!expected) {
|
||||
value = if_zero;
|
||||
}
|
||||
|
||||
// Try to store.
|
||||
if (!monitor.ExclusiveWrite32(current_core, address, value)) {
|
||||
// If we failed to store, try again.
|
||||
return UpdateLockAtomic(system, out, address, if_zero, new_orr_mask);
|
||||
}
|
||||
|
||||
// We're done.
|
||||
*out = expected;
|
||||
return true;
|
||||
}
|
||||
|
||||
class ThreadQueueImplForKConditionVariableWaitForAddress final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKConditionVariableWaitForAddress(KernelCore& kernel_)
|
||||
: KThreadQueue(kernel_) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Remove the thread as a waiter from its owner.
|
||||
waiting_thread->GetLockOwner()->RemoveWaiter(waiting_thread);
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
};
|
||||
|
||||
class ThreadQueueImplForKConditionVariableWaitConditionVariable final : public KThreadQueue {
|
||||
private:
|
||||
KConditionVariable::ThreadTree* m_tree;
|
||||
|
||||
public:
|
||||
explicit ThreadQueueImplForKConditionVariableWaitConditionVariable(
|
||||
KernelCore& kernel_, KConditionVariable::ThreadTree* t)
|
||||
: KThreadQueue(kernel_), m_tree(t) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Remove the thread as a waiter from its owner.
|
||||
if (KThread* owner = waiting_thread->GetLockOwner(); owner != nullptr) {
|
||||
owner->RemoveWaiter(waiting_thread);
|
||||
}
|
||||
|
||||
// If the thread is waiting on a condvar, remove it from the tree.
|
||||
if (waiting_thread->IsWaitingForConditionVariable()) {
|
||||
m_tree->erase(m_tree->iterator_to(*waiting_thread));
|
||||
waiting_thread->ClearConditionVariable();
|
||||
}
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
KConditionVariable::KConditionVariable(Core::System& system_)
|
||||
: system{system_}, kernel{system.Kernel()} {}
|
||||
|
||||
KConditionVariable::~KConditionVariable() = default;
|
||||
|
||||
Result KConditionVariable::SignalToAddress(VAddr addr) {
|
||||
KThread* owner_thread = GetCurrentThreadPointer(kernel);
|
||||
|
||||
// Signal the address.
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Remove waiter thread.
|
||||
s32 num_waiters{};
|
||||
KThread* next_owner_thread =
|
||||
owner_thread->RemoveWaiterByKey(std::addressof(num_waiters), addr);
|
||||
|
||||
// Determine the next tag.
|
||||
u32 next_value{};
|
||||
if (next_owner_thread != nullptr) {
|
||||
next_value = next_owner_thread->GetAddressKeyValue();
|
||||
if (num_waiters > 1) {
|
||||
next_value |= Svc::HandleWaitMask;
|
||||
}
|
||||
|
||||
// Write the value to userspace.
|
||||
Result result{ResultSuccess};
|
||||
if (WriteToUser(system, addr, std::addressof(next_value))) [[likely]] {
|
||||
result = ResultSuccess;
|
||||
} else {
|
||||
result = ResultInvalidCurrentMemory;
|
||||
}
|
||||
|
||||
// Signal the next owner thread.
|
||||
next_owner_thread->EndWait(result);
|
||||
return result;
|
||||
} else {
|
||||
// Just write the value to userspace.
|
||||
R_UNLESS(WriteToUser(system, addr, std::addressof(next_value)),
|
||||
ResultInvalidCurrentMemory);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Result KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) {
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(kernel);
|
||||
|
||||
// Wait for the address.
|
||||
KThread* owner_thread{};
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Check if the thread should terminate.
|
||||
R_UNLESS(!cur_thread->IsTerminationRequested(), ResultTerminationRequested);
|
||||
|
||||
// Read the tag from userspace.
|
||||
u32 test_tag{};
|
||||
R_UNLESS(ReadFromUser(system, std::addressof(test_tag), addr), ResultInvalidCurrentMemory);
|
||||
|
||||
// If the tag isn't the handle (with wait mask), we're done.
|
||||
R_SUCCEED_IF(test_tag != (handle | Svc::HandleWaitMask));
|
||||
|
||||
// Get the lock owner thread.
|
||||
owner_thread = kernel.CurrentProcess()
|
||||
->GetHandleTable()
|
||||
.GetObjectWithoutPseudoHandle<KThread>(handle)
|
||||
.ReleasePointerUnsafe();
|
||||
R_UNLESS(owner_thread != nullptr, ResultInvalidHandle);
|
||||
|
||||
// Update the lock.
|
||||
cur_thread->SetAddressKey(addr, value);
|
||||
owner_thread->AddWaiter(cur_thread);
|
||||
|
||||
// Begin waiting.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
|
||||
cur_thread->SetMutexWaitAddressForDebugging(addr);
|
||||
}
|
||||
|
||||
// Close our reference to the owner thread, now that the wait is over.
|
||||
owner_thread->Close();
|
||||
|
||||
// Get the wait result.
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
void KConditionVariable::SignalImpl(KThread* thread) {
|
||||
// Check pre-conditions.
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
|
||||
// Update the tag.
|
||||
VAddr address = thread->GetAddressKey();
|
||||
u32 own_tag = thread->GetAddressKeyValue();
|
||||
|
||||
u32 prev_tag{};
|
||||
bool can_access{};
|
||||
{
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
// TODO(bunnei): We should call CanAccessAtomic(..) here.
|
||||
can_access = true;
|
||||
if (can_access) [[likely]] {
|
||||
UpdateLockAtomic(system, std::addressof(prev_tag), address, own_tag,
|
||||
Svc::HandleWaitMask);
|
||||
}
|
||||
}
|
||||
|
||||
if (can_access) [[likely]] {
|
||||
if (prev_tag == Svc::InvalidHandle) {
|
||||
// If nobody held the lock previously, we're all good.
|
||||
thread->EndWait(ResultSuccess);
|
||||
} else {
|
||||
// Get the previous owner.
|
||||
KThread* owner_thread = kernel.CurrentProcess()
|
||||
->GetHandleTable()
|
||||
.GetObjectWithoutPseudoHandle<KThread>(
|
||||
static_cast<Handle>(prev_tag & ~Svc::HandleWaitMask))
|
||||
.ReleasePointerUnsafe();
|
||||
|
||||
if (owner_thread) [[likely]] {
|
||||
// Add the thread as a waiter on the owner.
|
||||
owner_thread->AddWaiter(thread);
|
||||
owner_thread->Close();
|
||||
} else {
|
||||
// The lock was tagged with a thread that doesn't exist.
|
||||
thread->EndWait(ResultInvalidState);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// If the address wasn't accessible, note so.
|
||||
thread->EndWait(ResultInvalidCurrentMemory);
|
||||
}
|
||||
}
|
||||
|
||||
void KConditionVariable::Signal(u64 cv_key, s32 count) {
|
||||
// Perform signaling.
|
||||
s32 num_waiters{};
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
auto it = thread_tree.nfind_key({cv_key, -1});
|
||||
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
|
||||
(it->GetConditionVariableKey() == cv_key)) {
|
||||
KThread* target_thread = std::addressof(*it);
|
||||
|
||||
this->SignalImpl(target_thread);
|
||||
it = thread_tree.erase(it);
|
||||
target_thread->ClearConditionVariable();
|
||||
++num_waiters;
|
||||
}
|
||||
|
||||
// If we have no waiters, clear the has waiter flag.
|
||||
if (it == thread_tree.end() || it->GetConditionVariableKey() != cv_key) {
|
||||
const u32 has_waiter_flag{};
|
||||
WriteToUser(system, cv_key, std::addressof(has_waiter_flag));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Result KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
|
||||
// Prepare to wait.
|
||||
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ThreadQueueImplForKConditionVariableWaitConditionVariable wait_queue(
|
||||
kernel, std::addressof(thread_tree));
|
||||
|
||||
{
|
||||
KScopedSchedulerLockAndSleep slp(kernel, cur_thread, timeout);
|
||||
|
||||
// Check that the thread isn't terminating.
|
||||
if (cur_thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Update the value and process for the next owner.
|
||||
{
|
||||
// Remove waiter thread.
|
||||
s32 num_waiters{};
|
||||
KThread* next_owner_thread =
|
||||
cur_thread->RemoveWaiterByKey(std::addressof(num_waiters), addr);
|
||||
|
||||
// Update for the next owner thread.
|
||||
u32 next_value{};
|
||||
if (next_owner_thread != nullptr) {
|
||||
// Get the next tag value.
|
||||
next_value = next_owner_thread->GetAddressKeyValue();
|
||||
if (num_waiters > 1) {
|
||||
next_value |= Svc::HandleWaitMask;
|
||||
}
|
||||
|
||||
// Wake up the next owner.
|
||||
next_owner_thread->EndWait(ResultSuccess);
|
||||
}
|
||||
|
||||
// Write to the cv key.
|
||||
{
|
||||
const u32 has_waiter_flag = 1;
|
||||
WriteToUser(system, key, std::addressof(has_waiter_flag));
|
||||
// TODO(bunnei): We should call DataMemoryBarrier(..) here.
|
||||
}
|
||||
|
||||
// Write the value to userspace.
|
||||
if (!WriteToUser(system, addr, std::addressof(next_value))) {
|
||||
slp.CancelSleep();
|
||||
return ResultInvalidCurrentMemory;
|
||||
}
|
||||
}
|
||||
|
||||
// If timeout is zero, time out.
|
||||
R_UNLESS(timeout != 0, ResultTimedOut);
|
||||
|
||||
// Update condition variable tracking.
|
||||
cur_thread->SetConditionVariable(std::addressof(thread_tree), addr, key, value);
|
||||
thread_tree.insert(*cur_thread);
|
||||
|
||||
// Begin waiting.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
|
||||
cur_thread->SetMutexWaitAddressForDebugging(addr);
|
||||
}
|
||||
|
||||
// Get the wait result.
|
||||
return cur_thread->GetWaitResult();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,58 +1,58 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KConditionVariable {
|
||||
public:
|
||||
using ThreadTree = typename KThread::ConditionVariableThreadTreeType;
|
||||
|
||||
explicit KConditionVariable(Core::System& system_);
|
||||
~KConditionVariable();
|
||||
|
||||
// Arbitration
|
||||
[[nodiscard]] Result SignalToAddress(VAddr addr);
|
||||
[[nodiscard]] Result WaitForAddress(Handle handle, VAddr addr, u32 value);
|
||||
|
||||
// Condition variable
|
||||
void Signal(u64 cv_key, s32 count);
|
||||
[[nodiscard]] Result Wait(VAddr addr, u64 key, u32 value, s64 timeout);
|
||||
|
||||
private:
|
||||
void SignalImpl(KThread* thread);
|
||||
|
||||
ThreadTree thread_tree;
|
||||
|
||||
Core::System& system;
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
inline void BeforeUpdatePriority(const KernelCore& kernel, KConditionVariable::ThreadTree* tree,
|
||||
KThread* thread) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
|
||||
tree->erase(tree->iterator_to(*thread));
|
||||
}
|
||||
|
||||
inline void AfterUpdatePriority(const KernelCore& kernel, KConditionVariable::ThreadTree* tree,
|
||||
KThread* thread) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
|
||||
tree->insert(*thread);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KConditionVariable {
|
||||
public:
|
||||
using ThreadTree = typename KThread::ConditionVariableThreadTreeType;
|
||||
|
||||
explicit KConditionVariable(Core::System& system_);
|
||||
~KConditionVariable();
|
||||
|
||||
// Arbitration
|
||||
[[nodiscard]] Result SignalToAddress(VAddr addr);
|
||||
[[nodiscard]] Result WaitForAddress(Handle handle, VAddr addr, u32 value);
|
||||
|
||||
// Condition variable
|
||||
void Signal(u64 cv_key, s32 count);
|
||||
[[nodiscard]] Result Wait(VAddr addr, u64 key, u32 value, s64 timeout);
|
||||
|
||||
private:
|
||||
void SignalImpl(KThread* thread);
|
||||
|
||||
ThreadTree thread_tree;
|
||||
|
||||
Core::System& system;
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
inline void BeforeUpdatePriority(const KernelCore& kernel, KConditionVariable::ThreadTree* tree,
|
||||
KThread* thread) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
|
||||
tree->erase(tree->iterator_to(*thread));
|
||||
}
|
||||
|
||||
inline void AfterUpdatePriority(const KernelCore& kernel, KConditionVariable::ThreadTree* tree,
|
||||
KThread* thread) {
|
||||
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
||||
|
||||
tree->insert(*thread);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,136 +1,136 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_page_bitmap.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KDynamicPageManager {
|
||||
public:
|
||||
class PageBuffer {
|
||||
private:
|
||||
u8 m_buffer[PageSize];
|
||||
};
|
||||
static_assert(sizeof(PageBuffer) == PageSize);
|
||||
|
||||
public:
|
||||
KDynamicPageManager() = default;
|
||||
|
||||
template <typename T>
|
||||
T* GetPointer(VAddr addr) {
|
||||
return reinterpret_cast<T*>(m_backing_memory.data() + (addr - m_address));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T* GetPointer(VAddr addr) const {
|
||||
return reinterpret_cast<T*>(m_backing_memory.data() + (addr - m_address));
|
||||
}
|
||||
|
||||
Result Initialize(VAddr addr, size_t sz) {
|
||||
// We need to have positive size.
|
||||
R_UNLESS(sz > 0, ResultOutOfMemory);
|
||||
m_backing_memory.resize(sz);
|
||||
|
||||
// Calculate management overhead.
|
||||
const size_t management_size =
|
||||
KPageBitmap::CalculateManagementOverheadSize(sz / sizeof(PageBuffer));
|
||||
const size_t allocatable_size = sz - management_size;
|
||||
|
||||
// Set tracking fields.
|
||||
m_address = addr;
|
||||
m_size = Common::AlignDown(allocatable_size, sizeof(PageBuffer));
|
||||
m_count = allocatable_size / sizeof(PageBuffer);
|
||||
R_UNLESS(m_count > 0, ResultOutOfMemory);
|
||||
|
||||
// Clear the management region.
|
||||
u64* management_ptr = GetPointer<u64>(m_address + allocatable_size);
|
||||
std::memset(management_ptr, 0, management_size);
|
||||
|
||||
// Initialize the bitmap.
|
||||
m_page_bitmap.Initialize(management_ptr, m_count);
|
||||
|
||||
// Free the pages to the bitmap.
|
||||
for (size_t i = 0; i < m_count; i++) {
|
||||
// Ensure the freed page is all-zero.
|
||||
std::memset(GetPointer<PageBuffer>(m_address) + i, 0, PageSize);
|
||||
|
||||
// Set the bit for the free page.
|
||||
m_page_bitmap.SetBit(i);
|
||||
}
|
||||
|
||||
R_SUCCEED();
|
||||
}
|
||||
|
||||
VAddr GetAddress() const {
|
||||
return m_address;
|
||||
}
|
||||
size_t GetSize() const {
|
||||
return m_size;
|
||||
}
|
||||
size_t GetUsed() const {
|
||||
return m_used;
|
||||
}
|
||||
size_t GetPeak() const {
|
||||
return m_peak;
|
||||
}
|
||||
size_t GetCount() const {
|
||||
return m_count;
|
||||
}
|
||||
|
||||
PageBuffer* Allocate() {
|
||||
// Take the lock.
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Find a random free block.
|
||||
s64 soffset = m_page_bitmap.FindFreeBlock(true);
|
||||
if (soffset < 0) [[unlikely]] {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const size_t offset = static_cast<size_t>(soffset);
|
||||
|
||||
// Update our tracking.
|
||||
m_page_bitmap.ClearBit(offset);
|
||||
m_peak = std::max(m_peak, (++m_used));
|
||||
|
||||
return GetPointer<PageBuffer>(m_address) + offset;
|
||||
}
|
||||
|
||||
void Free(PageBuffer* pb) {
|
||||
// Ensure all pages in the heap are zero.
|
||||
std::memset(pb, 0, PageSize);
|
||||
|
||||
// Take the lock.
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Set the bit for the free page.
|
||||
size_t offset = (reinterpret_cast<uintptr_t>(pb) - m_address) / sizeof(PageBuffer);
|
||||
m_page_bitmap.SetBit(offset);
|
||||
|
||||
// Decrement our used count.
|
||||
--m_used;
|
||||
}
|
||||
|
||||
private:
|
||||
KSpinLock m_lock;
|
||||
KPageBitmap m_page_bitmap;
|
||||
size_t m_used{};
|
||||
size_t m_peak{};
|
||||
size_t m_count{};
|
||||
VAddr m_address{};
|
||||
size_t m_size{};
|
||||
|
||||
// TODO(bunnei): Back by host memory until we emulate kernel virtual address space.
|
||||
std::vector<u8> m_backing_memory;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_page_bitmap.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KDynamicPageManager {
|
||||
public:
|
||||
class PageBuffer {
|
||||
private:
|
||||
u8 m_buffer[PageSize];
|
||||
};
|
||||
static_assert(sizeof(PageBuffer) == PageSize);
|
||||
|
||||
public:
|
||||
KDynamicPageManager() = default;
|
||||
|
||||
template <typename T>
|
||||
T* GetPointer(VAddr addr) {
|
||||
return reinterpret_cast<T*>(m_backing_memory.data() + (addr - m_address));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T* GetPointer(VAddr addr) const {
|
||||
return reinterpret_cast<T*>(m_backing_memory.data() + (addr - m_address));
|
||||
}
|
||||
|
||||
Result Initialize(VAddr addr, size_t sz) {
|
||||
// We need to have positive size.
|
||||
R_UNLESS(sz > 0, ResultOutOfMemory);
|
||||
m_backing_memory.resize(sz);
|
||||
|
||||
// Calculate management overhead.
|
||||
const size_t management_size =
|
||||
KPageBitmap::CalculateManagementOverheadSize(sz / sizeof(PageBuffer));
|
||||
const size_t allocatable_size = sz - management_size;
|
||||
|
||||
// Set tracking fields.
|
||||
m_address = addr;
|
||||
m_size = Common::AlignDown(allocatable_size, sizeof(PageBuffer));
|
||||
m_count = allocatable_size / sizeof(PageBuffer);
|
||||
R_UNLESS(m_count > 0, ResultOutOfMemory);
|
||||
|
||||
// Clear the management region.
|
||||
u64* management_ptr = GetPointer<u64>(m_address + allocatable_size);
|
||||
std::memset(management_ptr, 0, management_size);
|
||||
|
||||
// Initialize the bitmap.
|
||||
m_page_bitmap.Initialize(management_ptr, m_count);
|
||||
|
||||
// Free the pages to the bitmap.
|
||||
for (size_t i = 0; i < m_count; i++) {
|
||||
// Ensure the freed page is all-zero.
|
||||
std::memset(GetPointer<PageBuffer>(m_address) + i, 0, PageSize);
|
||||
|
||||
// Set the bit for the free page.
|
||||
m_page_bitmap.SetBit(i);
|
||||
}
|
||||
|
||||
R_SUCCEED();
|
||||
}
|
||||
|
||||
VAddr GetAddress() const {
|
||||
return m_address;
|
||||
}
|
||||
size_t GetSize() const {
|
||||
return m_size;
|
||||
}
|
||||
size_t GetUsed() const {
|
||||
return m_used;
|
||||
}
|
||||
size_t GetPeak() const {
|
||||
return m_peak;
|
||||
}
|
||||
size_t GetCount() const {
|
||||
return m_count;
|
||||
}
|
||||
|
||||
PageBuffer* Allocate() {
|
||||
// Take the lock.
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Find a random free block.
|
||||
s64 soffset = m_page_bitmap.FindFreeBlock(true);
|
||||
if (soffset < 0) [[unlikely]] {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const size_t offset = static_cast<size_t>(soffset);
|
||||
|
||||
// Update our tracking.
|
||||
m_page_bitmap.ClearBit(offset);
|
||||
m_peak = std::max(m_peak, (++m_used));
|
||||
|
||||
return GetPointer<PageBuffer>(m_address) + offset;
|
||||
}
|
||||
|
||||
void Free(PageBuffer* pb) {
|
||||
// Ensure all pages in the heap are zero.
|
||||
std::memset(pb, 0, PageSize);
|
||||
|
||||
// Take the lock.
|
||||
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Set the bit for the free page.
|
||||
size_t offset = (reinterpret_cast<uintptr_t>(pb) - m_address) / sizeof(PageBuffer);
|
||||
m_page_bitmap.SetBit(offset);
|
||||
|
||||
// Decrement our used count.
|
||||
--m_used;
|
||||
}
|
||||
|
||||
private:
|
||||
KSpinLock m_lock;
|
||||
KPageBitmap m_page_bitmap;
|
||||
size_t m_used{};
|
||||
size_t m_peak{};
|
||||
size_t m_count{};
|
||||
VAddr m_address{};
|
||||
size_t m_size{};
|
||||
|
||||
// TODO(bunnei): Back by host memory until we emulate kernel virtual address space.
|
||||
std::vector<u8> m_backing_memory;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,58 +1,58 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "core/hle/kernel/k_dynamic_slab_heap.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
template <typename T, bool ClearNode = false>
|
||||
class KDynamicResourceManager {
|
||||
YUZU_NON_COPYABLE(KDynamicResourceManager);
|
||||
YUZU_NON_MOVEABLE(KDynamicResourceManager);
|
||||
|
||||
public:
|
||||
using DynamicSlabType = KDynamicSlabHeap<T, ClearNode>;
|
||||
|
||||
public:
|
||||
constexpr KDynamicResourceManager() = default;
|
||||
|
||||
constexpr size_t GetSize() const {
|
||||
return m_slab_heap->GetSize();
|
||||
}
|
||||
constexpr size_t GetUsed() const {
|
||||
return m_slab_heap->GetUsed();
|
||||
}
|
||||
constexpr size_t GetPeak() const {
|
||||
return m_slab_heap->GetPeak();
|
||||
}
|
||||
constexpr size_t GetCount() const {
|
||||
return m_slab_heap->GetCount();
|
||||
}
|
||||
|
||||
void Initialize(KDynamicPageManager* page_allocator, DynamicSlabType* slab_heap) {
|
||||
m_page_allocator = page_allocator;
|
||||
m_slab_heap = slab_heap;
|
||||
}
|
||||
|
||||
T* Allocate() const {
|
||||
return m_slab_heap->Allocate(m_page_allocator);
|
||||
}
|
||||
|
||||
void Free(T* t) const {
|
||||
m_slab_heap->Free(t);
|
||||
}
|
||||
|
||||
private:
|
||||
KDynamicPageManager* m_page_allocator{};
|
||||
DynamicSlabType* m_slab_heap{};
|
||||
};
|
||||
|
||||
class KMemoryBlockSlabManager : public KDynamicResourceManager<KMemoryBlock> {};
|
||||
|
||||
using KMemoryBlockSlabHeap = typename KMemoryBlockSlabManager::DynamicSlabType;
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "core/hle/kernel/k_dynamic_slab_heap.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
template <typename T, bool ClearNode = false>
|
||||
class KDynamicResourceManager {
|
||||
YUZU_NON_COPYABLE(KDynamicResourceManager);
|
||||
YUZU_NON_MOVEABLE(KDynamicResourceManager);
|
||||
|
||||
public:
|
||||
using DynamicSlabType = KDynamicSlabHeap<T, ClearNode>;
|
||||
|
||||
public:
|
||||
constexpr KDynamicResourceManager() = default;
|
||||
|
||||
constexpr size_t GetSize() const {
|
||||
return m_slab_heap->GetSize();
|
||||
}
|
||||
constexpr size_t GetUsed() const {
|
||||
return m_slab_heap->GetUsed();
|
||||
}
|
||||
constexpr size_t GetPeak() const {
|
||||
return m_slab_heap->GetPeak();
|
||||
}
|
||||
constexpr size_t GetCount() const {
|
||||
return m_slab_heap->GetCount();
|
||||
}
|
||||
|
||||
void Initialize(KDynamicPageManager* page_allocator, DynamicSlabType* slab_heap) {
|
||||
m_page_allocator = page_allocator;
|
||||
m_slab_heap = slab_heap;
|
||||
}
|
||||
|
||||
T* Allocate() const {
|
||||
return m_slab_heap->Allocate(m_page_allocator);
|
||||
}
|
||||
|
||||
void Free(T* t) const {
|
||||
m_slab_heap->Free(t);
|
||||
}
|
||||
|
||||
private:
|
||||
KDynamicPageManager* m_page_allocator{};
|
||||
DynamicSlabType* m_slab_heap{};
|
||||
};
|
||||
|
||||
class KMemoryBlockSlabManager : public KDynamicResourceManager<KMemoryBlock> {};
|
||||
|
||||
using KMemoryBlockSlabHeap = typename KMemoryBlockSlabManager::DynamicSlabType;
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,122 +1,122 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "core/hle/kernel/k_dynamic_page_manager.h"
|
||||
#include "core/hle/kernel/k_slab_heap.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
template <typename T, bool ClearNode = false>
|
||||
class KDynamicSlabHeap : protected impl::KSlabHeapImpl {
|
||||
YUZU_NON_COPYABLE(KDynamicSlabHeap);
|
||||
YUZU_NON_MOVEABLE(KDynamicSlabHeap);
|
||||
|
||||
public:
|
||||
constexpr KDynamicSlabHeap() = default;
|
||||
|
||||
constexpr VAddr GetAddress() const {
|
||||
return m_address;
|
||||
}
|
||||
constexpr size_t GetSize() const {
|
||||
return m_size;
|
||||
}
|
||||
constexpr size_t GetUsed() const {
|
||||
return m_used.load();
|
||||
}
|
||||
constexpr size_t GetPeak() const {
|
||||
return m_peak.load();
|
||||
}
|
||||
constexpr size_t GetCount() const {
|
||||
return m_count.load();
|
||||
}
|
||||
|
||||
constexpr bool IsInRange(VAddr addr) const {
|
||||
return this->GetAddress() <= addr && addr <= this->GetAddress() + this->GetSize() - 1;
|
||||
}
|
||||
|
||||
void Initialize(KDynamicPageManager* page_allocator, size_t num_objects) {
|
||||
ASSERT(page_allocator != nullptr);
|
||||
|
||||
// Initialize members.
|
||||
m_address = page_allocator->GetAddress();
|
||||
m_size = page_allocator->GetSize();
|
||||
|
||||
// Initialize the base allocator.
|
||||
KSlabHeapImpl::Initialize();
|
||||
|
||||
// Allocate until we have the correct number of objects.
|
||||
while (m_count.load() < num_objects) {
|
||||
auto* allocated = reinterpret_cast<T*>(page_allocator->Allocate());
|
||||
ASSERT(allocated != nullptr);
|
||||
|
||||
for (size_t i = 0; i < sizeof(PageBuffer) / sizeof(T); i++) {
|
||||
KSlabHeapImpl::Free(allocated + i);
|
||||
}
|
||||
|
||||
m_count += sizeof(PageBuffer) / sizeof(T);
|
||||
}
|
||||
}
|
||||
|
||||
T* Allocate(KDynamicPageManager* page_allocator) {
|
||||
T* allocated = static_cast<T*>(KSlabHeapImpl::Allocate());
|
||||
|
||||
// If we successfully allocated and we should clear the node, do so.
|
||||
if constexpr (ClearNode) {
|
||||
if (allocated != nullptr) [[likely]] {
|
||||
reinterpret_cast<KSlabHeapImpl::Node*>(allocated)->next = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// If we fail to allocate, try to get a new page from our next allocator.
|
||||
if (allocated == nullptr) [[unlikely]] {
|
||||
if (page_allocator != nullptr) {
|
||||
allocated = reinterpret_cast<T*>(page_allocator->Allocate());
|
||||
if (allocated != nullptr) {
|
||||
// If we succeeded in getting a page, free the rest to our slab.
|
||||
for (size_t i = 1; i < sizeof(PageBuffer) / sizeof(T); i++) {
|
||||
KSlabHeapImpl::Free(allocated + i);
|
||||
}
|
||||
m_count += sizeof(PageBuffer) / sizeof(T);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (allocated != nullptr) [[likely]] {
|
||||
// Construct the object.
|
||||
std::construct_at(allocated);
|
||||
|
||||
// Update our tracking.
|
||||
const size_t used = ++m_used;
|
||||
size_t peak = m_peak.load();
|
||||
while (peak < used) {
|
||||
if (m_peak.compare_exchange_weak(peak, used, std::memory_order_relaxed)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return allocated;
|
||||
}
|
||||
|
||||
void Free(T* t) {
|
||||
KSlabHeapImpl::Free(t);
|
||||
--m_used;
|
||||
}
|
||||
|
||||
private:
|
||||
using PageBuffer = KDynamicPageManager::PageBuffer;
|
||||
|
||||
private:
|
||||
std::atomic<size_t> m_used{};
|
||||
std::atomic<size_t> m_peak{};
|
||||
std::atomic<size_t> m_count{};
|
||||
VAddr m_address{};
|
||||
size_t m_size{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "core/hle/kernel/k_dynamic_page_manager.h"
|
||||
#include "core/hle/kernel/k_slab_heap.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
template <typename T, bool ClearNode = false>
|
||||
class KDynamicSlabHeap : protected impl::KSlabHeapImpl {
|
||||
YUZU_NON_COPYABLE(KDynamicSlabHeap);
|
||||
YUZU_NON_MOVEABLE(KDynamicSlabHeap);
|
||||
|
||||
public:
|
||||
constexpr KDynamicSlabHeap() = default;
|
||||
|
||||
constexpr VAddr GetAddress() const {
|
||||
return m_address;
|
||||
}
|
||||
constexpr size_t GetSize() const {
|
||||
return m_size;
|
||||
}
|
||||
constexpr size_t GetUsed() const {
|
||||
return m_used.load();
|
||||
}
|
||||
constexpr size_t GetPeak() const {
|
||||
return m_peak.load();
|
||||
}
|
||||
constexpr size_t GetCount() const {
|
||||
return m_count.load();
|
||||
}
|
||||
|
||||
constexpr bool IsInRange(VAddr addr) const {
|
||||
return this->GetAddress() <= addr && addr <= this->GetAddress() + this->GetSize() - 1;
|
||||
}
|
||||
|
||||
void Initialize(KDynamicPageManager* page_allocator, size_t num_objects) {
|
||||
ASSERT(page_allocator != nullptr);
|
||||
|
||||
// Initialize members.
|
||||
m_address = page_allocator->GetAddress();
|
||||
m_size = page_allocator->GetSize();
|
||||
|
||||
// Initialize the base allocator.
|
||||
KSlabHeapImpl::Initialize();
|
||||
|
||||
// Allocate until we have the correct number of objects.
|
||||
while (m_count.load() < num_objects) {
|
||||
auto* allocated = reinterpret_cast<T*>(page_allocator->Allocate());
|
||||
ASSERT(allocated != nullptr);
|
||||
|
||||
for (size_t i = 0; i < sizeof(PageBuffer) / sizeof(T); i++) {
|
||||
KSlabHeapImpl::Free(allocated + i);
|
||||
}
|
||||
|
||||
m_count += sizeof(PageBuffer) / sizeof(T);
|
||||
}
|
||||
}
|
||||
|
||||
T* Allocate(KDynamicPageManager* page_allocator) {
|
||||
T* allocated = static_cast<T*>(KSlabHeapImpl::Allocate());
|
||||
|
||||
// If we successfully allocated and we should clear the node, do so.
|
||||
if constexpr (ClearNode) {
|
||||
if (allocated != nullptr) [[likely]] {
|
||||
reinterpret_cast<KSlabHeapImpl::Node*>(allocated)->next = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// If we fail to allocate, try to get a new page from our next allocator.
|
||||
if (allocated == nullptr) [[unlikely]] {
|
||||
if (page_allocator != nullptr) {
|
||||
allocated = reinterpret_cast<T*>(page_allocator->Allocate());
|
||||
if (allocated != nullptr) {
|
||||
// If we succeeded in getting a page, free the rest to our slab.
|
||||
for (size_t i = 1; i < sizeof(PageBuffer) / sizeof(T); i++) {
|
||||
KSlabHeapImpl::Free(allocated + i);
|
||||
}
|
||||
m_count += sizeof(PageBuffer) / sizeof(T);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (allocated != nullptr) [[likely]] {
|
||||
// Construct the object.
|
||||
std::construct_at(allocated);
|
||||
|
||||
// Update our tracking.
|
||||
const size_t used = ++m_used;
|
||||
size_t peak = m_peak.load();
|
||||
while (peak < used) {
|
||||
if (m_peak.compare_exchange_weak(peak, used, std::memory_order_relaxed)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return allocated;
|
||||
}
|
||||
|
||||
void Free(T* t) {
|
||||
KSlabHeapImpl::Free(t);
|
||||
--m_used;
|
||||
}
|
||||
|
||||
private:
|
||||
using PageBuffer = KDynamicPageManager::PageBuffer;
|
||||
|
||||
private:
|
||||
std::atomic<size_t> m_used{};
|
||||
std::atomic<size_t> m_peak{};
|
||||
std::atomic<size_t> m_count{};
|
||||
VAddr m_address{};
|
||||
size_t m_size{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,57 +1,57 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KEvent::KEvent(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_readable_event{kernel_} {}
|
||||
|
||||
KEvent::~KEvent() = default;
|
||||
|
||||
void KEvent::Initialize(KProcess* owner) {
|
||||
// Create our readable event.
|
||||
KAutoObject::Create(std::addressof(m_readable_event));
|
||||
|
||||
// Initialize our readable event.
|
||||
m_readable_event.Initialize(this);
|
||||
|
||||
// Set our owner process.
|
||||
m_owner = owner;
|
||||
m_owner->Open();
|
||||
|
||||
// Mark initialized.
|
||||
m_initialized = true;
|
||||
}
|
||||
|
||||
void KEvent::Finalize() {
|
||||
KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObjectWithList>::Finalize();
|
||||
}
|
||||
|
||||
Result KEvent::Signal() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
R_SUCCEED_IF(m_readable_event_destroyed);
|
||||
|
||||
return m_readable_event.Signal();
|
||||
}
|
||||
|
||||
Result KEvent::Clear() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
R_SUCCEED_IF(m_readable_event_destroyed);
|
||||
|
||||
return m_readable_event.Clear();
|
||||
}
|
||||
|
||||
void KEvent::PostDestroy(uintptr_t arg) {
|
||||
// Release the event count resource the owner process holds.
|
||||
KProcess* owner = reinterpret_cast<KProcess*>(arg);
|
||||
owner->GetResourceLimit()->Release(LimitableResource::Events, 1);
|
||||
owner->Close();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KEvent::KEvent(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_readable_event{kernel_} {}
|
||||
|
||||
KEvent::~KEvent() = default;
|
||||
|
||||
void KEvent::Initialize(KProcess* owner) {
|
||||
// Create our readable event.
|
||||
KAutoObject::Create(std::addressof(m_readable_event));
|
||||
|
||||
// Initialize our readable event.
|
||||
m_readable_event.Initialize(this);
|
||||
|
||||
// Set our owner process.
|
||||
m_owner = owner;
|
||||
m_owner->Open();
|
||||
|
||||
// Mark initialized.
|
||||
m_initialized = true;
|
||||
}
|
||||
|
||||
void KEvent::Finalize() {
|
||||
KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObjectWithList>::Finalize();
|
||||
}
|
||||
|
||||
Result KEvent::Signal() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
R_SUCCEED_IF(m_readable_event_destroyed);
|
||||
|
||||
return m_readable_event.Signal();
|
||||
}
|
||||
|
||||
Result KEvent::Clear() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
R_SUCCEED_IF(m_readable_event_destroyed);
|
||||
|
||||
return m_readable_event.Clear();
|
||||
}
|
||||
|
||||
void KEvent::PostDestroy(uintptr_t arg) {
|
||||
// Release the event count resource the owner process holds.
|
||||
KProcess* owner = reinterpret_cast<KProcess*>(arg);
|
||||
owner->GetResourceLimit()->Release(LimitableResource::Events, 1);
|
||||
owner->Close();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,58 +1,58 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "core/hle/kernel/k_readable_event.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KReadableEvent;
|
||||
class KProcess;
|
||||
|
||||
class KEvent final : public KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KEvent, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KEvent(KernelCore& kernel_);
|
||||
~KEvent() override;
|
||||
|
||||
void Initialize(KProcess* owner);
|
||||
|
||||
void Finalize() override;
|
||||
|
||||
bool IsInitialized() const override {
|
||||
return m_initialized;
|
||||
}
|
||||
|
||||
uintptr_t GetPostDestroyArgument() const override {
|
||||
return reinterpret_cast<uintptr_t>(m_owner);
|
||||
}
|
||||
|
||||
KProcess* GetOwner() const override {
|
||||
return m_owner;
|
||||
}
|
||||
|
||||
KReadableEvent& GetReadableEvent() {
|
||||
return m_readable_event;
|
||||
}
|
||||
|
||||
static void PostDestroy(uintptr_t arg);
|
||||
|
||||
Result Signal();
|
||||
Result Clear();
|
||||
|
||||
void OnReadableEventDestroyed() {
|
||||
m_readable_event_destroyed = true;
|
||||
}
|
||||
|
||||
private:
|
||||
KReadableEvent m_readable_event;
|
||||
KProcess* m_owner{};
|
||||
bool m_initialized{};
|
||||
bool m_readable_event_destroyed{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "core/hle/kernel/k_readable_event.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KReadableEvent;
|
||||
class KProcess;
|
||||
|
||||
class KEvent final : public KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KEvent, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KEvent(KernelCore& kernel_);
|
||||
~KEvent() override;
|
||||
|
||||
void Initialize(KProcess* owner);
|
||||
|
||||
void Finalize() override;
|
||||
|
||||
bool IsInitialized() const override {
|
||||
return m_initialized;
|
||||
}
|
||||
|
||||
uintptr_t GetPostDestroyArgument() const override {
|
||||
return reinterpret_cast<uintptr_t>(m_owner);
|
||||
}
|
||||
|
||||
KProcess* GetOwner() const override {
|
||||
return m_owner;
|
||||
}
|
||||
|
||||
KReadableEvent& GetReadableEvent() {
|
||||
return m_readable_event;
|
||||
}
|
||||
|
||||
static void PostDestroy(uintptr_t arg);
|
||||
|
||||
Result Signal();
|
||||
Result Clear();
|
||||
|
||||
void OnReadableEventDestroyed() {
|
||||
m_readable_event_destroyed = true;
|
||||
}
|
||||
|
||||
private:
|
||||
KReadableEvent m_readable_event;
|
||||
KProcess* m_owner{};
|
||||
bool m_initialized{};
|
||||
bool m_readable_event_destroyed{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,141 +1,141 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_handle_table.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KHandleTable::KHandleTable(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
KHandleTable::~KHandleTable() = default;
|
||||
|
||||
Result KHandleTable::Finalize() {
|
||||
// Get the table and clear our record of it.
|
||||
u16 saved_table_size = 0;
|
||||
{
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
std::swap(m_table_size, saved_table_size);
|
||||
}
|
||||
|
||||
// Close and free all entries.
|
||||
for (size_t i = 0; i < saved_table_size; i++) {
|
||||
if (KAutoObject* obj = m_objects[i]; obj != nullptr) {
|
||||
obj->Close();
|
||||
}
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
bool KHandleTable::Remove(Handle handle) {
|
||||
// Don't allow removal of a pseudo-handle.
|
||||
if (Svc::IsPseudoHandle(handle)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Handles must not have reserved bits set.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
if (handle_pack.reserved != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Find the object and free the entry.
|
||||
KAutoObject* obj = nullptr;
|
||||
{
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
if (this->IsValidHandle(handle)) {
|
||||
const auto index = handle_pack.index;
|
||||
|
||||
obj = m_objects[index];
|
||||
this->FreeEntry(index);
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Close the object.
|
||||
kernel.UnregisterInUseObject(obj);
|
||||
obj->Close();
|
||||
return true;
|
||||
}
|
||||
|
||||
Result KHandleTable::Add(Handle* out_handle, KAutoObject* obj) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Never exceed our capacity.
|
||||
R_UNLESS(m_count < m_table_size, ResultOutOfHandles);
|
||||
|
||||
// Allocate entry, set output handle.
|
||||
{
|
||||
const auto linear_id = this->AllocateLinearId();
|
||||
const auto index = this->AllocateEntry();
|
||||
|
||||
m_entry_infos[index].linear_id = linear_id;
|
||||
m_objects[index] = obj;
|
||||
|
||||
obj->Open();
|
||||
|
||||
*out_handle = EncodeHandle(static_cast<u16>(index), linear_id);
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KHandleTable::Reserve(Handle* out_handle) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Never exceed our capacity.
|
||||
R_UNLESS(m_count < m_table_size, ResultOutOfHandles);
|
||||
|
||||
*out_handle = EncodeHandle(static_cast<u16>(this->AllocateEntry()), this->AllocateLinearId());
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KHandleTable::Unreserve(Handle handle) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Unpack the handle.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
const auto index = handle_pack.index;
|
||||
const auto linear_id = handle_pack.linear_id;
|
||||
const auto reserved = handle_pack.reserved;
|
||||
ASSERT(reserved == 0);
|
||||
ASSERT(linear_id != 0);
|
||||
|
||||
if (index < m_table_size) {
|
||||
// NOTE: This code does not check the linear id.
|
||||
ASSERT(m_objects[index] == nullptr);
|
||||
this->FreeEntry(index);
|
||||
}
|
||||
}
|
||||
|
||||
void KHandleTable::Register(Handle handle, KAutoObject* obj) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Unpack the handle.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
const auto index = handle_pack.index;
|
||||
const auto linear_id = handle_pack.linear_id;
|
||||
const auto reserved = handle_pack.reserved;
|
||||
ASSERT(reserved == 0);
|
||||
ASSERT(linear_id != 0);
|
||||
|
||||
if (index < m_table_size) {
|
||||
// Set the entry.
|
||||
ASSERT(m_objects[index] == nullptr);
|
||||
|
||||
m_entry_infos[index].linear_id = static_cast<u16>(linear_id);
|
||||
m_objects[index] = obj;
|
||||
|
||||
obj->Open();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_handle_table.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KHandleTable::KHandleTable(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
KHandleTable::~KHandleTable() = default;
|
||||
|
||||
Result KHandleTable::Finalize() {
|
||||
// Get the table and clear our record of it.
|
||||
u16 saved_table_size = 0;
|
||||
{
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
std::swap(m_table_size, saved_table_size);
|
||||
}
|
||||
|
||||
// Close and free all entries.
|
||||
for (size_t i = 0; i < saved_table_size; i++) {
|
||||
if (KAutoObject* obj = m_objects[i]; obj != nullptr) {
|
||||
obj->Close();
|
||||
}
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
bool KHandleTable::Remove(Handle handle) {
|
||||
// Don't allow removal of a pseudo-handle.
|
||||
if (Svc::IsPseudoHandle(handle)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Handles must not have reserved bits set.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
if (handle_pack.reserved != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Find the object and free the entry.
|
||||
KAutoObject* obj = nullptr;
|
||||
{
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
if (this->IsValidHandle(handle)) {
|
||||
const auto index = handle_pack.index;
|
||||
|
||||
obj = m_objects[index];
|
||||
this->FreeEntry(index);
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Close the object.
|
||||
kernel.UnregisterInUseObject(obj);
|
||||
obj->Close();
|
||||
return true;
|
||||
}
|
||||
|
||||
Result KHandleTable::Add(Handle* out_handle, KAutoObject* obj) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Never exceed our capacity.
|
||||
R_UNLESS(m_count < m_table_size, ResultOutOfHandles);
|
||||
|
||||
// Allocate entry, set output handle.
|
||||
{
|
||||
const auto linear_id = this->AllocateLinearId();
|
||||
const auto index = this->AllocateEntry();
|
||||
|
||||
m_entry_infos[index].linear_id = linear_id;
|
||||
m_objects[index] = obj;
|
||||
|
||||
obj->Open();
|
||||
|
||||
*out_handle = EncodeHandle(static_cast<u16>(index), linear_id);
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KHandleTable::Reserve(Handle* out_handle) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Never exceed our capacity.
|
||||
R_UNLESS(m_count < m_table_size, ResultOutOfHandles);
|
||||
|
||||
*out_handle = EncodeHandle(static_cast<u16>(this->AllocateEntry()), this->AllocateLinearId());
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KHandleTable::Unreserve(Handle handle) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Unpack the handle.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
const auto index = handle_pack.index;
|
||||
const auto linear_id = handle_pack.linear_id;
|
||||
const auto reserved = handle_pack.reserved;
|
||||
ASSERT(reserved == 0);
|
||||
ASSERT(linear_id != 0);
|
||||
|
||||
if (index < m_table_size) {
|
||||
// NOTE: This code does not check the linear id.
|
||||
ASSERT(m_objects[index] == nullptr);
|
||||
this->FreeEntry(index);
|
||||
}
|
||||
}
|
||||
|
||||
void KHandleTable::Register(Handle handle, KAutoObject* obj) {
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
// Unpack the handle.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
const auto index = handle_pack.index;
|
||||
const auto linear_id = handle_pack.linear_id;
|
||||
const auto reserved = handle_pack.reserved;
|
||||
ASSERT(reserved == 0);
|
||||
ASSERT(linear_id != 0);
|
||||
|
||||
if (index < m_table_size) {
|
||||
// Set the entry.
|
||||
ASSERT(m_objects[index] == nullptr);
|
||||
|
||||
m_entry_infos[index].linear_id = static_cast<u16>(linear_id);
|
||||
m_objects[index] = obj;
|
||||
|
||||
obj->Open();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,291 +1,291 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/bit_field.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_common.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KHandleTable {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KHandleTable);
|
||||
YUZU_NON_MOVEABLE(KHandleTable);
|
||||
|
||||
static constexpr size_t MaxTableSize = 1024;
|
||||
|
||||
explicit KHandleTable(KernelCore& kernel_);
|
||||
~KHandleTable();
|
||||
|
||||
Result Initialize(s32 size) {
|
||||
R_UNLESS(size <= static_cast<s32>(MaxTableSize), ResultOutOfMemory);
|
||||
|
||||
// Initialize all fields.
|
||||
m_max_count = 0;
|
||||
m_table_size = static_cast<u16>((size <= 0) ? MaxTableSize : size);
|
||||
m_next_linear_id = MinLinearId;
|
||||
m_count = 0;
|
||||
m_free_head_index = -1;
|
||||
|
||||
// Free all entries.
|
||||
for (s16 i = 0; i < static_cast<s16>(m_table_size); ++i) {
|
||||
m_objects[i] = nullptr;
|
||||
m_entry_infos[i].next_free_index = i - 1;
|
||||
m_free_head_index = i;
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
size_t GetTableSize() const {
|
||||
return m_table_size;
|
||||
}
|
||||
size_t GetCount() const {
|
||||
return m_count;
|
||||
}
|
||||
size_t GetMaxCount() const {
|
||||
return m_max_count;
|
||||
}
|
||||
|
||||
Result Finalize();
|
||||
bool Remove(Handle handle);
|
||||
|
||||
template <typename T = KAutoObject>
|
||||
KScopedAutoObject<T> GetObjectWithoutPseudoHandle(Handle handle) const {
|
||||
// Lock and look up in table.
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
if constexpr (std::is_same_v<T, KAutoObject>) {
|
||||
return this->GetObjectImpl(handle);
|
||||
} else {
|
||||
if (auto* obj = this->GetObjectImpl(handle); obj != nullptr) {
|
||||
return obj->DynamicCast<T*>();
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T = KAutoObject>
|
||||
KScopedAutoObject<T> GetObject(Handle handle) const {
|
||||
// Handle pseudo-handles.
|
||||
if constexpr (std::derived_from<KProcess, T>) {
|
||||
if (handle == Svc::PseudoHandle::CurrentProcess) {
|
||||
auto* const cur_process = kernel.CurrentProcess();
|
||||
ASSERT(cur_process != nullptr);
|
||||
return cur_process;
|
||||
}
|
||||
} else if constexpr (std::derived_from<KThread, T>) {
|
||||
if (handle == Svc::PseudoHandle::CurrentThread) {
|
||||
auto* const cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ASSERT(cur_thread != nullptr);
|
||||
return cur_thread;
|
||||
}
|
||||
}
|
||||
|
||||
return this->template GetObjectWithoutPseudoHandle<T>(handle);
|
||||
}
|
||||
|
||||
Result Reserve(Handle* out_handle);
|
||||
void Unreserve(Handle handle);
|
||||
|
||||
Result Add(Handle* out_handle, KAutoObject* obj);
|
||||
void Register(Handle handle, KAutoObject* obj);
|
||||
|
||||
template <typename T>
|
||||
bool GetMultipleObjects(T** out, const Handle* handles, size_t num_handles) const {
|
||||
// Try to convert and open all the handles.
|
||||
size_t num_opened;
|
||||
{
|
||||
// Lock the table.
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
for (num_opened = 0; num_opened < num_handles; num_opened++) {
|
||||
// Get the current handle.
|
||||
const auto cur_handle = handles[num_opened];
|
||||
|
||||
// Get the object for the current handle.
|
||||
KAutoObject* cur_object = this->GetObjectImpl(cur_handle);
|
||||
if (cur_object == nullptr) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Cast the current object to the desired type.
|
||||
T* cur_t = cur_object->DynamicCast<T*>();
|
||||
if (cur_t == nullptr) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Open a reference to the current object.
|
||||
cur_t->Open();
|
||||
out[num_opened] = cur_t;
|
||||
}
|
||||
}
|
||||
|
||||
// If we converted every object, succeed.
|
||||
if (num_opened == num_handles) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// If we didn't convert entry object, close the ones we opened.
|
||||
for (size_t i = 0; i < num_opened; i++) {
|
||||
out[i]->Close();
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
s32 AllocateEntry() {
|
||||
ASSERT(m_count < m_table_size);
|
||||
|
||||
const auto index = m_free_head_index;
|
||||
|
||||
m_free_head_index = m_entry_infos[index].GetNextFreeIndex();
|
||||
|
||||
m_max_count = std::max(m_max_count, ++m_count);
|
||||
|
||||
return index;
|
||||
}
|
||||
|
||||
void FreeEntry(s32 index) {
|
||||
ASSERT(m_count > 0);
|
||||
|
||||
m_objects[index] = nullptr;
|
||||
m_entry_infos[index].next_free_index = static_cast<s16>(m_free_head_index);
|
||||
|
||||
m_free_head_index = index;
|
||||
|
||||
--m_count;
|
||||
}
|
||||
|
||||
u16 AllocateLinearId() {
|
||||
const u16 id = m_next_linear_id++;
|
||||
if (m_next_linear_id > MaxLinearId) {
|
||||
m_next_linear_id = MinLinearId;
|
||||
}
|
||||
return id;
|
||||
}
|
||||
|
||||
bool IsValidHandle(Handle handle) const {
|
||||
// Unpack the handle.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
const auto raw_value = handle_pack.raw;
|
||||
const auto index = handle_pack.index;
|
||||
const auto linear_id = handle_pack.linear_id;
|
||||
const auto reserved = handle_pack.reserved;
|
||||
ASSERT(reserved == 0);
|
||||
|
||||
// Validate our indexing information.
|
||||
if (raw_value == 0) {
|
||||
return false;
|
||||
}
|
||||
if (linear_id == 0) {
|
||||
return false;
|
||||
}
|
||||
if (index >= m_table_size) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check that there's an object, and our serial id is correct.
|
||||
if (m_objects[index] == nullptr) {
|
||||
return false;
|
||||
}
|
||||
if (m_entry_infos[index].GetLinearId() != linear_id) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
KAutoObject* GetObjectImpl(Handle handle) const {
|
||||
// Handles must not have reserved bits set.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
if (handle_pack.reserved != 0) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (this->IsValidHandle(handle)) {
|
||||
return m_objects[handle_pack.index];
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
KAutoObject* GetObjectByIndexImpl(Handle* out_handle, size_t index) const {
|
||||
|
||||
// Index must be in bounds.
|
||||
if (index >= m_table_size) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Ensure entry has an object.
|
||||
if (KAutoObject* obj = m_objects[index]; obj != nullptr) {
|
||||
*out_handle = EncodeHandle(static_cast<u16>(index), m_entry_infos[index].GetLinearId());
|
||||
return obj;
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
union HandlePack {
|
||||
HandlePack() = default;
|
||||
HandlePack(Handle handle) : raw{static_cast<u32>(handle)} {}
|
||||
|
||||
u32 raw;
|
||||
BitField<0, 15, u32> index;
|
||||
BitField<15, 15, u32> linear_id;
|
||||
BitField<30, 2, u32> reserved;
|
||||
};
|
||||
|
||||
static constexpr u16 MinLinearId = 1;
|
||||
static constexpr u16 MaxLinearId = 0x7FFF;
|
||||
|
||||
static constexpr Handle EncodeHandle(u16 index, u16 linear_id) {
|
||||
HandlePack handle{};
|
||||
handle.index.Assign(index);
|
||||
handle.linear_id.Assign(linear_id);
|
||||
handle.reserved.Assign(0);
|
||||
return handle.raw;
|
||||
}
|
||||
|
||||
union EntryInfo {
|
||||
u16 linear_id;
|
||||
s16 next_free_index;
|
||||
|
||||
constexpr u16 GetLinearId() const {
|
||||
return linear_id;
|
||||
}
|
||||
constexpr s16 GetNextFreeIndex() const {
|
||||
return next_free_index;
|
||||
}
|
||||
};
|
||||
|
||||
private:
|
||||
std::array<EntryInfo, MaxTableSize> m_entry_infos{};
|
||||
std::array<KAutoObject*, MaxTableSize> m_objects{};
|
||||
s32 m_free_head_index{-1};
|
||||
u16 m_table_size{};
|
||||
u16 m_max_count{};
|
||||
u16 m_next_linear_id{MinLinearId};
|
||||
u16 m_count{};
|
||||
mutable KSpinLock m_lock;
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/bit_field.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_common.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KHandleTable {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KHandleTable);
|
||||
YUZU_NON_MOVEABLE(KHandleTable);
|
||||
|
||||
static constexpr size_t MaxTableSize = 1024;
|
||||
|
||||
explicit KHandleTable(KernelCore& kernel_);
|
||||
~KHandleTable();
|
||||
|
||||
Result Initialize(s32 size) {
|
||||
R_UNLESS(size <= static_cast<s32>(MaxTableSize), ResultOutOfMemory);
|
||||
|
||||
// Initialize all fields.
|
||||
m_max_count = 0;
|
||||
m_table_size = static_cast<u16>((size <= 0) ? MaxTableSize : size);
|
||||
m_next_linear_id = MinLinearId;
|
||||
m_count = 0;
|
||||
m_free_head_index = -1;
|
||||
|
||||
// Free all entries.
|
||||
for (s16 i = 0; i < static_cast<s16>(m_table_size); ++i) {
|
||||
m_objects[i] = nullptr;
|
||||
m_entry_infos[i].next_free_index = i - 1;
|
||||
m_free_head_index = i;
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
size_t GetTableSize() const {
|
||||
return m_table_size;
|
||||
}
|
||||
size_t GetCount() const {
|
||||
return m_count;
|
||||
}
|
||||
size_t GetMaxCount() const {
|
||||
return m_max_count;
|
||||
}
|
||||
|
||||
Result Finalize();
|
||||
bool Remove(Handle handle);
|
||||
|
||||
template <typename T = KAutoObject>
|
||||
KScopedAutoObject<T> GetObjectWithoutPseudoHandle(Handle handle) const {
|
||||
// Lock and look up in table.
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
|
||||
if constexpr (std::is_same_v<T, KAutoObject>) {
|
||||
return this->GetObjectImpl(handle);
|
||||
} else {
|
||||
if (auto* obj = this->GetObjectImpl(handle); obj != nullptr) {
|
||||
return obj->DynamicCast<T*>();
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T = KAutoObject>
|
||||
KScopedAutoObject<T> GetObject(Handle handle) const {
|
||||
// Handle pseudo-handles.
|
||||
if constexpr (std::derived_from<KProcess, T>) {
|
||||
if (handle == Svc::PseudoHandle::CurrentProcess) {
|
||||
auto* const cur_process = kernel.CurrentProcess();
|
||||
ASSERT(cur_process != nullptr);
|
||||
return cur_process;
|
||||
}
|
||||
} else if constexpr (std::derived_from<KThread, T>) {
|
||||
if (handle == Svc::PseudoHandle::CurrentThread) {
|
||||
auto* const cur_thread = GetCurrentThreadPointer(kernel);
|
||||
ASSERT(cur_thread != nullptr);
|
||||
return cur_thread;
|
||||
}
|
||||
}
|
||||
|
||||
return this->template GetObjectWithoutPseudoHandle<T>(handle);
|
||||
}
|
||||
|
||||
Result Reserve(Handle* out_handle);
|
||||
void Unreserve(Handle handle);
|
||||
|
||||
Result Add(Handle* out_handle, KAutoObject* obj);
|
||||
void Register(Handle handle, KAutoObject* obj);
|
||||
|
||||
template <typename T>
|
||||
bool GetMultipleObjects(T** out, const Handle* handles, size_t num_handles) const {
|
||||
// Try to convert and open all the handles.
|
||||
size_t num_opened;
|
||||
{
|
||||
// Lock the table.
|
||||
KScopedDisableDispatch dd(kernel);
|
||||
KScopedSpinLock lk(m_lock);
|
||||
for (num_opened = 0; num_opened < num_handles; num_opened++) {
|
||||
// Get the current handle.
|
||||
const auto cur_handle = handles[num_opened];
|
||||
|
||||
// Get the object for the current handle.
|
||||
KAutoObject* cur_object = this->GetObjectImpl(cur_handle);
|
||||
if (cur_object == nullptr) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Cast the current object to the desired type.
|
||||
T* cur_t = cur_object->DynamicCast<T*>();
|
||||
if (cur_t == nullptr) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Open a reference to the current object.
|
||||
cur_t->Open();
|
||||
out[num_opened] = cur_t;
|
||||
}
|
||||
}
|
||||
|
||||
// If we converted every object, succeed.
|
||||
if (num_opened == num_handles) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// If we didn't convert entry object, close the ones we opened.
|
||||
for (size_t i = 0; i < num_opened; i++) {
|
||||
out[i]->Close();
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
s32 AllocateEntry() {
|
||||
ASSERT(m_count < m_table_size);
|
||||
|
||||
const auto index = m_free_head_index;
|
||||
|
||||
m_free_head_index = m_entry_infos[index].GetNextFreeIndex();
|
||||
|
||||
m_max_count = std::max(m_max_count, ++m_count);
|
||||
|
||||
return index;
|
||||
}
|
||||
|
||||
void FreeEntry(s32 index) {
|
||||
ASSERT(m_count > 0);
|
||||
|
||||
m_objects[index] = nullptr;
|
||||
m_entry_infos[index].next_free_index = static_cast<s16>(m_free_head_index);
|
||||
|
||||
m_free_head_index = index;
|
||||
|
||||
--m_count;
|
||||
}
|
||||
|
||||
u16 AllocateLinearId() {
|
||||
const u16 id = m_next_linear_id++;
|
||||
if (m_next_linear_id > MaxLinearId) {
|
||||
m_next_linear_id = MinLinearId;
|
||||
}
|
||||
return id;
|
||||
}
|
||||
|
||||
bool IsValidHandle(Handle handle) const {
|
||||
// Unpack the handle.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
const auto raw_value = handle_pack.raw;
|
||||
const auto index = handle_pack.index;
|
||||
const auto linear_id = handle_pack.linear_id;
|
||||
const auto reserved = handle_pack.reserved;
|
||||
ASSERT(reserved == 0);
|
||||
|
||||
// Validate our indexing information.
|
||||
if (raw_value == 0) {
|
||||
return false;
|
||||
}
|
||||
if (linear_id == 0) {
|
||||
return false;
|
||||
}
|
||||
if (index >= m_table_size) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check that there's an object, and our serial id is correct.
|
||||
if (m_objects[index] == nullptr) {
|
||||
return false;
|
||||
}
|
||||
if (m_entry_infos[index].GetLinearId() != linear_id) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
KAutoObject* GetObjectImpl(Handle handle) const {
|
||||
// Handles must not have reserved bits set.
|
||||
const auto handle_pack = HandlePack(handle);
|
||||
if (handle_pack.reserved != 0) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (this->IsValidHandle(handle)) {
|
||||
return m_objects[handle_pack.index];
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
KAutoObject* GetObjectByIndexImpl(Handle* out_handle, size_t index) const {
|
||||
|
||||
// Index must be in bounds.
|
||||
if (index >= m_table_size) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Ensure entry has an object.
|
||||
if (KAutoObject* obj = m_objects[index]; obj != nullptr) {
|
||||
*out_handle = EncodeHandle(static_cast<u16>(index), m_entry_infos[index].GetLinearId());
|
||||
return obj;
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
union HandlePack {
|
||||
HandlePack() = default;
|
||||
HandlePack(Handle handle) : raw{static_cast<u32>(handle)} {}
|
||||
|
||||
u32 raw;
|
||||
BitField<0, 15, u32> index;
|
||||
BitField<15, 15, u32> linear_id;
|
||||
BitField<30, 2, u32> reserved;
|
||||
};
|
||||
|
||||
static constexpr u16 MinLinearId = 1;
|
||||
static constexpr u16 MaxLinearId = 0x7FFF;
|
||||
|
||||
static constexpr Handle EncodeHandle(u16 index, u16 linear_id) {
|
||||
HandlePack handle{};
|
||||
handle.index.Assign(index);
|
||||
handle.linear_id.Assign(linear_id);
|
||||
handle.reserved.Assign(0);
|
||||
return handle.raw;
|
||||
}
|
||||
|
||||
union EntryInfo {
|
||||
u16 linear_id;
|
||||
s16 next_free_index;
|
||||
|
||||
constexpr u16 GetLinearId() const {
|
||||
return linear_id;
|
||||
}
|
||||
constexpr s16 GetNextFreeIndex() const {
|
||||
return next_free_index;
|
||||
}
|
||||
};
|
||||
|
||||
private:
|
||||
std::array<EntryInfo, MaxTableSize> m_entry_infos{};
|
||||
std::array<KAutoObject*, MaxTableSize> m_objects{};
|
||||
s32 m_free_head_index{-1};
|
||||
u16 m_table_size{};
|
||||
u16 m_max_count{};
|
||||
u16 m_next_linear_id{MinLinearId};
|
||||
u16 m_count{};
|
||||
mutable KSpinLock m_lock;
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,44 +1,44 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_interrupt_manager.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/physical_core.h"
|
||||
|
||||
namespace Kernel::KInterruptManager {
|
||||
|
||||
void HandleInterrupt(KernelCore& kernel, s32 core_id) {
|
||||
// Acknowledge the interrupt.
|
||||
kernel.PhysicalCore(core_id).ClearInterrupt();
|
||||
|
||||
auto& current_thread = GetCurrentThread(kernel);
|
||||
|
||||
if (auto* process = kernel.CurrentProcess(); process) {
|
||||
// If the user disable count is set, we may need to pin the current thread.
|
||||
if (current_thread.GetUserDisableCount() && !process->GetPinnedThread(core_id)) {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Pin the current thread.
|
||||
process->PinCurrentThread(core_id);
|
||||
|
||||
// Set the interrupt flag for the thread.
|
||||
GetCurrentThread(kernel).SetInterruptFlag();
|
||||
}
|
||||
}
|
||||
|
||||
// Request interrupt scheduling.
|
||||
kernel.CurrentScheduler()->RequestScheduleOnInterrupt();
|
||||
}
|
||||
|
||||
void SendInterProcessorInterrupt(KernelCore& kernel, u64 core_mask) {
|
||||
for (std::size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; ++core_id) {
|
||||
if (core_mask & (1ULL << core_id)) {
|
||||
kernel.PhysicalCore(core_id).Interrupt();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel::KInterruptManager
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_interrupt_manager.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/physical_core.h"
|
||||
|
||||
namespace Kernel::KInterruptManager {
|
||||
|
||||
void HandleInterrupt(KernelCore& kernel, s32 core_id) {
|
||||
// Acknowledge the interrupt.
|
||||
kernel.PhysicalCore(core_id).ClearInterrupt();
|
||||
|
||||
auto& current_thread = GetCurrentThread(kernel);
|
||||
|
||||
if (auto* process = kernel.CurrentProcess(); process) {
|
||||
// If the user disable count is set, we may need to pin the current thread.
|
||||
if (current_thread.GetUserDisableCount() && !process->GetPinnedThread(core_id)) {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Pin the current thread.
|
||||
process->PinCurrentThread(core_id);
|
||||
|
||||
// Set the interrupt flag for the thread.
|
||||
GetCurrentThread(kernel).SetInterruptFlag();
|
||||
}
|
||||
}
|
||||
|
||||
// Request interrupt scheduling.
|
||||
kernel.CurrentScheduler()->RequestScheduleOnInterrupt();
|
||||
}
|
||||
|
||||
void SendInterProcessorInterrupt(KernelCore& kernel, u64 core_mask) {
|
||||
for (std::size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; ++core_id) {
|
||||
if (core_mask & (1ULL << core_id)) {
|
||||
kernel.PhysicalCore(core_id).Interrupt();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel::KInterruptManager
|
||||
|
||||
@@ -1,18 +1,18 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
namespace KInterruptManager {
|
||||
void HandleInterrupt(KernelCore& kernel, s32 core_id);
|
||||
void SendInterProcessorInterrupt(KernelCore& kernel, u64 core_mask);
|
||||
|
||||
} // namespace KInterruptManager
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
namespace KInterruptManager {
|
||||
void HandleInterrupt(KernelCore& kernel, s32 core_id);
|
||||
void SendInterProcessorInterrupt(KernelCore& kernel, u64 core_mask);
|
||||
|
||||
} // namespace KInterruptManager
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,78 +1,78 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_light_condition_variable.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKLightConditionVariable final : public KThreadQueue {
|
||||
public:
|
||||
ThreadQueueImplForKLightConditionVariable(KernelCore& kernel_, KThread::WaiterList* wl,
|
||||
bool term)
|
||||
: KThreadQueue(kernel_), m_wait_list(wl), m_allow_terminating_thread(term) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Only process waits if we're allowed to.
|
||||
if (ResultTerminationRequested == wait_result && m_allow_terminating_thread) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Remove the thread from the waiting thread from the light condition variable.
|
||||
m_wait_list->erase(m_wait_list->iterator_to(*waiting_thread));
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KThread::WaiterList* m_wait_list;
|
||||
bool m_allow_terminating_thread;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void KLightConditionVariable::Wait(KLightLock* lock, s64 timeout, bool allow_terminating_thread) {
|
||||
// Create thread queue.
|
||||
KThread* owner = GetCurrentThreadPointer(kernel);
|
||||
|
||||
ThreadQueueImplForKLightConditionVariable wait_queue(kernel, std::addressof(wait_list),
|
||||
allow_terminating_thread);
|
||||
|
||||
// Sleep the thread.
|
||||
{
|
||||
KScopedSchedulerLockAndSleep lk(kernel, owner, timeout);
|
||||
|
||||
if (!allow_terminating_thread && owner->IsTerminationRequested()) {
|
||||
lk.CancelSleep();
|
||||
return;
|
||||
}
|
||||
|
||||
lock->Unlock();
|
||||
|
||||
// Add the thread to the queue.
|
||||
wait_list.push_back(*owner);
|
||||
|
||||
// Begin waiting.
|
||||
owner->BeginWait(std::addressof(wait_queue));
|
||||
}
|
||||
|
||||
// Re-acquire the lock.
|
||||
lock->Lock();
|
||||
}
|
||||
|
||||
void KLightConditionVariable::Broadcast() {
|
||||
KScopedSchedulerLock lk(kernel);
|
||||
|
||||
// Signal all threads.
|
||||
for (auto it = wait_list.begin(); it != wait_list.end(); it = wait_list.erase(it)) {
|
||||
it->EndWait(ResultSuccess);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_light_condition_variable.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKLightConditionVariable final : public KThreadQueue {
|
||||
public:
|
||||
ThreadQueueImplForKLightConditionVariable(KernelCore& kernel_, KThread::WaiterList* wl,
|
||||
bool term)
|
||||
: KThreadQueue(kernel_), m_wait_list(wl), m_allow_terminating_thread(term) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Only process waits if we're allowed to.
|
||||
if (ResultTerminationRequested == wait_result && m_allow_terminating_thread) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Remove the thread from the waiting thread from the light condition variable.
|
||||
m_wait_list->erase(m_wait_list->iterator_to(*waiting_thread));
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KThread::WaiterList* m_wait_list;
|
||||
bool m_allow_terminating_thread;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void KLightConditionVariable::Wait(KLightLock* lock, s64 timeout, bool allow_terminating_thread) {
|
||||
// Create thread queue.
|
||||
KThread* owner = GetCurrentThreadPointer(kernel);
|
||||
|
||||
ThreadQueueImplForKLightConditionVariable wait_queue(kernel, std::addressof(wait_list),
|
||||
allow_terminating_thread);
|
||||
|
||||
// Sleep the thread.
|
||||
{
|
||||
KScopedSchedulerLockAndSleep lk(kernel, owner, timeout);
|
||||
|
||||
if (!allow_terminating_thread && owner->IsTerminationRequested()) {
|
||||
lk.CancelSleep();
|
||||
return;
|
||||
}
|
||||
|
||||
lock->Unlock();
|
||||
|
||||
// Add the thread to the queue.
|
||||
wait_list.push_back(*owner);
|
||||
|
||||
// Begin waiting.
|
||||
owner->BeginWait(std::addressof(wait_queue));
|
||||
}
|
||||
|
||||
// Re-acquire the lock.
|
||||
lock->Lock();
|
||||
}
|
||||
|
||||
void KLightConditionVariable::Broadcast() {
|
||||
KScopedSchedulerLock lk(kernel);
|
||||
|
||||
// Signal all threads.
|
||||
for (auto it = wait_list.begin(); it != wait_list.end(); it = wait_list.erase(it)) {
|
||||
it->EndWait(ResultSuccess);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,25 +1,25 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KLightLock;
|
||||
|
||||
class KLightConditionVariable {
|
||||
public:
|
||||
explicit KLightConditionVariable(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
|
||||
void Wait(KLightLock* lock, s64 timeout = -1, bool allow_terminating_thread = true);
|
||||
void Broadcast();
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
KThread::WaiterList wait_list{};
|
||||
};
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KLightLock;
|
||||
|
||||
class KLightConditionVariable {
|
||||
public:
|
||||
explicit KLightConditionVariable(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
|
||||
void Wait(KLightLock* lock, s64 timeout = -1, bool allow_terminating_thread = true);
|
||||
void Broadcast();
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
KThread::WaiterList wait_list{};
|
||||
};
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,125 +1,125 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKLightLock final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKLightLock(KernelCore& kernel_) : KThreadQueue(kernel_) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Remove the thread as a waiter from its owner.
|
||||
if (KThread* owner = waiting_thread->GetLockOwner(); owner != nullptr) {
|
||||
owner->RemoveWaiter(waiting_thread);
|
||||
}
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void KLightLock::Lock() {
|
||||
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
|
||||
|
||||
while (true) {
|
||||
uintptr_t old_tag = tag.load(std::memory_order_relaxed);
|
||||
|
||||
while (!tag.compare_exchange_weak(old_tag, (old_tag == 0) ? cur_thread : (old_tag | 1),
|
||||
std::memory_order_acquire)) {
|
||||
}
|
||||
|
||||
if (old_tag == 0 || this->LockSlowPath(old_tag | 1, cur_thread)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void KLightLock::Unlock() {
|
||||
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
|
||||
|
||||
uintptr_t expected = cur_thread;
|
||||
if (!tag.compare_exchange_strong(expected, 0, std::memory_order_release)) {
|
||||
this->UnlockSlowPath(cur_thread);
|
||||
}
|
||||
}
|
||||
|
||||
bool KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
|
||||
KThread* cur_thread = reinterpret_cast<KThread*>(_cur_thread);
|
||||
ThreadQueueImplForKLightLock wait_queue(kernel);
|
||||
|
||||
// Pend the current thread waiting on the owner thread.
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Ensure we actually have locking to do.
|
||||
if (tag.load(std::memory_order_relaxed) != _owner) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Add the current thread as a waiter on the owner.
|
||||
KThread* owner_thread = reinterpret_cast<KThread*>(_owner & ~1ULL);
|
||||
cur_thread->SetAddressKey(reinterpret_cast<uintptr_t>(std::addressof(tag)));
|
||||
owner_thread->AddWaiter(cur_thread);
|
||||
|
||||
// Begin waiting to hold the lock.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
|
||||
if (owner_thread->IsSuspended()) {
|
||||
owner_thread->ContinueIfHasKernelWaiters();
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
|
||||
KThread* owner_thread = reinterpret_cast<KThread*>(_cur_thread);
|
||||
|
||||
// Unlock.
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Get the next owner.
|
||||
s32 num_waiters;
|
||||
KThread* next_owner = owner_thread->RemoveWaiterByKey(
|
||||
std::addressof(num_waiters), reinterpret_cast<uintptr_t>(std::addressof(tag)));
|
||||
|
||||
// Pass the lock to the next owner.
|
||||
uintptr_t next_tag = 0;
|
||||
if (next_owner != nullptr) {
|
||||
next_tag =
|
||||
reinterpret_cast<uintptr_t>(next_owner) | static_cast<uintptr_t>(num_waiters > 1);
|
||||
|
||||
next_owner->EndWait(ResultSuccess);
|
||||
|
||||
if (next_owner->IsSuspended()) {
|
||||
next_owner->ContinueIfHasKernelWaiters();
|
||||
}
|
||||
}
|
||||
|
||||
// We may have unsuspended in the process of acquiring the lock, so we'll re-suspend now if
|
||||
// so.
|
||||
if (owner_thread->IsSuspended()) {
|
||||
owner_thread->TrySuspend();
|
||||
}
|
||||
|
||||
// Write the new tag value.
|
||||
tag.store(next_tag, std::memory_order_release);
|
||||
}
|
||||
}
|
||||
|
||||
bool KLightLock::IsLockedByCurrentThread() const {
|
||||
return (tag | 1ULL) == (reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel)) | 1ULL);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKLightLock final : public KThreadQueue {
|
||||
public:
|
||||
explicit ThreadQueueImplForKLightLock(KernelCore& kernel_) : KThreadQueue(kernel_) {}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Remove the thread as a waiter from its owner.
|
||||
if (KThread* owner = waiting_thread->GetLockOwner(); owner != nullptr) {
|
||||
owner->RemoveWaiter(waiting_thread);
|
||||
}
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void KLightLock::Lock() {
|
||||
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
|
||||
|
||||
while (true) {
|
||||
uintptr_t old_tag = tag.load(std::memory_order_relaxed);
|
||||
|
||||
while (!tag.compare_exchange_weak(old_tag, (old_tag == 0) ? cur_thread : (old_tag | 1),
|
||||
std::memory_order_acquire)) {
|
||||
}
|
||||
|
||||
if (old_tag == 0 || this->LockSlowPath(old_tag | 1, cur_thread)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void KLightLock::Unlock() {
|
||||
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
|
||||
|
||||
uintptr_t expected = cur_thread;
|
||||
if (!tag.compare_exchange_strong(expected, 0, std::memory_order_release)) {
|
||||
this->UnlockSlowPath(cur_thread);
|
||||
}
|
||||
}
|
||||
|
||||
bool KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
|
||||
KThread* cur_thread = reinterpret_cast<KThread*>(_cur_thread);
|
||||
ThreadQueueImplForKLightLock wait_queue(kernel);
|
||||
|
||||
// Pend the current thread waiting on the owner thread.
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Ensure we actually have locking to do.
|
||||
if (tag.load(std::memory_order_relaxed) != _owner) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Add the current thread as a waiter on the owner.
|
||||
KThread* owner_thread = reinterpret_cast<KThread*>(_owner & ~1ULL);
|
||||
cur_thread->SetAddressKey(reinterpret_cast<uintptr_t>(std::addressof(tag)));
|
||||
owner_thread->AddWaiter(cur_thread);
|
||||
|
||||
// Begin waiting to hold the lock.
|
||||
cur_thread->BeginWait(std::addressof(wait_queue));
|
||||
|
||||
if (owner_thread->IsSuspended()) {
|
||||
owner_thread->ContinueIfHasKernelWaiters();
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
|
||||
KThread* owner_thread = reinterpret_cast<KThread*>(_cur_thread);
|
||||
|
||||
// Unlock.
|
||||
{
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// Get the next owner.
|
||||
s32 num_waiters;
|
||||
KThread* next_owner = owner_thread->RemoveWaiterByKey(
|
||||
std::addressof(num_waiters), reinterpret_cast<uintptr_t>(std::addressof(tag)));
|
||||
|
||||
// Pass the lock to the next owner.
|
||||
uintptr_t next_tag = 0;
|
||||
if (next_owner != nullptr) {
|
||||
next_tag =
|
||||
reinterpret_cast<uintptr_t>(next_owner) | static_cast<uintptr_t>(num_waiters > 1);
|
||||
|
||||
next_owner->EndWait(ResultSuccess);
|
||||
|
||||
if (next_owner->IsSuspended()) {
|
||||
next_owner->ContinueIfHasKernelWaiters();
|
||||
}
|
||||
}
|
||||
|
||||
// We may have unsuspended in the process of acquiring the lock, so we'll re-suspend now if
|
||||
// so.
|
||||
if (owner_thread->IsSuspended()) {
|
||||
owner_thread->TrySuspend();
|
||||
}
|
||||
|
||||
// Write the new tag value.
|
||||
tag.store(next_tag, std::memory_order_release);
|
||||
}
|
||||
}
|
||||
|
||||
bool KLightLock::IsLockedByCurrentThread() const {
|
||||
return (tag | 1ULL) == (reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel)) | 1ULL);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,39 +1,39 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "core/hle/kernel/k_scoped_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KLightLock {
|
||||
public:
|
||||
explicit KLightLock(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
|
||||
void Lock();
|
||||
|
||||
void Unlock();
|
||||
|
||||
bool LockSlowPath(uintptr_t owner, uintptr_t cur_thread);
|
||||
|
||||
void UnlockSlowPath(uintptr_t cur_thread);
|
||||
|
||||
bool IsLocked() const {
|
||||
return tag != 0;
|
||||
}
|
||||
|
||||
bool IsLockedByCurrentThread() const;
|
||||
|
||||
private:
|
||||
std::atomic<uintptr_t> tag{};
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
using KScopedLightLock = KScopedLock<KLightLock>;
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "core/hle/kernel/k_scoped_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KLightLock {
|
||||
public:
|
||||
explicit KLightLock(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
|
||||
void Lock();
|
||||
|
||||
void Unlock();
|
||||
|
||||
bool LockSlowPath(uintptr_t owner, uintptr_t cur_thread);
|
||||
|
||||
void UnlockSlowPath(uintptr_t cur_thread);
|
||||
|
||||
bool IsLocked() const {
|
||||
return tag != 0;
|
||||
}
|
||||
|
||||
bool IsLockedByCurrentThread() const;
|
||||
|
||||
private:
|
||||
std::atomic<uintptr_t> tag{};
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
using KScopedLightLock = KScopedLock<KLightLock>;
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,238 +1,238 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/intrusive/list.hpp>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KLinkedListNode : public boost::intrusive::list_base_hook<>,
|
||||
public KSlabAllocated<KLinkedListNode> {
|
||||
|
||||
public:
|
||||
explicit KLinkedListNode(KernelCore&) {}
|
||||
KLinkedListNode() = default;
|
||||
|
||||
void Initialize(void* it) {
|
||||
m_item = it;
|
||||
}
|
||||
|
||||
void* GetItem() const {
|
||||
return m_item;
|
||||
}
|
||||
|
||||
private:
|
||||
void* m_item = nullptr;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class KLinkedList : private boost::intrusive::list<KLinkedListNode> {
|
||||
private:
|
||||
using BaseList = boost::intrusive::list<KLinkedListNode>;
|
||||
|
||||
public:
|
||||
template <bool Const>
|
||||
class Iterator;
|
||||
|
||||
using value_type = T;
|
||||
using size_type = size_t;
|
||||
using difference_type = ptrdiff_t;
|
||||
using pointer = value_type*;
|
||||
using const_pointer = const value_type*;
|
||||
using reference = value_type&;
|
||||
using const_reference = const value_type&;
|
||||
using iterator = Iterator<false>;
|
||||
using const_iterator = Iterator<true>;
|
||||
using reverse_iterator = std::reverse_iterator<iterator>;
|
||||
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
||||
|
||||
template <bool Const>
|
||||
class Iterator {
|
||||
private:
|
||||
using BaseIterator = BaseList::iterator;
|
||||
friend class KLinkedList;
|
||||
|
||||
public:
|
||||
using iterator_category = std::bidirectional_iterator_tag;
|
||||
using value_type = typename KLinkedList::value_type;
|
||||
using difference_type = typename KLinkedList::difference_type;
|
||||
using pointer = std::conditional_t<Const, KLinkedList::const_pointer, KLinkedList::pointer>;
|
||||
using reference =
|
||||
std::conditional_t<Const, KLinkedList::const_reference, KLinkedList::reference>;
|
||||
|
||||
public:
|
||||
explicit Iterator(BaseIterator it) : m_base_it(it) {}
|
||||
|
||||
pointer GetItem() const {
|
||||
return static_cast<pointer>(m_base_it->GetItem());
|
||||
}
|
||||
|
||||
bool operator==(const Iterator& rhs) const {
|
||||
return m_base_it == rhs.m_base_it;
|
||||
}
|
||||
|
||||
bool operator!=(const Iterator& rhs) const {
|
||||
return !(*this == rhs);
|
||||
}
|
||||
|
||||
pointer operator->() const {
|
||||
return this->GetItem();
|
||||
}
|
||||
|
||||
reference operator*() const {
|
||||
return *this->GetItem();
|
||||
}
|
||||
|
||||
Iterator& operator++() {
|
||||
++m_base_it;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Iterator& operator--() {
|
||||
--m_base_it;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Iterator operator++(int) {
|
||||
const Iterator it{*this};
|
||||
++(*this);
|
||||
return it;
|
||||
}
|
||||
|
||||
Iterator operator--(int) {
|
||||
const Iterator it{*this};
|
||||
--(*this);
|
||||
return it;
|
||||
}
|
||||
|
||||
operator Iterator<true>() const {
|
||||
return Iterator<true>(m_base_it);
|
||||
}
|
||||
|
||||
private:
|
||||
BaseIterator m_base_it;
|
||||
};
|
||||
|
||||
public:
|
||||
constexpr KLinkedList(KernelCore& kernel_) : BaseList(), kernel{kernel_} {}
|
||||
|
||||
~KLinkedList() {
|
||||
// Erase all elements.
|
||||
for (auto it = begin(); it != end(); it = erase(it)) {
|
||||
}
|
||||
|
||||
// Ensure we succeeded.
|
||||
ASSERT(this->empty());
|
||||
}
|
||||
|
||||
// Iterator accessors.
|
||||
iterator begin() {
|
||||
return iterator(BaseList::begin());
|
||||
}
|
||||
|
||||
const_iterator begin() const {
|
||||
return const_iterator(BaseList::begin());
|
||||
}
|
||||
|
||||
iterator end() {
|
||||
return iterator(BaseList::end());
|
||||
}
|
||||
|
||||
const_iterator end() const {
|
||||
return const_iterator(BaseList::end());
|
||||
}
|
||||
|
||||
const_iterator cbegin() const {
|
||||
return this->begin();
|
||||
}
|
||||
|
||||
const_iterator cend() const {
|
||||
return this->end();
|
||||
}
|
||||
|
||||
reverse_iterator rbegin() {
|
||||
return reverse_iterator(this->end());
|
||||
}
|
||||
|
||||
const_reverse_iterator rbegin() const {
|
||||
return const_reverse_iterator(this->end());
|
||||
}
|
||||
|
||||
reverse_iterator rend() {
|
||||
return reverse_iterator(this->begin());
|
||||
}
|
||||
|
||||
const_reverse_iterator rend() const {
|
||||
return const_reverse_iterator(this->begin());
|
||||
}
|
||||
|
||||
const_reverse_iterator crbegin() const {
|
||||
return this->rbegin();
|
||||
}
|
||||
|
||||
const_reverse_iterator crend() const {
|
||||
return this->rend();
|
||||
}
|
||||
|
||||
// Content management.
|
||||
using BaseList::empty;
|
||||
using BaseList::size;
|
||||
|
||||
reference back() {
|
||||
return *(--this->end());
|
||||
}
|
||||
|
||||
const_reference back() const {
|
||||
return *(--this->end());
|
||||
}
|
||||
|
||||
reference front() {
|
||||
return *this->begin();
|
||||
}
|
||||
|
||||
const_reference front() const {
|
||||
return *this->begin();
|
||||
}
|
||||
|
||||
iterator insert(const_iterator pos, reference ref) {
|
||||
KLinkedListNode* new_node = KLinkedListNode::Allocate(kernel);
|
||||
ASSERT(new_node != nullptr);
|
||||
new_node->Initialize(std::addressof(ref));
|
||||
return iterator(BaseList::insert(pos.m_base_it, *new_node));
|
||||
}
|
||||
|
||||
void push_back(reference ref) {
|
||||
this->insert(this->end(), ref);
|
||||
}
|
||||
|
||||
void push_front(reference ref) {
|
||||
this->insert(this->begin(), ref);
|
||||
}
|
||||
|
||||
void pop_back() {
|
||||
this->erase(--this->end());
|
||||
}
|
||||
|
||||
void pop_front() {
|
||||
this->erase(this->begin());
|
||||
}
|
||||
|
||||
iterator erase(const iterator pos) {
|
||||
KLinkedListNode* freed_node = std::addressof(*pos.m_base_it);
|
||||
iterator ret = iterator(BaseList::erase(pos.m_base_it));
|
||||
KLinkedListNode::Free(kernel, freed_node);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/intrusive/list.hpp>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KLinkedListNode : public boost::intrusive::list_base_hook<>,
|
||||
public KSlabAllocated<KLinkedListNode> {
|
||||
|
||||
public:
|
||||
explicit KLinkedListNode(KernelCore&) {}
|
||||
KLinkedListNode() = default;
|
||||
|
||||
void Initialize(void* it) {
|
||||
m_item = it;
|
||||
}
|
||||
|
||||
void* GetItem() const {
|
||||
return m_item;
|
||||
}
|
||||
|
||||
private:
|
||||
void* m_item = nullptr;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class KLinkedList : private boost::intrusive::list<KLinkedListNode> {
|
||||
private:
|
||||
using BaseList = boost::intrusive::list<KLinkedListNode>;
|
||||
|
||||
public:
|
||||
template <bool Const>
|
||||
class Iterator;
|
||||
|
||||
using value_type = T;
|
||||
using size_type = size_t;
|
||||
using difference_type = ptrdiff_t;
|
||||
using pointer = value_type*;
|
||||
using const_pointer = const value_type*;
|
||||
using reference = value_type&;
|
||||
using const_reference = const value_type&;
|
||||
using iterator = Iterator<false>;
|
||||
using const_iterator = Iterator<true>;
|
||||
using reverse_iterator = std::reverse_iterator<iterator>;
|
||||
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
||||
|
||||
template <bool Const>
|
||||
class Iterator {
|
||||
private:
|
||||
using BaseIterator = BaseList::iterator;
|
||||
friend class KLinkedList;
|
||||
|
||||
public:
|
||||
using iterator_category = std::bidirectional_iterator_tag;
|
||||
using value_type = typename KLinkedList::value_type;
|
||||
using difference_type = typename KLinkedList::difference_type;
|
||||
using pointer = std::conditional_t<Const, KLinkedList::const_pointer, KLinkedList::pointer>;
|
||||
using reference =
|
||||
std::conditional_t<Const, KLinkedList::const_reference, KLinkedList::reference>;
|
||||
|
||||
public:
|
||||
explicit Iterator(BaseIterator it) : m_base_it(it) {}
|
||||
|
||||
pointer GetItem() const {
|
||||
return static_cast<pointer>(m_base_it->GetItem());
|
||||
}
|
||||
|
||||
bool operator==(const Iterator& rhs) const {
|
||||
return m_base_it == rhs.m_base_it;
|
||||
}
|
||||
|
||||
bool operator!=(const Iterator& rhs) const {
|
||||
return !(*this == rhs);
|
||||
}
|
||||
|
||||
pointer operator->() const {
|
||||
return this->GetItem();
|
||||
}
|
||||
|
||||
reference operator*() const {
|
||||
return *this->GetItem();
|
||||
}
|
||||
|
||||
Iterator& operator++() {
|
||||
++m_base_it;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Iterator& operator--() {
|
||||
--m_base_it;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Iterator operator++(int) {
|
||||
const Iterator it{*this};
|
||||
++(*this);
|
||||
return it;
|
||||
}
|
||||
|
||||
Iterator operator--(int) {
|
||||
const Iterator it{*this};
|
||||
--(*this);
|
||||
return it;
|
||||
}
|
||||
|
||||
operator Iterator<true>() const {
|
||||
return Iterator<true>(m_base_it);
|
||||
}
|
||||
|
||||
private:
|
||||
BaseIterator m_base_it;
|
||||
};
|
||||
|
||||
public:
|
||||
constexpr KLinkedList(KernelCore& kernel_) : BaseList(), kernel{kernel_} {}
|
||||
|
||||
~KLinkedList() {
|
||||
// Erase all elements.
|
||||
for (auto it = begin(); it != end(); it = erase(it)) {
|
||||
}
|
||||
|
||||
// Ensure we succeeded.
|
||||
ASSERT(this->empty());
|
||||
}
|
||||
|
||||
// Iterator accessors.
|
||||
iterator begin() {
|
||||
return iterator(BaseList::begin());
|
||||
}
|
||||
|
||||
const_iterator begin() const {
|
||||
return const_iterator(BaseList::begin());
|
||||
}
|
||||
|
||||
iterator end() {
|
||||
return iterator(BaseList::end());
|
||||
}
|
||||
|
||||
const_iterator end() const {
|
||||
return const_iterator(BaseList::end());
|
||||
}
|
||||
|
||||
const_iterator cbegin() const {
|
||||
return this->begin();
|
||||
}
|
||||
|
||||
const_iterator cend() const {
|
||||
return this->end();
|
||||
}
|
||||
|
||||
reverse_iterator rbegin() {
|
||||
return reverse_iterator(this->end());
|
||||
}
|
||||
|
||||
const_reverse_iterator rbegin() const {
|
||||
return const_reverse_iterator(this->end());
|
||||
}
|
||||
|
||||
reverse_iterator rend() {
|
||||
return reverse_iterator(this->begin());
|
||||
}
|
||||
|
||||
const_reverse_iterator rend() const {
|
||||
return const_reverse_iterator(this->begin());
|
||||
}
|
||||
|
||||
const_reverse_iterator crbegin() const {
|
||||
return this->rbegin();
|
||||
}
|
||||
|
||||
const_reverse_iterator crend() const {
|
||||
return this->rend();
|
||||
}
|
||||
|
||||
// Content management.
|
||||
using BaseList::empty;
|
||||
using BaseList::size;
|
||||
|
||||
reference back() {
|
||||
return *(--this->end());
|
||||
}
|
||||
|
||||
const_reference back() const {
|
||||
return *(--this->end());
|
||||
}
|
||||
|
||||
reference front() {
|
||||
return *this->begin();
|
||||
}
|
||||
|
||||
const_reference front() const {
|
||||
return *this->begin();
|
||||
}
|
||||
|
||||
iterator insert(const_iterator pos, reference ref) {
|
||||
KLinkedListNode* new_node = KLinkedListNode::Allocate(kernel);
|
||||
ASSERT(new_node != nullptr);
|
||||
new_node->Initialize(std::addressof(ref));
|
||||
return iterator(BaseList::insert(pos.m_base_it, *new_node));
|
||||
}
|
||||
|
||||
void push_back(reference ref) {
|
||||
this->insert(this->end(), ref);
|
||||
}
|
||||
|
||||
void push_front(reference ref) {
|
||||
this->insert(this->begin(), ref);
|
||||
}
|
||||
|
||||
void pop_back() {
|
||||
this->erase(--this->end());
|
||||
}
|
||||
|
||||
void pop_front() {
|
||||
this->erase(this->begin());
|
||||
}
|
||||
|
||||
iterator erase(const iterator pos) {
|
||||
KLinkedListNode* freed_node = std::addressof(*pos.m_base_it);
|
||||
iterator ret = iterator(BaseList::erase(pos.m_base_it));
|
||||
KLinkedListNode::Free(kernel, freed_node);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,337 +1,337 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_memory_block_manager.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KMemoryBlockManager::KMemoryBlockManager() = default;
|
||||
|
||||
Result KMemoryBlockManager::Initialize(VAddr st, VAddr nd, KMemoryBlockSlabManager* slab_manager) {
|
||||
// Allocate a block to encapsulate the address space, insert it into the tree.
|
||||
KMemoryBlock* start_block = slab_manager->Allocate();
|
||||
R_UNLESS(start_block != nullptr, ResultOutOfResource);
|
||||
|
||||
// Set our start and end.
|
||||
m_start_address = st;
|
||||
m_end_address = nd;
|
||||
ASSERT(Common::IsAligned(m_start_address, PageSize));
|
||||
ASSERT(Common::IsAligned(m_end_address, PageSize));
|
||||
|
||||
// Initialize and insert the block.
|
||||
start_block->Initialize(m_start_address, (m_end_address - m_start_address) / PageSize,
|
||||
KMemoryState::Free, KMemoryPermission::None, KMemoryAttribute::None);
|
||||
m_memory_block_tree.insert(*start_block);
|
||||
|
||||
R_SUCCEED();
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::Finalize(KMemoryBlockSlabManager* slab_manager,
|
||||
HostUnmapCallback&& host_unmap_callback) {
|
||||
// Erase every block until we have none left.
|
||||
auto it = m_memory_block_tree.begin();
|
||||
while (it != m_memory_block_tree.end()) {
|
||||
KMemoryBlock* block = std::addressof(*it);
|
||||
it = m_memory_block_tree.erase(it);
|
||||
slab_manager->Free(block);
|
||||
host_unmap_callback(block->GetAddress(), block->GetSize());
|
||||
}
|
||||
|
||||
ASSERT(m_memory_block_tree.empty());
|
||||
}
|
||||
|
||||
VAddr KMemoryBlockManager::FindFreeArea(VAddr region_start, size_t region_num_pages,
|
||||
size_t num_pages, size_t alignment, size_t offset,
|
||||
size_t guard_pages) const {
|
||||
if (num_pages > 0) {
|
||||
const VAddr region_end = region_start + region_num_pages * PageSize;
|
||||
const VAddr region_last = region_end - 1;
|
||||
for (const_iterator it = this->FindIterator(region_start); it != m_memory_block_tree.cend();
|
||||
it++) {
|
||||
const KMemoryInfo info = it->GetMemoryInfo();
|
||||
if (region_last < info.GetAddress()) {
|
||||
break;
|
||||
}
|
||||
if (info.m_state != KMemoryState::Free) {
|
||||
continue;
|
||||
}
|
||||
|
||||
VAddr area = (info.GetAddress() <= region_start) ? region_start : info.GetAddress();
|
||||
area += guard_pages * PageSize;
|
||||
|
||||
const VAddr offset_area = Common::AlignDown(area, alignment) + offset;
|
||||
area = (area <= offset_area) ? offset_area : offset_area + alignment;
|
||||
|
||||
const VAddr area_end = area + num_pages * PageSize + guard_pages * PageSize;
|
||||
const VAddr area_last = area_end - 1;
|
||||
|
||||
if (info.GetAddress() <= area && area < area_last && area_last <= region_last &&
|
||||
area_last <= info.GetLastAddress()) {
|
||||
return area;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return {};
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::CoalesceForUpdate(KMemoryBlockManagerUpdateAllocator* allocator,
|
||||
VAddr address, size_t num_pages) {
|
||||
// Find the iterator now that we've updated.
|
||||
iterator it = this->FindIterator(address);
|
||||
if (address != m_start_address) {
|
||||
it--;
|
||||
}
|
||||
|
||||
// Coalesce blocks that we can.
|
||||
while (true) {
|
||||
iterator prev = it++;
|
||||
if (it == m_memory_block_tree.end()) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (prev->CanMergeWith(*it)) {
|
||||
KMemoryBlock* block = std::addressof(*it);
|
||||
m_memory_block_tree.erase(it);
|
||||
prev->Add(*block);
|
||||
allocator->Free(block);
|
||||
it = prev;
|
||||
}
|
||||
|
||||
if (address + num_pages * PageSize < it->GetMemoryInfo().GetEndAddress()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::Update(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address,
|
||||
size_t num_pages, KMemoryState state, KMemoryPermission perm,
|
||||
KMemoryAttribute attr,
|
||||
KMemoryBlockDisableMergeAttribute set_disable_attr,
|
||||
KMemoryBlockDisableMergeAttribute clear_disable_attr) {
|
||||
// Ensure for auditing that we never end up with an invalid tree.
|
||||
KScopedMemoryBlockManagerAuditor auditor(this);
|
||||
ASSERT(Common::IsAligned(address, PageSize));
|
||||
ASSERT((attr & (KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared)) ==
|
||||
KMemoryAttribute::None);
|
||||
|
||||
VAddr cur_address = address;
|
||||
size_t remaining_pages = num_pages;
|
||||
iterator it = this->FindIterator(address);
|
||||
|
||||
while (remaining_pages > 0) {
|
||||
const size_t remaining_size = remaining_pages * PageSize;
|
||||
KMemoryInfo cur_info = it->GetMemoryInfo();
|
||||
if (it->HasProperties(state, perm, attr)) {
|
||||
// If we already have the right properties, just advance.
|
||||
if (cur_address + remaining_size < cur_info.GetEndAddress()) {
|
||||
remaining_pages = 0;
|
||||
cur_address += remaining_size;
|
||||
} else {
|
||||
remaining_pages =
|
||||
(cur_address + remaining_size - cur_info.GetEndAddress()) / PageSize;
|
||||
cur_address = cur_info.GetEndAddress();
|
||||
}
|
||||
} else {
|
||||
// If we need to, create a new block before and insert it.
|
||||
if (cur_info.GetAddress() != cur_address) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
it++;
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
cur_address = cur_info.GetAddress();
|
||||
}
|
||||
|
||||
// If we need to, create a new block after and insert it.
|
||||
if (cur_info.GetSize() > remaining_size) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address + remaining_size);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
}
|
||||
|
||||
// Update block state.
|
||||
it->Update(state, perm, attr, cur_address == address, static_cast<u8>(set_disable_attr),
|
||||
static_cast<u8>(clear_disable_attr));
|
||||
cur_address += cur_info.GetSize();
|
||||
remaining_pages -= cur_info.GetNumPages();
|
||||
}
|
||||
it++;
|
||||
}
|
||||
|
||||
this->CoalesceForUpdate(allocator, address, num_pages);
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::UpdateIfMatch(KMemoryBlockManagerUpdateAllocator* allocator,
|
||||
VAddr address, size_t num_pages, KMemoryState test_state,
|
||||
KMemoryPermission test_perm, KMemoryAttribute test_attr,
|
||||
KMemoryState state, KMemoryPermission perm,
|
||||
KMemoryAttribute attr) {
|
||||
// Ensure for auditing that we never end up with an invalid tree.
|
||||
KScopedMemoryBlockManagerAuditor auditor(this);
|
||||
ASSERT(Common::IsAligned(address, PageSize));
|
||||
ASSERT((attr & (KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared)) ==
|
||||
KMemoryAttribute::None);
|
||||
|
||||
VAddr cur_address = address;
|
||||
size_t remaining_pages = num_pages;
|
||||
iterator it = this->FindIterator(address);
|
||||
|
||||
while (remaining_pages > 0) {
|
||||
const size_t remaining_size = remaining_pages * PageSize;
|
||||
KMemoryInfo cur_info = it->GetMemoryInfo();
|
||||
if (it->HasProperties(test_state, test_perm, test_attr) &&
|
||||
!it->HasProperties(state, perm, attr)) {
|
||||
// If we need to, create a new block before and insert it.
|
||||
if (cur_info.GetAddress() != cur_address) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
it++;
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
cur_address = cur_info.GetAddress();
|
||||
}
|
||||
|
||||
// If we need to, create a new block after and insert it.
|
||||
if (cur_info.GetSize() > remaining_size) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address + remaining_size);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
}
|
||||
|
||||
// Update block state.
|
||||
it->Update(state, perm, attr, false, 0, 0);
|
||||
cur_address += cur_info.GetSize();
|
||||
remaining_pages -= cur_info.GetNumPages();
|
||||
} else {
|
||||
// If we already have the right properties, just advance.
|
||||
if (cur_address + remaining_size < cur_info.GetEndAddress()) {
|
||||
remaining_pages = 0;
|
||||
cur_address += remaining_size;
|
||||
} else {
|
||||
remaining_pages =
|
||||
(cur_address + remaining_size - cur_info.GetEndAddress()) / PageSize;
|
||||
cur_address = cur_info.GetEndAddress();
|
||||
}
|
||||
}
|
||||
it++;
|
||||
}
|
||||
|
||||
this->CoalesceForUpdate(allocator, address, num_pages);
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::UpdateLock(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address,
|
||||
size_t num_pages, MemoryBlockLockFunction lock_func,
|
||||
KMemoryPermission perm) {
|
||||
// Ensure for auditing that we never end up with an invalid tree.
|
||||
KScopedMemoryBlockManagerAuditor auditor(this);
|
||||
ASSERT(Common::IsAligned(address, PageSize));
|
||||
|
||||
VAddr cur_address = address;
|
||||
size_t remaining_pages = num_pages;
|
||||
iterator it = this->FindIterator(address);
|
||||
|
||||
const VAddr end_address = address + (num_pages * PageSize);
|
||||
|
||||
while (remaining_pages > 0) {
|
||||
const size_t remaining_size = remaining_pages * PageSize;
|
||||
KMemoryInfo cur_info = it->GetMemoryInfo();
|
||||
|
||||
// If we need to, create a new block before and insert it.
|
||||
if (cur_info.m_address != cur_address) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
it++;
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
cur_address = cur_info.GetAddress();
|
||||
}
|
||||
|
||||
if (cur_info.GetSize() > remaining_size) {
|
||||
// If we need to, create a new block after and insert it.
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address + remaining_size);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
}
|
||||
|
||||
// Call the locked update function.
|
||||
(std::addressof(*it)->*lock_func)(perm, cur_info.GetAddress() == address,
|
||||
cur_info.GetEndAddress() == end_address);
|
||||
cur_address += cur_info.GetSize();
|
||||
remaining_pages -= cur_info.GetNumPages();
|
||||
it++;
|
||||
}
|
||||
|
||||
this->CoalesceForUpdate(allocator, address, num_pages);
|
||||
}
|
||||
|
||||
// Debug.
|
||||
bool KMemoryBlockManager::CheckState() const {
|
||||
// Loop over every block, ensuring that we are sorted and coalesced.
|
||||
auto it = m_memory_block_tree.cbegin();
|
||||
auto prev = it++;
|
||||
while (it != m_memory_block_tree.cend()) {
|
||||
const KMemoryInfo prev_info = prev->GetMemoryInfo();
|
||||
const KMemoryInfo cur_info = it->GetMemoryInfo();
|
||||
|
||||
// Sequential blocks which can be merged should be merged.
|
||||
if (prev->CanMergeWith(*it)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Sequential blocks should be sequential.
|
||||
if (prev_info.GetEndAddress() != cur_info.GetAddress()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// If the block is ipc locked, it must have a count.
|
||||
if ((cur_info.m_attribute & KMemoryAttribute::IpcLocked) != KMemoryAttribute::None &&
|
||||
cur_info.m_ipc_lock_count == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// If the block is device shared, it must have a count.
|
||||
if ((cur_info.m_attribute & KMemoryAttribute::DeviceShared) != KMemoryAttribute::None &&
|
||||
cur_info.m_device_use_count == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Advance the iterator.
|
||||
prev = it++;
|
||||
}
|
||||
|
||||
// Our loop will miss checking the last block, potentially, so check it.
|
||||
if (prev != m_memory_block_tree.cend()) {
|
||||
const KMemoryInfo prev_info = prev->GetMemoryInfo();
|
||||
// If the block is ipc locked, it must have a count.
|
||||
if ((prev_info.m_attribute & KMemoryAttribute::IpcLocked) != KMemoryAttribute::None &&
|
||||
prev_info.m_ipc_lock_count == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// If the block is device shared, it must have a count.
|
||||
if ((prev_info.m_attribute & KMemoryAttribute::DeviceShared) != KMemoryAttribute::None &&
|
||||
prev_info.m_device_use_count == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_memory_block_manager.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KMemoryBlockManager::KMemoryBlockManager() = default;
|
||||
|
||||
Result KMemoryBlockManager::Initialize(VAddr st, VAddr nd, KMemoryBlockSlabManager* slab_manager) {
|
||||
// Allocate a block to encapsulate the address space, insert it into the tree.
|
||||
KMemoryBlock* start_block = slab_manager->Allocate();
|
||||
R_UNLESS(start_block != nullptr, ResultOutOfResource);
|
||||
|
||||
// Set our start and end.
|
||||
m_start_address = st;
|
||||
m_end_address = nd;
|
||||
ASSERT(Common::IsAligned(m_start_address, PageSize));
|
||||
ASSERT(Common::IsAligned(m_end_address, PageSize));
|
||||
|
||||
// Initialize and insert the block.
|
||||
start_block->Initialize(m_start_address, (m_end_address - m_start_address) / PageSize,
|
||||
KMemoryState::Free, KMemoryPermission::None, KMemoryAttribute::None);
|
||||
m_memory_block_tree.insert(*start_block);
|
||||
|
||||
R_SUCCEED();
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::Finalize(KMemoryBlockSlabManager* slab_manager,
|
||||
HostUnmapCallback&& host_unmap_callback) {
|
||||
// Erase every block until we have none left.
|
||||
auto it = m_memory_block_tree.begin();
|
||||
while (it != m_memory_block_tree.end()) {
|
||||
KMemoryBlock* block = std::addressof(*it);
|
||||
it = m_memory_block_tree.erase(it);
|
||||
slab_manager->Free(block);
|
||||
host_unmap_callback(block->GetAddress(), block->GetSize());
|
||||
}
|
||||
|
||||
ASSERT(m_memory_block_tree.empty());
|
||||
}
|
||||
|
||||
VAddr KMemoryBlockManager::FindFreeArea(VAddr region_start, size_t region_num_pages,
|
||||
size_t num_pages, size_t alignment, size_t offset,
|
||||
size_t guard_pages) const {
|
||||
if (num_pages > 0) {
|
||||
const VAddr region_end = region_start + region_num_pages * PageSize;
|
||||
const VAddr region_last = region_end - 1;
|
||||
for (const_iterator it = this->FindIterator(region_start); it != m_memory_block_tree.cend();
|
||||
it++) {
|
||||
const KMemoryInfo info = it->GetMemoryInfo();
|
||||
if (region_last < info.GetAddress()) {
|
||||
break;
|
||||
}
|
||||
if (info.m_state != KMemoryState::Free) {
|
||||
continue;
|
||||
}
|
||||
|
||||
VAddr area = (info.GetAddress() <= region_start) ? region_start : info.GetAddress();
|
||||
area += guard_pages * PageSize;
|
||||
|
||||
const VAddr offset_area = Common::AlignDown(area, alignment) + offset;
|
||||
area = (area <= offset_area) ? offset_area : offset_area + alignment;
|
||||
|
||||
const VAddr area_end = area + num_pages * PageSize + guard_pages * PageSize;
|
||||
const VAddr area_last = area_end - 1;
|
||||
|
||||
if (info.GetAddress() <= area && area < area_last && area_last <= region_last &&
|
||||
area_last <= info.GetLastAddress()) {
|
||||
return area;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return {};
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::CoalesceForUpdate(KMemoryBlockManagerUpdateAllocator* allocator,
|
||||
VAddr address, size_t num_pages) {
|
||||
// Find the iterator now that we've updated.
|
||||
iterator it = this->FindIterator(address);
|
||||
if (address != m_start_address) {
|
||||
it--;
|
||||
}
|
||||
|
||||
// Coalesce blocks that we can.
|
||||
while (true) {
|
||||
iterator prev = it++;
|
||||
if (it == m_memory_block_tree.end()) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (prev->CanMergeWith(*it)) {
|
||||
KMemoryBlock* block = std::addressof(*it);
|
||||
m_memory_block_tree.erase(it);
|
||||
prev->Add(*block);
|
||||
allocator->Free(block);
|
||||
it = prev;
|
||||
}
|
||||
|
||||
if (address + num_pages * PageSize < it->GetMemoryInfo().GetEndAddress()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::Update(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address,
|
||||
size_t num_pages, KMemoryState state, KMemoryPermission perm,
|
||||
KMemoryAttribute attr,
|
||||
KMemoryBlockDisableMergeAttribute set_disable_attr,
|
||||
KMemoryBlockDisableMergeAttribute clear_disable_attr) {
|
||||
// Ensure for auditing that we never end up with an invalid tree.
|
||||
KScopedMemoryBlockManagerAuditor auditor(this);
|
||||
ASSERT(Common::IsAligned(address, PageSize));
|
||||
ASSERT((attr & (KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared)) ==
|
||||
KMemoryAttribute::None);
|
||||
|
||||
VAddr cur_address = address;
|
||||
size_t remaining_pages = num_pages;
|
||||
iterator it = this->FindIterator(address);
|
||||
|
||||
while (remaining_pages > 0) {
|
||||
const size_t remaining_size = remaining_pages * PageSize;
|
||||
KMemoryInfo cur_info = it->GetMemoryInfo();
|
||||
if (it->HasProperties(state, perm, attr)) {
|
||||
// If we already have the right properties, just advance.
|
||||
if (cur_address + remaining_size < cur_info.GetEndAddress()) {
|
||||
remaining_pages = 0;
|
||||
cur_address += remaining_size;
|
||||
} else {
|
||||
remaining_pages =
|
||||
(cur_address + remaining_size - cur_info.GetEndAddress()) / PageSize;
|
||||
cur_address = cur_info.GetEndAddress();
|
||||
}
|
||||
} else {
|
||||
// If we need to, create a new block before and insert it.
|
||||
if (cur_info.GetAddress() != cur_address) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
it++;
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
cur_address = cur_info.GetAddress();
|
||||
}
|
||||
|
||||
// If we need to, create a new block after and insert it.
|
||||
if (cur_info.GetSize() > remaining_size) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address + remaining_size);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
}
|
||||
|
||||
// Update block state.
|
||||
it->Update(state, perm, attr, cur_address == address, static_cast<u8>(set_disable_attr),
|
||||
static_cast<u8>(clear_disable_attr));
|
||||
cur_address += cur_info.GetSize();
|
||||
remaining_pages -= cur_info.GetNumPages();
|
||||
}
|
||||
it++;
|
||||
}
|
||||
|
||||
this->CoalesceForUpdate(allocator, address, num_pages);
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::UpdateIfMatch(KMemoryBlockManagerUpdateAllocator* allocator,
|
||||
VAddr address, size_t num_pages, KMemoryState test_state,
|
||||
KMemoryPermission test_perm, KMemoryAttribute test_attr,
|
||||
KMemoryState state, KMemoryPermission perm,
|
||||
KMemoryAttribute attr) {
|
||||
// Ensure for auditing that we never end up with an invalid tree.
|
||||
KScopedMemoryBlockManagerAuditor auditor(this);
|
||||
ASSERT(Common::IsAligned(address, PageSize));
|
||||
ASSERT((attr & (KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared)) ==
|
||||
KMemoryAttribute::None);
|
||||
|
||||
VAddr cur_address = address;
|
||||
size_t remaining_pages = num_pages;
|
||||
iterator it = this->FindIterator(address);
|
||||
|
||||
while (remaining_pages > 0) {
|
||||
const size_t remaining_size = remaining_pages * PageSize;
|
||||
KMemoryInfo cur_info = it->GetMemoryInfo();
|
||||
if (it->HasProperties(test_state, test_perm, test_attr) &&
|
||||
!it->HasProperties(state, perm, attr)) {
|
||||
// If we need to, create a new block before and insert it.
|
||||
if (cur_info.GetAddress() != cur_address) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
it++;
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
cur_address = cur_info.GetAddress();
|
||||
}
|
||||
|
||||
// If we need to, create a new block after and insert it.
|
||||
if (cur_info.GetSize() > remaining_size) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address + remaining_size);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
}
|
||||
|
||||
// Update block state.
|
||||
it->Update(state, perm, attr, false, 0, 0);
|
||||
cur_address += cur_info.GetSize();
|
||||
remaining_pages -= cur_info.GetNumPages();
|
||||
} else {
|
||||
// If we already have the right properties, just advance.
|
||||
if (cur_address + remaining_size < cur_info.GetEndAddress()) {
|
||||
remaining_pages = 0;
|
||||
cur_address += remaining_size;
|
||||
} else {
|
||||
remaining_pages =
|
||||
(cur_address + remaining_size - cur_info.GetEndAddress()) / PageSize;
|
||||
cur_address = cur_info.GetEndAddress();
|
||||
}
|
||||
}
|
||||
it++;
|
||||
}
|
||||
|
||||
this->CoalesceForUpdate(allocator, address, num_pages);
|
||||
}
|
||||
|
||||
void KMemoryBlockManager::UpdateLock(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address,
|
||||
size_t num_pages, MemoryBlockLockFunction lock_func,
|
||||
KMemoryPermission perm) {
|
||||
// Ensure for auditing that we never end up with an invalid tree.
|
||||
KScopedMemoryBlockManagerAuditor auditor(this);
|
||||
ASSERT(Common::IsAligned(address, PageSize));
|
||||
|
||||
VAddr cur_address = address;
|
||||
size_t remaining_pages = num_pages;
|
||||
iterator it = this->FindIterator(address);
|
||||
|
||||
const VAddr end_address = address + (num_pages * PageSize);
|
||||
|
||||
while (remaining_pages > 0) {
|
||||
const size_t remaining_size = remaining_pages * PageSize;
|
||||
KMemoryInfo cur_info = it->GetMemoryInfo();
|
||||
|
||||
// If we need to, create a new block before and insert it.
|
||||
if (cur_info.m_address != cur_address) {
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
it++;
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
cur_address = cur_info.GetAddress();
|
||||
}
|
||||
|
||||
if (cur_info.GetSize() > remaining_size) {
|
||||
// If we need to, create a new block after and insert it.
|
||||
KMemoryBlock* new_block = allocator->Allocate();
|
||||
|
||||
it->Split(new_block, cur_address + remaining_size);
|
||||
it = m_memory_block_tree.insert(*new_block);
|
||||
|
||||
cur_info = it->GetMemoryInfo();
|
||||
}
|
||||
|
||||
// Call the locked update function.
|
||||
(std::addressof(*it)->*lock_func)(perm, cur_info.GetAddress() == address,
|
||||
cur_info.GetEndAddress() == end_address);
|
||||
cur_address += cur_info.GetSize();
|
||||
remaining_pages -= cur_info.GetNumPages();
|
||||
it++;
|
||||
}
|
||||
|
||||
this->CoalesceForUpdate(allocator, address, num_pages);
|
||||
}
|
||||
|
||||
// Debug.
|
||||
bool KMemoryBlockManager::CheckState() const {
|
||||
// Loop over every block, ensuring that we are sorted and coalesced.
|
||||
auto it = m_memory_block_tree.cbegin();
|
||||
auto prev = it++;
|
||||
while (it != m_memory_block_tree.cend()) {
|
||||
const KMemoryInfo prev_info = prev->GetMemoryInfo();
|
||||
const KMemoryInfo cur_info = it->GetMemoryInfo();
|
||||
|
||||
// Sequential blocks which can be merged should be merged.
|
||||
if (prev->CanMergeWith(*it)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Sequential blocks should be sequential.
|
||||
if (prev_info.GetEndAddress() != cur_info.GetAddress()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// If the block is ipc locked, it must have a count.
|
||||
if ((cur_info.m_attribute & KMemoryAttribute::IpcLocked) != KMemoryAttribute::None &&
|
||||
cur_info.m_ipc_lock_count == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// If the block is device shared, it must have a count.
|
||||
if ((cur_info.m_attribute & KMemoryAttribute::DeviceShared) != KMemoryAttribute::None &&
|
||||
cur_info.m_device_use_count == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Advance the iterator.
|
||||
prev = it++;
|
||||
}
|
||||
|
||||
// Our loop will miss checking the last block, potentially, so check it.
|
||||
if (prev != m_memory_block_tree.cend()) {
|
||||
const KMemoryInfo prev_info = prev->GetMemoryInfo();
|
||||
// If the block is ipc locked, it must have a count.
|
||||
if ((prev_info.m_attribute & KMemoryAttribute::IpcLocked) != KMemoryAttribute::None &&
|
||||
prev_info.m_ipc_lock_count == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// If the block is device shared, it must have a count.
|
||||
if ((prev_info.m_attribute & KMemoryAttribute::DeviceShared) != KMemoryAttribute::None &&
|
||||
prev_info.m_device_use_count == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,157 +1,157 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_dynamic_resource_manager.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KMemoryBlockManagerUpdateAllocator {
|
||||
public:
|
||||
static constexpr size_t MaxBlocks = 2;
|
||||
|
||||
private:
|
||||
KMemoryBlock* m_blocks[MaxBlocks];
|
||||
size_t m_index;
|
||||
KMemoryBlockSlabManager* m_slab_manager;
|
||||
|
||||
private:
|
||||
Result Initialize(size_t num_blocks) {
|
||||
// Check num blocks.
|
||||
ASSERT(num_blocks <= MaxBlocks);
|
||||
|
||||
// Set index.
|
||||
m_index = MaxBlocks - num_blocks;
|
||||
|
||||
// Allocate the blocks.
|
||||
for (size_t i = 0; i < num_blocks && i < MaxBlocks; ++i) {
|
||||
m_blocks[m_index + i] = m_slab_manager->Allocate();
|
||||
R_UNLESS(m_blocks[m_index + i] != nullptr, ResultOutOfResource);
|
||||
}
|
||||
|
||||
R_SUCCEED();
|
||||
}
|
||||
|
||||
public:
|
||||
KMemoryBlockManagerUpdateAllocator(Result* out_result, KMemoryBlockSlabManager* sm,
|
||||
size_t num_blocks = MaxBlocks)
|
||||
: m_blocks(), m_index(MaxBlocks), m_slab_manager(sm) {
|
||||
*out_result = this->Initialize(num_blocks);
|
||||
}
|
||||
|
||||
~KMemoryBlockManagerUpdateAllocator() {
|
||||
for (const auto& block : m_blocks) {
|
||||
if (block != nullptr) {
|
||||
m_slab_manager->Free(block);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
KMemoryBlock* Allocate() {
|
||||
ASSERT(m_index < MaxBlocks);
|
||||
ASSERT(m_blocks[m_index] != nullptr);
|
||||
KMemoryBlock* block = nullptr;
|
||||
std::swap(block, m_blocks[m_index++]);
|
||||
return block;
|
||||
}
|
||||
|
||||
void Free(KMemoryBlock* block) {
|
||||
ASSERT(m_index <= MaxBlocks);
|
||||
ASSERT(block != nullptr);
|
||||
if (m_index == 0) {
|
||||
m_slab_manager->Free(block);
|
||||
} else {
|
||||
m_blocks[--m_index] = block;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class KMemoryBlockManager final {
|
||||
public:
|
||||
using MemoryBlockTree =
|
||||
Common::IntrusiveRedBlackTreeBaseTraits<KMemoryBlock>::TreeType<KMemoryBlock>;
|
||||
using MemoryBlockLockFunction = void (KMemoryBlock::*)(KMemoryPermission new_perm, bool left,
|
||||
bool right);
|
||||
using iterator = MemoryBlockTree::iterator;
|
||||
using const_iterator = MemoryBlockTree::const_iterator;
|
||||
|
||||
public:
|
||||
KMemoryBlockManager();
|
||||
|
||||
using HostUnmapCallback = std::function<void(VAddr, u64)>;
|
||||
|
||||
Result Initialize(VAddr st, VAddr nd, KMemoryBlockSlabManager* slab_manager);
|
||||
void Finalize(KMemoryBlockSlabManager* slab_manager, HostUnmapCallback&& host_unmap_callback);
|
||||
|
||||
iterator end() {
|
||||
return m_memory_block_tree.end();
|
||||
}
|
||||
const_iterator end() const {
|
||||
return m_memory_block_tree.end();
|
||||
}
|
||||
const_iterator cend() const {
|
||||
return m_memory_block_tree.cend();
|
||||
}
|
||||
|
||||
VAddr FindFreeArea(VAddr region_start, size_t region_num_pages, size_t num_pages,
|
||||
size_t alignment, size_t offset, size_t guard_pages) const;
|
||||
|
||||
void Update(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address, size_t num_pages,
|
||||
KMemoryState state, KMemoryPermission perm, KMemoryAttribute attr,
|
||||
KMemoryBlockDisableMergeAttribute set_disable_attr,
|
||||
KMemoryBlockDisableMergeAttribute clear_disable_attr);
|
||||
void UpdateLock(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address, size_t num_pages,
|
||||
MemoryBlockLockFunction lock_func, KMemoryPermission perm);
|
||||
|
||||
void UpdateIfMatch(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address,
|
||||
size_t num_pages, KMemoryState test_state, KMemoryPermission test_perm,
|
||||
KMemoryAttribute test_attr, KMemoryState state, KMemoryPermission perm,
|
||||
KMemoryAttribute attr);
|
||||
|
||||
iterator FindIterator(VAddr address) const {
|
||||
return m_memory_block_tree.find(KMemoryBlock(
|
||||
address, 1, KMemoryState::Free, KMemoryPermission::None, KMemoryAttribute::None));
|
||||
}
|
||||
|
||||
const KMemoryBlock* FindBlock(VAddr address) const {
|
||||
if (const_iterator it = this->FindIterator(address); it != m_memory_block_tree.end()) {
|
||||
return std::addressof(*it);
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Debug.
|
||||
bool CheckState() const;
|
||||
|
||||
private:
|
||||
void CoalesceForUpdate(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address,
|
||||
size_t num_pages);
|
||||
|
||||
MemoryBlockTree m_memory_block_tree;
|
||||
VAddr m_start_address{};
|
||||
VAddr m_end_address{};
|
||||
};
|
||||
|
||||
class KScopedMemoryBlockManagerAuditor {
|
||||
public:
|
||||
explicit KScopedMemoryBlockManagerAuditor(KMemoryBlockManager* m) : m_manager(m) {
|
||||
ASSERT(m_manager->CheckState());
|
||||
}
|
||||
explicit KScopedMemoryBlockManagerAuditor(KMemoryBlockManager& m)
|
||||
: KScopedMemoryBlockManagerAuditor(std::addressof(m)) {}
|
||||
~KScopedMemoryBlockManagerAuditor() {
|
||||
ASSERT(m_manager->CheckState());
|
||||
}
|
||||
|
||||
private:
|
||||
KMemoryBlockManager* m_manager;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_dynamic_resource_manager.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KMemoryBlockManagerUpdateAllocator {
|
||||
public:
|
||||
static constexpr size_t MaxBlocks = 2;
|
||||
|
||||
private:
|
||||
KMemoryBlock* m_blocks[MaxBlocks];
|
||||
size_t m_index;
|
||||
KMemoryBlockSlabManager* m_slab_manager;
|
||||
|
||||
private:
|
||||
Result Initialize(size_t num_blocks) {
|
||||
// Check num blocks.
|
||||
ASSERT(num_blocks <= MaxBlocks);
|
||||
|
||||
// Set index.
|
||||
m_index = MaxBlocks - num_blocks;
|
||||
|
||||
// Allocate the blocks.
|
||||
for (size_t i = 0; i < num_blocks && i < MaxBlocks; ++i) {
|
||||
m_blocks[m_index + i] = m_slab_manager->Allocate();
|
||||
R_UNLESS(m_blocks[m_index + i] != nullptr, ResultOutOfResource);
|
||||
}
|
||||
|
||||
R_SUCCEED();
|
||||
}
|
||||
|
||||
public:
|
||||
KMemoryBlockManagerUpdateAllocator(Result* out_result, KMemoryBlockSlabManager* sm,
|
||||
size_t num_blocks = MaxBlocks)
|
||||
: m_blocks(), m_index(MaxBlocks), m_slab_manager(sm) {
|
||||
*out_result = this->Initialize(num_blocks);
|
||||
}
|
||||
|
||||
~KMemoryBlockManagerUpdateAllocator() {
|
||||
for (const auto& block : m_blocks) {
|
||||
if (block != nullptr) {
|
||||
m_slab_manager->Free(block);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
KMemoryBlock* Allocate() {
|
||||
ASSERT(m_index < MaxBlocks);
|
||||
ASSERT(m_blocks[m_index] != nullptr);
|
||||
KMemoryBlock* block = nullptr;
|
||||
std::swap(block, m_blocks[m_index++]);
|
||||
return block;
|
||||
}
|
||||
|
||||
void Free(KMemoryBlock* block) {
|
||||
ASSERT(m_index <= MaxBlocks);
|
||||
ASSERT(block != nullptr);
|
||||
if (m_index == 0) {
|
||||
m_slab_manager->Free(block);
|
||||
} else {
|
||||
m_blocks[--m_index] = block;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class KMemoryBlockManager final {
|
||||
public:
|
||||
using MemoryBlockTree =
|
||||
Common::IntrusiveRedBlackTreeBaseTraits<KMemoryBlock>::TreeType<KMemoryBlock>;
|
||||
using MemoryBlockLockFunction = void (KMemoryBlock::*)(KMemoryPermission new_perm, bool left,
|
||||
bool right);
|
||||
using iterator = MemoryBlockTree::iterator;
|
||||
using const_iterator = MemoryBlockTree::const_iterator;
|
||||
|
||||
public:
|
||||
KMemoryBlockManager();
|
||||
|
||||
using HostUnmapCallback = std::function<void(VAddr, u64)>;
|
||||
|
||||
Result Initialize(VAddr st, VAddr nd, KMemoryBlockSlabManager* slab_manager);
|
||||
void Finalize(KMemoryBlockSlabManager* slab_manager, HostUnmapCallback&& host_unmap_callback);
|
||||
|
||||
iterator end() {
|
||||
return m_memory_block_tree.end();
|
||||
}
|
||||
const_iterator end() const {
|
||||
return m_memory_block_tree.end();
|
||||
}
|
||||
const_iterator cend() const {
|
||||
return m_memory_block_tree.cend();
|
||||
}
|
||||
|
||||
VAddr FindFreeArea(VAddr region_start, size_t region_num_pages, size_t num_pages,
|
||||
size_t alignment, size_t offset, size_t guard_pages) const;
|
||||
|
||||
void Update(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address, size_t num_pages,
|
||||
KMemoryState state, KMemoryPermission perm, KMemoryAttribute attr,
|
||||
KMemoryBlockDisableMergeAttribute set_disable_attr,
|
||||
KMemoryBlockDisableMergeAttribute clear_disable_attr);
|
||||
void UpdateLock(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address, size_t num_pages,
|
||||
MemoryBlockLockFunction lock_func, KMemoryPermission perm);
|
||||
|
||||
void UpdateIfMatch(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address,
|
||||
size_t num_pages, KMemoryState test_state, KMemoryPermission test_perm,
|
||||
KMemoryAttribute test_attr, KMemoryState state, KMemoryPermission perm,
|
||||
KMemoryAttribute attr);
|
||||
|
||||
iterator FindIterator(VAddr address) const {
|
||||
return m_memory_block_tree.find(KMemoryBlock(
|
||||
address, 1, KMemoryState::Free, KMemoryPermission::None, KMemoryAttribute::None));
|
||||
}
|
||||
|
||||
const KMemoryBlock* FindBlock(VAddr address) const {
|
||||
if (const_iterator it = this->FindIterator(address); it != m_memory_block_tree.end()) {
|
||||
return std::addressof(*it);
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Debug.
|
||||
bool CheckState() const;
|
||||
|
||||
private:
|
||||
void CoalesceForUpdate(KMemoryBlockManagerUpdateAllocator* allocator, VAddr address,
|
||||
size_t num_pages);
|
||||
|
||||
MemoryBlockTree m_memory_block_tree;
|
||||
VAddr m_start_address{};
|
||||
VAddr m_end_address{};
|
||||
};
|
||||
|
||||
class KScopedMemoryBlockManagerAuditor {
|
||||
public:
|
||||
explicit KScopedMemoryBlockManagerAuditor(KMemoryBlockManager* m) : m_manager(m) {
|
||||
ASSERT(m_manager->CheckState());
|
||||
}
|
||||
explicit KScopedMemoryBlockManagerAuditor(KMemoryBlockManager& m)
|
||||
: KScopedMemoryBlockManagerAuditor(std::addressof(m)) {}
|
||||
~KScopedMemoryBlockManagerAuditor() {
|
||||
ASSERT(m_manager->CheckState());
|
||||
}
|
||||
|
||||
private:
|
||||
KMemoryBlockManager* m_manager;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,201 +1,201 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/literals.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_memory_manager.h"
|
||||
#include "core/hle/kernel/k_system_control.h"
|
||||
#include "core/hle/kernel/k_trace.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
constexpr size_t CarveoutAlignment = 0x20000;
|
||||
constexpr size_t CarveoutSizeMax = (512_MiB) - CarveoutAlignment;
|
||||
|
||||
bool SetupPowerManagementControllerMemoryRegion(KMemoryLayout& memory_layout) {
|
||||
// Above firmware 2.0.0, the PMC is not mappable.
|
||||
return memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x7000E000, 0x400, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap) &&
|
||||
memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x7000E400, 0xC00,
|
||||
KMemoryRegionType_PowerManagementController | KMemoryRegionAttr_NoUserMap);
|
||||
}
|
||||
|
||||
void InsertPoolPartitionRegionIntoBothTrees(KMemoryLayout& memory_layout, size_t start, size_t size,
|
||||
KMemoryRegionType phys_type,
|
||||
KMemoryRegionType virt_type, u32& cur_attr) {
|
||||
const u32 attr = cur_attr++;
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(start, size,
|
||||
static_cast<u32>(phys_type), attr));
|
||||
const KMemoryRegion* phys = memory_layout.GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(
|
||||
static_cast<u32>(phys_type), attr);
|
||||
ASSERT(phys != nullptr);
|
||||
ASSERT(phys->GetEndAddress() != 0);
|
||||
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(phys->GetPairAddress(), size,
|
||||
static_cast<u32>(virt_type), attr));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace Init {
|
||||
|
||||
void SetupDevicePhysicalMemoryRegions(KMemoryLayout& memory_layout) {
|
||||
ASSERT(SetupPowerManagementControllerMemoryRegion(memory_layout));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x70019000, 0x1000, KMemoryRegionType_MemoryController | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x7001C000, 0x1000, KMemoryRegionType_MemoryController0 | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x7001D000, 0x1000, KMemoryRegionType_MemoryController1 | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x50040000, 0x1000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x50041000, 0x1000,
|
||||
KMemoryRegionType_InterruptDistributor | KMemoryRegionAttr_ShouldKernelMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x50042000, 0x1000,
|
||||
KMemoryRegionType_InterruptCpuInterface | KMemoryRegionAttr_ShouldKernelMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x50043000, 0x1D000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
||||
|
||||
// Map IRAM unconditionally, to support debug-logging-to-iram build config.
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x40000000, 0x40000, KMemoryRegionType_LegacyLpsIram | KMemoryRegionAttr_ShouldKernelMap));
|
||||
|
||||
// Above firmware 2.0.0, prevent mapping the bpmp exception vectors or the ipatch region.
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x6000F000, 0x1000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x6001DC00, 0x400, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
||||
}
|
||||
|
||||
void SetupDramPhysicalMemoryRegions(KMemoryLayout& memory_layout) {
|
||||
const size_t intended_memory_size = KSystemControl::Init::GetIntendedMemorySize();
|
||||
const PAddr physical_memory_base_address =
|
||||
KSystemControl::Init::GetKernelPhysicalBaseAddress(DramPhysicalAddress);
|
||||
|
||||
// Insert blocks into the tree.
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
physical_memory_base_address, intended_memory_size, KMemoryRegionType_Dram));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
physical_memory_base_address, ReservedEarlyDramSize, KMemoryRegionType_DramReservedEarly));
|
||||
|
||||
// Insert the KTrace block at the end of Dram, if KTrace is enabled.
|
||||
static_assert(!IsKTraceEnabled || KTraceBufferSize > 0);
|
||||
if constexpr (IsKTraceEnabled) {
|
||||
const PAddr ktrace_buffer_phys_addr =
|
||||
physical_memory_base_address + intended_memory_size - KTraceBufferSize;
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
ktrace_buffer_phys_addr, KTraceBufferSize, KMemoryRegionType_KernelTraceBuffer));
|
||||
}
|
||||
}
|
||||
|
||||
void SetupPoolPartitionMemoryRegions(KMemoryLayout& memory_layout) {
|
||||
// Start by identifying the extents of the DRAM memory region.
|
||||
const auto dram_extents = memory_layout.GetMainMemoryPhysicalExtents();
|
||||
ASSERT(dram_extents.GetEndAddress() != 0);
|
||||
|
||||
// Determine the end of the pool region.
|
||||
const u64 pool_end = dram_extents.GetEndAddress() - KTraceBufferSize;
|
||||
|
||||
// Find the start of the kernel DRAM region.
|
||||
const KMemoryRegion* kernel_dram_region =
|
||||
memory_layout.GetPhysicalMemoryRegionTree().FindFirstDerived(
|
||||
KMemoryRegionType_DramKernelBase);
|
||||
ASSERT(kernel_dram_region != nullptr);
|
||||
|
||||
const u64 kernel_dram_start = kernel_dram_region->GetAddress();
|
||||
ASSERT(Common::IsAligned(kernel_dram_start, CarveoutAlignment));
|
||||
|
||||
// Find the start of the pool partitions region.
|
||||
const KMemoryRegion* pool_partitions_region =
|
||||
memory_layout.GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(
|
||||
KMemoryRegionType_DramPoolPartition, 0);
|
||||
ASSERT(pool_partitions_region != nullptr);
|
||||
const u64 pool_partitions_start = pool_partitions_region->GetAddress();
|
||||
|
||||
// Setup the pool partition layouts.
|
||||
// On 5.0.0+, setup modern 4-pool-partition layout.
|
||||
|
||||
// Get Application and Applet pool sizes.
|
||||
const size_t application_pool_size = KSystemControl::Init::GetApplicationPoolSize();
|
||||
const size_t applet_pool_size = KSystemControl::Init::GetAppletPoolSize();
|
||||
const size_t unsafe_system_pool_min_size =
|
||||
KSystemControl::Init::GetMinimumNonSecureSystemPoolSize();
|
||||
|
||||
// Decide on starting addresses for our pools.
|
||||
const u64 application_pool_start = pool_end - application_pool_size;
|
||||
const u64 applet_pool_start = application_pool_start - applet_pool_size;
|
||||
const u64 unsafe_system_pool_start = std::min(
|
||||
kernel_dram_start + CarveoutSizeMax,
|
||||
Common::AlignDown(applet_pool_start - unsafe_system_pool_min_size, CarveoutAlignment));
|
||||
const size_t unsafe_system_pool_size = applet_pool_start - unsafe_system_pool_start;
|
||||
|
||||
// We want to arrange application pool depending on where the middle of dram is.
|
||||
const u64 dram_midpoint = (dram_extents.GetAddress() + dram_extents.GetEndAddress()) / 2;
|
||||
u32 cur_pool_attr = 0;
|
||||
size_t total_overhead_size = 0;
|
||||
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, application_pool_start, application_pool_size,
|
||||
KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool,
|
||||
cur_pool_attr);
|
||||
total_overhead_size +=
|
||||
KMemoryManager::CalculateManagementOverheadSize(application_pool_size);
|
||||
} else {
|
||||
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
|
||||
const size_t second_application_pool_size =
|
||||
application_pool_start + application_pool_size - dram_midpoint;
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, application_pool_start, first_application_pool_size,
|
||||
KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool,
|
||||
cur_pool_attr);
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, dram_midpoint, second_application_pool_size,
|
||||
KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool,
|
||||
cur_pool_attr);
|
||||
total_overhead_size +=
|
||||
KMemoryManager::CalculateManagementOverheadSize(first_application_pool_size);
|
||||
total_overhead_size +=
|
||||
KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
|
||||
}
|
||||
|
||||
// Insert the applet pool.
|
||||
InsertPoolPartitionRegionIntoBothTrees(memory_layout, applet_pool_start, applet_pool_size,
|
||||
KMemoryRegionType_DramAppletPool,
|
||||
KMemoryRegionType_VirtualDramAppletPool, cur_pool_attr);
|
||||
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(applet_pool_size);
|
||||
|
||||
// Insert the nonsecure system pool.
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, unsafe_system_pool_start, unsafe_system_pool_size,
|
||||
KMemoryRegionType_DramSystemNonSecurePool, KMemoryRegionType_VirtualDramSystemNonSecurePool,
|
||||
cur_pool_attr);
|
||||
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(unsafe_system_pool_size);
|
||||
|
||||
// Insert the pool management region.
|
||||
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(
|
||||
(unsafe_system_pool_start - pool_partitions_start) - total_overhead_size);
|
||||
const u64 pool_management_start = unsafe_system_pool_start - total_overhead_size;
|
||||
const size_t pool_management_size = total_overhead_size;
|
||||
u32 pool_management_attr = 0;
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, pool_management_start, pool_management_size,
|
||||
KMemoryRegionType_DramPoolManagement, KMemoryRegionType_VirtualDramPoolManagement,
|
||||
pool_management_attr);
|
||||
|
||||
// Insert the system pool.
|
||||
const u64 system_pool_size = pool_management_start - pool_partitions_start;
|
||||
InsertPoolPartitionRegionIntoBothTrees(memory_layout, pool_partitions_start, system_pool_size,
|
||||
KMemoryRegionType_DramSystemPool,
|
||||
KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
|
||||
}
|
||||
|
||||
} // namespace Init
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/literals.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_memory_manager.h"
|
||||
#include "core/hle/kernel/k_system_control.h"
|
||||
#include "core/hle/kernel/k_trace.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
constexpr size_t CarveoutAlignment = 0x20000;
|
||||
constexpr size_t CarveoutSizeMax = (512_MiB) - CarveoutAlignment;
|
||||
|
||||
bool SetupPowerManagementControllerMemoryRegion(KMemoryLayout& memory_layout) {
|
||||
// Above firmware 2.0.0, the PMC is not mappable.
|
||||
return memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x7000E000, 0x400, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap) &&
|
||||
memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x7000E400, 0xC00,
|
||||
KMemoryRegionType_PowerManagementController | KMemoryRegionAttr_NoUserMap);
|
||||
}
|
||||
|
||||
void InsertPoolPartitionRegionIntoBothTrees(KMemoryLayout& memory_layout, size_t start, size_t size,
|
||||
KMemoryRegionType phys_type,
|
||||
KMemoryRegionType virt_type, u32& cur_attr) {
|
||||
const u32 attr = cur_attr++;
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(start, size,
|
||||
static_cast<u32>(phys_type), attr));
|
||||
const KMemoryRegion* phys = memory_layout.GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(
|
||||
static_cast<u32>(phys_type), attr);
|
||||
ASSERT(phys != nullptr);
|
||||
ASSERT(phys->GetEndAddress() != 0);
|
||||
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(phys->GetPairAddress(), size,
|
||||
static_cast<u32>(virt_type), attr));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace Init {
|
||||
|
||||
void SetupDevicePhysicalMemoryRegions(KMemoryLayout& memory_layout) {
|
||||
ASSERT(SetupPowerManagementControllerMemoryRegion(memory_layout));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x70019000, 0x1000, KMemoryRegionType_MemoryController | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x7001C000, 0x1000, KMemoryRegionType_MemoryController0 | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x7001D000, 0x1000, KMemoryRegionType_MemoryController1 | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x50040000, 0x1000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x50041000, 0x1000,
|
||||
KMemoryRegionType_InterruptDistributor | KMemoryRegionAttr_ShouldKernelMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x50042000, 0x1000,
|
||||
KMemoryRegionType_InterruptCpuInterface | KMemoryRegionAttr_ShouldKernelMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x50043000, 0x1D000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
||||
|
||||
// Map IRAM unconditionally, to support debug-logging-to-iram build config.
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x40000000, 0x40000, KMemoryRegionType_LegacyLpsIram | KMemoryRegionAttr_ShouldKernelMap));
|
||||
|
||||
// Above firmware 2.0.0, prevent mapping the bpmp exception vectors or the ipatch region.
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x6000F000, 0x1000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
0x6001DC00, 0x400, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
||||
}
|
||||
|
||||
void SetupDramPhysicalMemoryRegions(KMemoryLayout& memory_layout) {
|
||||
const size_t intended_memory_size = KSystemControl::Init::GetIntendedMemorySize();
|
||||
const PAddr physical_memory_base_address =
|
||||
KSystemControl::Init::GetKernelPhysicalBaseAddress(DramPhysicalAddress);
|
||||
|
||||
// Insert blocks into the tree.
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
physical_memory_base_address, intended_memory_size, KMemoryRegionType_Dram));
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
physical_memory_base_address, ReservedEarlyDramSize, KMemoryRegionType_DramReservedEarly));
|
||||
|
||||
// Insert the KTrace block at the end of Dram, if KTrace is enabled.
|
||||
static_assert(!IsKTraceEnabled || KTraceBufferSize > 0);
|
||||
if constexpr (IsKTraceEnabled) {
|
||||
const PAddr ktrace_buffer_phys_addr =
|
||||
physical_memory_base_address + intended_memory_size - KTraceBufferSize;
|
||||
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert(
|
||||
ktrace_buffer_phys_addr, KTraceBufferSize, KMemoryRegionType_KernelTraceBuffer));
|
||||
}
|
||||
}
|
||||
|
||||
void SetupPoolPartitionMemoryRegions(KMemoryLayout& memory_layout) {
|
||||
// Start by identifying the extents of the DRAM memory region.
|
||||
const auto dram_extents = memory_layout.GetMainMemoryPhysicalExtents();
|
||||
ASSERT(dram_extents.GetEndAddress() != 0);
|
||||
|
||||
// Determine the end of the pool region.
|
||||
const u64 pool_end = dram_extents.GetEndAddress() - KTraceBufferSize;
|
||||
|
||||
// Find the start of the kernel DRAM region.
|
||||
const KMemoryRegion* kernel_dram_region =
|
||||
memory_layout.GetPhysicalMemoryRegionTree().FindFirstDerived(
|
||||
KMemoryRegionType_DramKernelBase);
|
||||
ASSERT(kernel_dram_region != nullptr);
|
||||
|
||||
const u64 kernel_dram_start = kernel_dram_region->GetAddress();
|
||||
ASSERT(Common::IsAligned(kernel_dram_start, CarveoutAlignment));
|
||||
|
||||
// Find the start of the pool partitions region.
|
||||
const KMemoryRegion* pool_partitions_region =
|
||||
memory_layout.GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(
|
||||
KMemoryRegionType_DramPoolPartition, 0);
|
||||
ASSERT(pool_partitions_region != nullptr);
|
||||
const u64 pool_partitions_start = pool_partitions_region->GetAddress();
|
||||
|
||||
// Setup the pool partition layouts.
|
||||
// On 5.0.0+, setup modern 4-pool-partition layout.
|
||||
|
||||
// Get Application and Applet pool sizes.
|
||||
const size_t application_pool_size = KSystemControl::Init::GetApplicationPoolSize();
|
||||
const size_t applet_pool_size = KSystemControl::Init::GetAppletPoolSize();
|
||||
const size_t unsafe_system_pool_min_size =
|
||||
KSystemControl::Init::GetMinimumNonSecureSystemPoolSize();
|
||||
|
||||
// Decide on starting addresses for our pools.
|
||||
const u64 application_pool_start = pool_end - application_pool_size;
|
||||
const u64 applet_pool_start = application_pool_start - applet_pool_size;
|
||||
const u64 unsafe_system_pool_start = std::min(
|
||||
kernel_dram_start + CarveoutSizeMax,
|
||||
Common::AlignDown(applet_pool_start - unsafe_system_pool_min_size, CarveoutAlignment));
|
||||
const size_t unsafe_system_pool_size = applet_pool_start - unsafe_system_pool_start;
|
||||
|
||||
// We want to arrange application pool depending on where the middle of dram is.
|
||||
const u64 dram_midpoint = (dram_extents.GetAddress() + dram_extents.GetEndAddress()) / 2;
|
||||
u32 cur_pool_attr = 0;
|
||||
size_t total_overhead_size = 0;
|
||||
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, application_pool_start, application_pool_size,
|
||||
KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool,
|
||||
cur_pool_attr);
|
||||
total_overhead_size +=
|
||||
KMemoryManager::CalculateManagementOverheadSize(application_pool_size);
|
||||
} else {
|
||||
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
|
||||
const size_t second_application_pool_size =
|
||||
application_pool_start + application_pool_size - dram_midpoint;
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, application_pool_start, first_application_pool_size,
|
||||
KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool,
|
||||
cur_pool_attr);
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, dram_midpoint, second_application_pool_size,
|
||||
KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool,
|
||||
cur_pool_attr);
|
||||
total_overhead_size +=
|
||||
KMemoryManager::CalculateManagementOverheadSize(first_application_pool_size);
|
||||
total_overhead_size +=
|
||||
KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
|
||||
}
|
||||
|
||||
// Insert the applet pool.
|
||||
InsertPoolPartitionRegionIntoBothTrees(memory_layout, applet_pool_start, applet_pool_size,
|
||||
KMemoryRegionType_DramAppletPool,
|
||||
KMemoryRegionType_VirtualDramAppletPool, cur_pool_attr);
|
||||
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(applet_pool_size);
|
||||
|
||||
// Insert the nonsecure system pool.
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, unsafe_system_pool_start, unsafe_system_pool_size,
|
||||
KMemoryRegionType_DramSystemNonSecurePool, KMemoryRegionType_VirtualDramSystemNonSecurePool,
|
||||
cur_pool_attr);
|
||||
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(unsafe_system_pool_size);
|
||||
|
||||
// Insert the pool management region.
|
||||
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(
|
||||
(unsafe_system_pool_start - pool_partitions_start) - total_overhead_size);
|
||||
const u64 pool_management_start = unsafe_system_pool_start - total_overhead_size;
|
||||
const size_t pool_management_size = total_overhead_size;
|
||||
u32 pool_management_attr = 0;
|
||||
InsertPoolPartitionRegionIntoBothTrees(
|
||||
memory_layout, pool_management_start, pool_management_size,
|
||||
KMemoryRegionType_DramPoolManagement, KMemoryRegionType_VirtualDramPoolManagement,
|
||||
pool_management_attr);
|
||||
|
||||
// Insert the system pool.
|
||||
const u64 system_pool_size = pool_management_start - pool_partitions_start;
|
||||
InsertPoolPartitionRegionIntoBothTrees(memory_layout, pool_partitions_start, system_pool_size,
|
||||
KMemoryRegionType_DramSystemPool,
|
||||
KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
|
||||
}
|
||||
|
||||
} // namespace Init
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,165 +1,165 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_system_control.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename... Args>
|
||||
KMemoryRegion* AllocateRegion(KMemoryRegionAllocator& memory_region_allocator, Args&&... args) {
|
||||
return memory_region_allocator.Allocate(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
KMemoryRegionTree::KMemoryRegionTree(KMemoryRegionAllocator& memory_region_allocator_)
|
||||
: memory_region_allocator{memory_region_allocator_} {}
|
||||
|
||||
void KMemoryRegionTree::InsertDirectly(u64 address, u64 last_address, u32 attr, u32 type_id) {
|
||||
this->insert(*AllocateRegion(memory_region_allocator, address, last_address, attr, type_id));
|
||||
}
|
||||
|
||||
bool KMemoryRegionTree::Insert(u64 address, size_t size, u32 type_id, u32 new_attr, u32 old_attr) {
|
||||
// Locate the memory region that contains the address.
|
||||
KMemoryRegion* found = this->FindModifiable(address);
|
||||
|
||||
// We require that the old attr is correct.
|
||||
if (found->GetAttributes() != old_attr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// We further require that the region can be split from the old region.
|
||||
const u64 inserted_region_end = address + size;
|
||||
const u64 inserted_region_last = inserted_region_end - 1;
|
||||
if (found->GetLastAddress() < inserted_region_last) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Further, we require that the type id is a valid transformation.
|
||||
if (!found->CanDerive(type_id)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Cache information from the region before we remove it.
|
||||
const u64 old_address = found->GetAddress();
|
||||
const u64 old_last = found->GetLastAddress();
|
||||
const u64 old_pair = found->GetPairAddress();
|
||||
const u32 old_type = found->GetType();
|
||||
|
||||
// Erase the existing region from the tree.
|
||||
this->erase(this->iterator_to(*found));
|
||||
|
||||
// Insert the new region into the tree.
|
||||
if (old_address == address) {
|
||||
// Reuse the old object for the new region, if we can.
|
||||
found->Reset(address, inserted_region_last, old_pair, new_attr, type_id);
|
||||
this->insert(*found);
|
||||
} else {
|
||||
// If we can't re-use, adjust the old region.
|
||||
found->Reset(old_address, address - 1, old_pair, old_attr, old_type);
|
||||
this->insert(*found);
|
||||
|
||||
// Insert a new region for the split.
|
||||
const u64 new_pair = (old_pair != std::numeric_limits<u64>::max())
|
||||
? old_pair + (address - old_address)
|
||||
: old_pair;
|
||||
this->insert(*AllocateRegion(memory_region_allocator, address, inserted_region_last,
|
||||
new_pair, new_attr, type_id));
|
||||
}
|
||||
|
||||
// If we need to insert a region after the region, do so.
|
||||
if (old_last != inserted_region_last) {
|
||||
const u64 after_pair = (old_pair != std::numeric_limits<u64>::max())
|
||||
? old_pair + (inserted_region_end - old_address)
|
||||
: old_pair;
|
||||
this->insert(*AllocateRegion(memory_region_allocator, inserted_region_end, old_last,
|
||||
after_pair, old_attr, old_type));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
VAddr KMemoryRegionTree::GetRandomAlignedRegion(size_t size, size_t alignment, u32 type_id) {
|
||||
// We want to find the total extents of the type id.
|
||||
const auto extents = this->GetDerivedRegionExtents(static_cast<KMemoryRegionType>(type_id));
|
||||
|
||||
// Ensure that our alignment is correct.
|
||||
ASSERT(Common::IsAligned(extents.GetAddress(), alignment));
|
||||
|
||||
const u64 first_address = extents.GetAddress();
|
||||
const u64 last_address = extents.GetLastAddress();
|
||||
|
||||
const u64 first_index = first_address / alignment;
|
||||
const u64 last_index = last_address / alignment;
|
||||
|
||||
while (true) {
|
||||
const u64 candidate =
|
||||
KSystemControl::GenerateRandomRange(first_index, last_index) * alignment;
|
||||
|
||||
// Ensure that the candidate doesn't overflow with the size.
|
||||
if (!(candidate < candidate + size)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const u64 candidate_last = candidate + size - 1;
|
||||
|
||||
// Ensure that the candidate fits within the region.
|
||||
if (candidate_last > last_address) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Locate the candidate region, and ensure it fits and has the correct type id.
|
||||
if (const auto& candidate_region = *this->Find(candidate);
|
||||
!(candidate_last <= candidate_region.GetLastAddress() &&
|
||||
candidate_region.GetType() == type_id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
return candidate;
|
||||
}
|
||||
}
|
||||
|
||||
KMemoryLayout::KMemoryLayout()
|
||||
: virtual_tree{memory_region_allocator}, physical_tree{memory_region_allocator},
|
||||
virtual_linear_tree{memory_region_allocator}, physical_linear_tree{memory_region_allocator} {}
|
||||
|
||||
void KMemoryLayout::InitializeLinearMemoryRegionTrees(PAddr aligned_linear_phys_start,
|
||||
VAddr linear_virtual_start) {
|
||||
// Set static differences.
|
||||
linear_phys_to_virt_diff = linear_virtual_start - aligned_linear_phys_start;
|
||||
linear_virt_to_phys_diff = aligned_linear_phys_start - linear_virtual_start;
|
||||
|
||||
// Initialize linear trees.
|
||||
for (auto& region : GetPhysicalMemoryRegionTree()) {
|
||||
if (region.HasTypeAttribute(KMemoryRegionAttr_LinearMapped)) {
|
||||
GetPhysicalLinearMemoryRegionTree().InsertDirectly(
|
||||
region.GetAddress(), region.GetLastAddress(), region.GetAttributes(),
|
||||
region.GetType());
|
||||
}
|
||||
}
|
||||
|
||||
for (auto& region : GetVirtualMemoryRegionTree()) {
|
||||
if (region.IsDerivedFrom(KMemoryRegionType_Dram)) {
|
||||
GetVirtualLinearMemoryRegionTree().InsertDirectly(
|
||||
region.GetAddress(), region.GetLastAddress(), region.GetAttributes(),
|
||||
region.GetType());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t KMemoryLayout::GetResourceRegionSizeForInit() {
|
||||
// Calculate resource region size based on whether we allow extra threads.
|
||||
const bool use_extra_resources = KSystemControl::Init::ShouldIncreaseThreadResourceLimit();
|
||||
size_t resource_region_size =
|
||||
KernelResourceSize + (use_extra_resources ? KernelSlabHeapAdditionalSize : 0);
|
||||
|
||||
return resource_region_size;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_system_control.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename... Args>
|
||||
KMemoryRegion* AllocateRegion(KMemoryRegionAllocator& memory_region_allocator, Args&&... args) {
|
||||
return memory_region_allocator.Allocate(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
KMemoryRegionTree::KMemoryRegionTree(KMemoryRegionAllocator& memory_region_allocator_)
|
||||
: memory_region_allocator{memory_region_allocator_} {}
|
||||
|
||||
void KMemoryRegionTree::InsertDirectly(u64 address, u64 last_address, u32 attr, u32 type_id) {
|
||||
this->insert(*AllocateRegion(memory_region_allocator, address, last_address, attr, type_id));
|
||||
}
|
||||
|
||||
bool KMemoryRegionTree::Insert(u64 address, size_t size, u32 type_id, u32 new_attr, u32 old_attr) {
|
||||
// Locate the memory region that contains the address.
|
||||
KMemoryRegion* found = this->FindModifiable(address);
|
||||
|
||||
// We require that the old attr is correct.
|
||||
if (found->GetAttributes() != old_attr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// We further require that the region can be split from the old region.
|
||||
const u64 inserted_region_end = address + size;
|
||||
const u64 inserted_region_last = inserted_region_end - 1;
|
||||
if (found->GetLastAddress() < inserted_region_last) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Further, we require that the type id is a valid transformation.
|
||||
if (!found->CanDerive(type_id)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Cache information from the region before we remove it.
|
||||
const u64 old_address = found->GetAddress();
|
||||
const u64 old_last = found->GetLastAddress();
|
||||
const u64 old_pair = found->GetPairAddress();
|
||||
const u32 old_type = found->GetType();
|
||||
|
||||
// Erase the existing region from the tree.
|
||||
this->erase(this->iterator_to(*found));
|
||||
|
||||
// Insert the new region into the tree.
|
||||
if (old_address == address) {
|
||||
// Reuse the old object for the new region, if we can.
|
||||
found->Reset(address, inserted_region_last, old_pair, new_attr, type_id);
|
||||
this->insert(*found);
|
||||
} else {
|
||||
// If we can't re-use, adjust the old region.
|
||||
found->Reset(old_address, address - 1, old_pair, old_attr, old_type);
|
||||
this->insert(*found);
|
||||
|
||||
// Insert a new region for the split.
|
||||
const u64 new_pair = (old_pair != std::numeric_limits<u64>::max())
|
||||
? old_pair + (address - old_address)
|
||||
: old_pair;
|
||||
this->insert(*AllocateRegion(memory_region_allocator, address, inserted_region_last,
|
||||
new_pair, new_attr, type_id));
|
||||
}
|
||||
|
||||
// If we need to insert a region after the region, do so.
|
||||
if (old_last != inserted_region_last) {
|
||||
const u64 after_pair = (old_pair != std::numeric_limits<u64>::max())
|
||||
? old_pair + (inserted_region_end - old_address)
|
||||
: old_pair;
|
||||
this->insert(*AllocateRegion(memory_region_allocator, inserted_region_end, old_last,
|
||||
after_pair, old_attr, old_type));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
VAddr KMemoryRegionTree::GetRandomAlignedRegion(size_t size, size_t alignment, u32 type_id) {
|
||||
// We want to find the total extents of the type id.
|
||||
const auto extents = this->GetDerivedRegionExtents(static_cast<KMemoryRegionType>(type_id));
|
||||
|
||||
// Ensure that our alignment is correct.
|
||||
ASSERT(Common::IsAligned(extents.GetAddress(), alignment));
|
||||
|
||||
const u64 first_address = extents.GetAddress();
|
||||
const u64 last_address = extents.GetLastAddress();
|
||||
|
||||
const u64 first_index = first_address / alignment;
|
||||
const u64 last_index = last_address / alignment;
|
||||
|
||||
while (true) {
|
||||
const u64 candidate =
|
||||
KSystemControl::GenerateRandomRange(first_index, last_index) * alignment;
|
||||
|
||||
// Ensure that the candidate doesn't overflow with the size.
|
||||
if (!(candidate < candidate + size)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const u64 candidate_last = candidate + size - 1;
|
||||
|
||||
// Ensure that the candidate fits within the region.
|
||||
if (candidate_last > last_address) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Locate the candidate region, and ensure it fits and has the correct type id.
|
||||
if (const auto& candidate_region = *this->Find(candidate);
|
||||
!(candidate_last <= candidate_region.GetLastAddress() &&
|
||||
candidate_region.GetType() == type_id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
return candidate;
|
||||
}
|
||||
}
|
||||
|
||||
KMemoryLayout::KMemoryLayout()
|
||||
: virtual_tree{memory_region_allocator}, physical_tree{memory_region_allocator},
|
||||
virtual_linear_tree{memory_region_allocator}, physical_linear_tree{memory_region_allocator} {}
|
||||
|
||||
void KMemoryLayout::InitializeLinearMemoryRegionTrees(PAddr aligned_linear_phys_start,
|
||||
VAddr linear_virtual_start) {
|
||||
// Set static differences.
|
||||
linear_phys_to_virt_diff = linear_virtual_start - aligned_linear_phys_start;
|
||||
linear_virt_to_phys_diff = aligned_linear_phys_start - linear_virtual_start;
|
||||
|
||||
// Initialize linear trees.
|
||||
for (auto& region : GetPhysicalMemoryRegionTree()) {
|
||||
if (region.HasTypeAttribute(KMemoryRegionAttr_LinearMapped)) {
|
||||
GetPhysicalLinearMemoryRegionTree().InsertDirectly(
|
||||
region.GetAddress(), region.GetLastAddress(), region.GetAttributes(),
|
||||
region.GetType());
|
||||
}
|
||||
}
|
||||
|
||||
for (auto& region : GetVirtualMemoryRegionTree()) {
|
||||
if (region.IsDerivedFrom(KMemoryRegionType_Dram)) {
|
||||
GetVirtualLinearMemoryRegionTree().InsertDirectly(
|
||||
region.GetAddress(), region.GetLastAddress(), region.GetAttributes(),
|
||||
region.GetType());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t KMemoryLayout::GetResourceRegionSizeForInit() {
|
||||
// Calculate resource region size based on whether we allow extra threads.
|
||||
const bool use_extra_resources = KSystemControl::Init::ShouldIncreaseThreadResourceLimit();
|
||||
size_t resource_region_size =
|
||||
KernelResourceSize + (use_extra_resources ? KernelSlabHeapAdditionalSize : 0);
|
||||
|
||||
return resource_region_size;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,403 +1,403 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <utility>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/literals.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_memory_region.h"
|
||||
#include "core/hle/kernel/k_memory_region_type.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
constexpr std::size_t L1BlockSize = 1_GiB;
|
||||
constexpr std::size_t L2BlockSize = 2_MiB;
|
||||
|
||||
constexpr std::size_t GetMaximumOverheadSize(std::size_t size) {
|
||||
return (Common::DivideUp(size, L1BlockSize) + Common::DivideUp(size, L2BlockSize)) * PageSize;
|
||||
}
|
||||
|
||||
constexpr std::size_t MainMemorySize = 4_GiB;
|
||||
constexpr std::size_t MainMemorySizeMax = 8_GiB;
|
||||
|
||||
constexpr std::size_t ReservedEarlyDramSize = 384_KiB;
|
||||
constexpr std::size_t DramPhysicalAddress = 0x80000000;
|
||||
|
||||
constexpr std::size_t KernelAslrAlignment = 2_MiB;
|
||||
constexpr std::size_t KernelVirtualAddressSpaceWidth = 1ULL << 39;
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceWidth = 1ULL << 48;
|
||||
|
||||
constexpr std::size_t KernelVirtualAddressSpaceBase = 0ULL - KernelVirtualAddressSpaceWidth;
|
||||
constexpr std::size_t KernelVirtualAddressSpaceEnd =
|
||||
KernelVirtualAddressSpaceBase + (KernelVirtualAddressSpaceWidth - KernelAslrAlignment);
|
||||
constexpr std::size_t KernelVirtualAddressSpaceLast = KernelVirtualAddressSpaceEnd - 1ULL;
|
||||
constexpr std::size_t KernelVirtualAddressSpaceSize =
|
||||
KernelVirtualAddressSpaceEnd - KernelVirtualAddressSpaceBase;
|
||||
constexpr std::size_t KernelVirtualAddressCodeBase = KernelVirtualAddressSpaceBase;
|
||||
constexpr std::size_t KernelVirtualAddressCodeSize = 392_KiB;
|
||||
constexpr std::size_t KernelVirtualAddressCodeEnd =
|
||||
KernelVirtualAddressCodeBase + KernelVirtualAddressCodeSize;
|
||||
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceBase = 0ULL;
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceEnd =
|
||||
KernelPhysicalAddressSpaceBase + KernelPhysicalAddressSpaceWidth;
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceLast = KernelPhysicalAddressSpaceEnd - 1ULL;
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceSize =
|
||||
KernelPhysicalAddressSpaceEnd - KernelPhysicalAddressSpaceBase;
|
||||
constexpr std::size_t KernelPhysicalAddressCodeBase = DramPhysicalAddress + ReservedEarlyDramSize;
|
||||
|
||||
constexpr std::size_t KernelPageTableHeapSize = GetMaximumOverheadSize(MainMemorySizeMax);
|
||||
constexpr std::size_t KernelInitialPageHeapSize = 128_KiB;
|
||||
|
||||
constexpr std::size_t KernelSlabHeapDataSize = 5_MiB;
|
||||
constexpr std::size_t KernelSlabHeapGapsSizeMax = 2_MiB - 64_KiB;
|
||||
constexpr std::size_t KernelSlabHeapSize = KernelSlabHeapDataSize + KernelSlabHeapGapsSizeMax;
|
||||
|
||||
// NOTE: This is calculated from KThread slab counts, assuming KThread size <= 0x860.
|
||||
constexpr std::size_t KernelSlabHeapAdditionalSize = 0x68000;
|
||||
|
||||
constexpr std::size_t KernelResourceSize =
|
||||
KernelPageTableHeapSize + KernelInitialPageHeapSize + KernelSlabHeapSize;
|
||||
|
||||
constexpr bool IsKernelAddressKey(VAddr key) {
|
||||
return KernelVirtualAddressSpaceBase <= key && key <= KernelVirtualAddressSpaceLast;
|
||||
}
|
||||
|
||||
constexpr bool IsKernelAddress(VAddr address) {
|
||||
return KernelVirtualAddressSpaceBase <= address && address < KernelVirtualAddressSpaceEnd;
|
||||
}
|
||||
|
||||
class KMemoryLayout final {
|
||||
public:
|
||||
KMemoryLayout();
|
||||
|
||||
KMemoryRegionTree& GetVirtualMemoryRegionTree() {
|
||||
return virtual_tree;
|
||||
}
|
||||
const KMemoryRegionTree& GetVirtualMemoryRegionTree() const {
|
||||
return virtual_tree;
|
||||
}
|
||||
KMemoryRegionTree& GetPhysicalMemoryRegionTree() {
|
||||
return physical_tree;
|
||||
}
|
||||
const KMemoryRegionTree& GetPhysicalMemoryRegionTree() const {
|
||||
return physical_tree;
|
||||
}
|
||||
KMemoryRegionTree& GetVirtualLinearMemoryRegionTree() {
|
||||
return virtual_linear_tree;
|
||||
}
|
||||
const KMemoryRegionTree& GetVirtualLinearMemoryRegionTree() const {
|
||||
return virtual_linear_tree;
|
||||
}
|
||||
KMemoryRegionTree& GetPhysicalLinearMemoryRegionTree() {
|
||||
return physical_linear_tree;
|
||||
}
|
||||
const KMemoryRegionTree& GetPhysicalLinearMemoryRegionTree() const {
|
||||
return physical_linear_tree;
|
||||
}
|
||||
|
||||
VAddr GetLinearVirtualAddress(PAddr address) const {
|
||||
return address + linear_phys_to_virt_diff;
|
||||
}
|
||||
PAddr GetLinearPhysicalAddress(VAddr address) const {
|
||||
return address + linear_virt_to_phys_diff;
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindVirtual(VAddr address) const {
|
||||
return Find(address, GetVirtualMemoryRegionTree());
|
||||
}
|
||||
const KMemoryRegion* FindPhysical(PAddr address) const {
|
||||
return Find(address, GetPhysicalMemoryRegionTree());
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindVirtualLinear(VAddr address) const {
|
||||
return Find(address, GetVirtualLinearMemoryRegionTree());
|
||||
}
|
||||
const KMemoryRegion* FindPhysicalLinear(PAddr address) const {
|
||||
return Find(address, GetPhysicalLinearMemoryRegionTree());
|
||||
}
|
||||
|
||||
VAddr GetMainStackTopAddress(s32 core_id) const {
|
||||
return GetStackTopAddress(core_id, KMemoryRegionType_KernelMiscMainStack);
|
||||
}
|
||||
VAddr GetIdleStackTopAddress(s32 core_id) const {
|
||||
return GetStackTopAddress(core_id, KMemoryRegionType_KernelMiscIdleStack);
|
||||
}
|
||||
VAddr GetExceptionStackTopAddress(s32 core_id) const {
|
||||
return GetStackTopAddress(core_id, KMemoryRegionType_KernelMiscExceptionStack);
|
||||
}
|
||||
|
||||
VAddr GetSlabRegionAddress() const {
|
||||
return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelSlab))
|
||||
.GetAddress();
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetDeviceRegion(KMemoryRegionType type) const {
|
||||
return Dereference(GetPhysicalMemoryRegionTree().FindFirstDerived(type));
|
||||
}
|
||||
PAddr GetDevicePhysicalAddress(KMemoryRegionType type) const {
|
||||
return GetDeviceRegion(type).GetAddress();
|
||||
}
|
||||
VAddr GetDeviceVirtualAddress(KMemoryRegionType type) const {
|
||||
return GetDeviceRegion(type).GetPairAddress();
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetPoolManagementRegion() const {
|
||||
return Dereference(
|
||||
GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_VirtualDramPoolManagement));
|
||||
}
|
||||
const KMemoryRegion& GetPageTableHeapRegion() const {
|
||||
return Dereference(
|
||||
GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_VirtualDramKernelPtHeap));
|
||||
}
|
||||
const KMemoryRegion& GetKernelStackRegion() const {
|
||||
return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelStack));
|
||||
}
|
||||
const KMemoryRegion& GetTempRegion() const {
|
||||
return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelTemp));
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetKernelTraceBufferRegion() const {
|
||||
return Dereference(GetVirtualLinearMemoryRegionTree().FindByType(
|
||||
KMemoryRegionType_VirtualDramKernelTraceBuffer));
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetVirtualLinearRegion(VAddr address) const {
|
||||
return Dereference(FindVirtualLinear(address));
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetPhysicalLinearRegion(PAddr address) const {
|
||||
return Dereference(FindPhysicalLinear(address));
|
||||
}
|
||||
|
||||
const KMemoryRegion* GetPhysicalKernelTraceBufferRegion() const {
|
||||
return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_KernelTraceBuffer);
|
||||
}
|
||||
const KMemoryRegion* GetPhysicalOnMemoryBootImageRegion() const {
|
||||
return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_OnMemoryBootImage);
|
||||
}
|
||||
const KMemoryRegion* GetPhysicalDTBRegion() const {
|
||||
return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_DTB);
|
||||
}
|
||||
|
||||
bool IsHeapPhysicalAddress(const KMemoryRegion*& region, PAddr address) const {
|
||||
return IsTypedAddress(region, address, GetPhysicalLinearMemoryRegionTree(),
|
||||
KMemoryRegionType_DramUserPool);
|
||||
}
|
||||
bool IsHeapVirtualAddress(const KMemoryRegion*& region, VAddr address) const {
|
||||
return IsTypedAddress(region, address, GetVirtualLinearMemoryRegionTree(),
|
||||
KMemoryRegionType_VirtualDramUserPool);
|
||||
}
|
||||
|
||||
bool IsHeapPhysicalAddress(const KMemoryRegion*& region, PAddr address, size_t size) const {
|
||||
return IsTypedAddress(region, address, size, GetPhysicalLinearMemoryRegionTree(),
|
||||
KMemoryRegionType_DramUserPool);
|
||||
}
|
||||
bool IsHeapVirtualAddress(const KMemoryRegion*& region, VAddr address, size_t size) const {
|
||||
return IsTypedAddress(region, address, size, GetVirtualLinearMemoryRegionTree(),
|
||||
KMemoryRegionType_VirtualDramUserPool);
|
||||
}
|
||||
|
||||
bool IsLinearMappedPhysicalAddress(const KMemoryRegion*& region, PAddr address) const {
|
||||
return IsTypedAddress(region, address, GetPhysicalLinearMemoryRegionTree(),
|
||||
static_cast<KMemoryRegionType>(KMemoryRegionAttr_LinearMapped));
|
||||
}
|
||||
bool IsLinearMappedPhysicalAddress(const KMemoryRegion*& region, PAddr address,
|
||||
size_t size) const {
|
||||
return IsTypedAddress(region, address, size, GetPhysicalLinearMemoryRegionTree(),
|
||||
static_cast<KMemoryRegionType>(KMemoryRegionAttr_LinearMapped));
|
||||
}
|
||||
|
||||
std::pair<size_t, size_t> GetTotalAndKernelMemorySizes() const {
|
||||
size_t total_size = 0, kernel_size = 0;
|
||||
for (const auto& region : GetPhysicalMemoryRegionTree()) {
|
||||
if (region.IsDerivedFrom(KMemoryRegionType_Dram)) {
|
||||
total_size += region.GetSize();
|
||||
if (!region.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
|
||||
kernel_size += region.GetSize();
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::make_pair(total_size, kernel_size);
|
||||
}
|
||||
|
||||
void InitializeLinearMemoryRegionTrees(PAddr aligned_linear_phys_start,
|
||||
VAddr linear_virtual_start);
|
||||
static size_t GetResourceRegionSizeForInit();
|
||||
|
||||
auto GetKernelRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_Kernel);
|
||||
}
|
||||
auto GetKernelCodeRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelCode);
|
||||
}
|
||||
auto GetKernelStackRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelStack);
|
||||
}
|
||||
auto GetKernelMiscRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelMisc);
|
||||
}
|
||||
auto GetKernelSlabRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelSlab);
|
||||
}
|
||||
|
||||
auto GetLinearRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionAttr_LinearMapped);
|
||||
}
|
||||
|
||||
auto GetLinearRegionVirtualExtents() const {
|
||||
const auto physical = GetLinearRegionPhysicalExtents();
|
||||
return KMemoryRegion(GetLinearVirtualAddress(physical.GetAddress()),
|
||||
GetLinearVirtualAddress(physical.GetLastAddress()), 0,
|
||||
KMemoryRegionType_None);
|
||||
}
|
||||
|
||||
auto GetMainMemoryPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_Dram);
|
||||
}
|
||||
auto GetCarveoutRegionExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionAttr_CarveoutProtected);
|
||||
}
|
||||
|
||||
auto GetKernelRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelBase);
|
||||
}
|
||||
auto GetKernelCodeRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelCode);
|
||||
}
|
||||
auto GetKernelSlabRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelSlab);
|
||||
}
|
||||
auto GetKernelPageTableHeapRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelPtHeap);
|
||||
}
|
||||
auto GetKernelInitPageTableRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelInitPt);
|
||||
}
|
||||
|
||||
auto GetKernelPoolManagementRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramPoolManagement);
|
||||
}
|
||||
auto GetKernelPoolPartitionRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramPoolPartition);
|
||||
}
|
||||
auto GetKernelSystemPoolRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramSystemPool);
|
||||
}
|
||||
auto GetKernelSystemNonSecurePoolRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramSystemNonSecurePool);
|
||||
}
|
||||
auto GetKernelAppletPoolRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramAppletPool);
|
||||
}
|
||||
auto GetKernelApplicationPoolRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramApplicationPool);
|
||||
}
|
||||
|
||||
auto GetKernelTraceBufferRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_KernelTraceBuffer);
|
||||
}
|
||||
|
||||
private:
|
||||
template <typename AddressType>
|
||||
static bool IsTypedAddress(const KMemoryRegion*& region, AddressType address,
|
||||
const KMemoryRegionTree& tree, KMemoryRegionType type) {
|
||||
// Check if the cached region already contains the address.
|
||||
if (region != nullptr && region->Contains(address)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Find the containing region, and update the cache.
|
||||
if (const KMemoryRegion* found = tree.Find(address);
|
||||
found != nullptr && found->IsDerivedFrom(type)) {
|
||||
region = found;
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename AddressType>
|
||||
static bool IsTypedAddress(const KMemoryRegion*& region, AddressType address, size_t size,
|
||||
const KMemoryRegionTree& tree, KMemoryRegionType type) {
|
||||
// Get the end of the checked region.
|
||||
const u64 last_address = address + size - 1;
|
||||
|
||||
// Walk the tree to verify the region is correct.
|
||||
const KMemoryRegion* cur =
|
||||
(region != nullptr && region->Contains(address)) ? region : tree.Find(address);
|
||||
while (cur != nullptr && cur->IsDerivedFrom(type)) {
|
||||
if (last_address <= cur->GetLastAddress()) {
|
||||
region = cur;
|
||||
return true;
|
||||
}
|
||||
|
||||
cur = cur->GetNext();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename AddressType>
|
||||
static const KMemoryRegion* Find(AddressType address, const KMemoryRegionTree& tree) {
|
||||
return tree.Find(address);
|
||||
}
|
||||
|
||||
static KMemoryRegion& Dereference(KMemoryRegion* region) {
|
||||
ASSERT(region != nullptr);
|
||||
return *region;
|
||||
}
|
||||
|
||||
static const KMemoryRegion& Dereference(const KMemoryRegion* region) {
|
||||
ASSERT(region != nullptr);
|
||||
return *region;
|
||||
}
|
||||
|
||||
VAddr GetStackTopAddress(s32 core_id, KMemoryRegionType type) const {
|
||||
const auto& region = Dereference(
|
||||
GetVirtualMemoryRegionTree().FindByTypeAndAttribute(type, static_cast<u32>(core_id)));
|
||||
ASSERT(region.GetEndAddress() != 0);
|
||||
return region.GetEndAddress();
|
||||
}
|
||||
|
||||
private:
|
||||
u64 linear_phys_to_virt_diff{};
|
||||
u64 linear_virt_to_phys_diff{};
|
||||
KMemoryRegionAllocator memory_region_allocator;
|
||||
KMemoryRegionTree virtual_tree;
|
||||
KMemoryRegionTree physical_tree;
|
||||
KMemoryRegionTree virtual_linear_tree;
|
||||
KMemoryRegionTree physical_linear_tree;
|
||||
};
|
||||
|
||||
namespace Init {
|
||||
|
||||
// These should be generic, regardless of board.
|
||||
void SetupPoolPartitionMemoryRegions(KMemoryLayout& memory_layout);
|
||||
|
||||
// These may be implemented in a board-specific manner.
|
||||
void SetupDevicePhysicalMemoryRegions(KMemoryLayout& memory_layout);
|
||||
void SetupDramPhysicalMemoryRegions(KMemoryLayout& memory_layout);
|
||||
|
||||
} // namespace Init
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <utility>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/literals.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_memory_region.h"
|
||||
#include "core/hle/kernel/k_memory_region_type.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
using namespace Common::Literals;
|
||||
|
||||
constexpr std::size_t L1BlockSize = 1_GiB;
|
||||
constexpr std::size_t L2BlockSize = 2_MiB;
|
||||
|
||||
constexpr std::size_t GetMaximumOverheadSize(std::size_t size) {
|
||||
return (Common::DivideUp(size, L1BlockSize) + Common::DivideUp(size, L2BlockSize)) * PageSize;
|
||||
}
|
||||
|
||||
constexpr std::size_t MainMemorySize = 4_GiB;
|
||||
constexpr std::size_t MainMemorySizeMax = 8_GiB;
|
||||
|
||||
constexpr std::size_t ReservedEarlyDramSize = 384_KiB;
|
||||
constexpr std::size_t DramPhysicalAddress = 0x80000000;
|
||||
|
||||
constexpr std::size_t KernelAslrAlignment = 2_MiB;
|
||||
constexpr std::size_t KernelVirtualAddressSpaceWidth = 1ULL << 39;
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceWidth = 1ULL << 48;
|
||||
|
||||
constexpr std::size_t KernelVirtualAddressSpaceBase = 0ULL - KernelVirtualAddressSpaceWidth;
|
||||
constexpr std::size_t KernelVirtualAddressSpaceEnd =
|
||||
KernelVirtualAddressSpaceBase + (KernelVirtualAddressSpaceWidth - KernelAslrAlignment);
|
||||
constexpr std::size_t KernelVirtualAddressSpaceLast = KernelVirtualAddressSpaceEnd - 1ULL;
|
||||
constexpr std::size_t KernelVirtualAddressSpaceSize =
|
||||
KernelVirtualAddressSpaceEnd - KernelVirtualAddressSpaceBase;
|
||||
constexpr std::size_t KernelVirtualAddressCodeBase = KernelVirtualAddressSpaceBase;
|
||||
constexpr std::size_t KernelVirtualAddressCodeSize = 392_KiB;
|
||||
constexpr std::size_t KernelVirtualAddressCodeEnd =
|
||||
KernelVirtualAddressCodeBase + KernelVirtualAddressCodeSize;
|
||||
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceBase = 0ULL;
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceEnd =
|
||||
KernelPhysicalAddressSpaceBase + KernelPhysicalAddressSpaceWidth;
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceLast = KernelPhysicalAddressSpaceEnd - 1ULL;
|
||||
constexpr std::size_t KernelPhysicalAddressSpaceSize =
|
||||
KernelPhysicalAddressSpaceEnd - KernelPhysicalAddressSpaceBase;
|
||||
constexpr std::size_t KernelPhysicalAddressCodeBase = DramPhysicalAddress + ReservedEarlyDramSize;
|
||||
|
||||
constexpr std::size_t KernelPageTableHeapSize = GetMaximumOverheadSize(MainMemorySizeMax);
|
||||
constexpr std::size_t KernelInitialPageHeapSize = 128_KiB;
|
||||
|
||||
constexpr std::size_t KernelSlabHeapDataSize = 5_MiB;
|
||||
constexpr std::size_t KernelSlabHeapGapsSizeMax = 2_MiB - 64_KiB;
|
||||
constexpr std::size_t KernelSlabHeapSize = KernelSlabHeapDataSize + KernelSlabHeapGapsSizeMax;
|
||||
|
||||
// NOTE: This is calculated from KThread slab counts, assuming KThread size <= 0x860.
|
||||
constexpr std::size_t KernelSlabHeapAdditionalSize = 0x68000;
|
||||
|
||||
constexpr std::size_t KernelResourceSize =
|
||||
KernelPageTableHeapSize + KernelInitialPageHeapSize + KernelSlabHeapSize;
|
||||
|
||||
constexpr bool IsKernelAddressKey(VAddr key) {
|
||||
return KernelVirtualAddressSpaceBase <= key && key <= KernelVirtualAddressSpaceLast;
|
||||
}
|
||||
|
||||
constexpr bool IsKernelAddress(VAddr address) {
|
||||
return KernelVirtualAddressSpaceBase <= address && address < KernelVirtualAddressSpaceEnd;
|
||||
}
|
||||
|
||||
class KMemoryLayout final {
|
||||
public:
|
||||
KMemoryLayout();
|
||||
|
||||
KMemoryRegionTree& GetVirtualMemoryRegionTree() {
|
||||
return virtual_tree;
|
||||
}
|
||||
const KMemoryRegionTree& GetVirtualMemoryRegionTree() const {
|
||||
return virtual_tree;
|
||||
}
|
||||
KMemoryRegionTree& GetPhysicalMemoryRegionTree() {
|
||||
return physical_tree;
|
||||
}
|
||||
const KMemoryRegionTree& GetPhysicalMemoryRegionTree() const {
|
||||
return physical_tree;
|
||||
}
|
||||
KMemoryRegionTree& GetVirtualLinearMemoryRegionTree() {
|
||||
return virtual_linear_tree;
|
||||
}
|
||||
const KMemoryRegionTree& GetVirtualLinearMemoryRegionTree() const {
|
||||
return virtual_linear_tree;
|
||||
}
|
||||
KMemoryRegionTree& GetPhysicalLinearMemoryRegionTree() {
|
||||
return physical_linear_tree;
|
||||
}
|
||||
const KMemoryRegionTree& GetPhysicalLinearMemoryRegionTree() const {
|
||||
return physical_linear_tree;
|
||||
}
|
||||
|
||||
VAddr GetLinearVirtualAddress(PAddr address) const {
|
||||
return address + linear_phys_to_virt_diff;
|
||||
}
|
||||
PAddr GetLinearPhysicalAddress(VAddr address) const {
|
||||
return address + linear_virt_to_phys_diff;
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindVirtual(VAddr address) const {
|
||||
return Find(address, GetVirtualMemoryRegionTree());
|
||||
}
|
||||
const KMemoryRegion* FindPhysical(PAddr address) const {
|
||||
return Find(address, GetPhysicalMemoryRegionTree());
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindVirtualLinear(VAddr address) const {
|
||||
return Find(address, GetVirtualLinearMemoryRegionTree());
|
||||
}
|
||||
const KMemoryRegion* FindPhysicalLinear(PAddr address) const {
|
||||
return Find(address, GetPhysicalLinearMemoryRegionTree());
|
||||
}
|
||||
|
||||
VAddr GetMainStackTopAddress(s32 core_id) const {
|
||||
return GetStackTopAddress(core_id, KMemoryRegionType_KernelMiscMainStack);
|
||||
}
|
||||
VAddr GetIdleStackTopAddress(s32 core_id) const {
|
||||
return GetStackTopAddress(core_id, KMemoryRegionType_KernelMiscIdleStack);
|
||||
}
|
||||
VAddr GetExceptionStackTopAddress(s32 core_id) const {
|
||||
return GetStackTopAddress(core_id, KMemoryRegionType_KernelMiscExceptionStack);
|
||||
}
|
||||
|
||||
VAddr GetSlabRegionAddress() const {
|
||||
return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelSlab))
|
||||
.GetAddress();
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetDeviceRegion(KMemoryRegionType type) const {
|
||||
return Dereference(GetPhysicalMemoryRegionTree().FindFirstDerived(type));
|
||||
}
|
||||
PAddr GetDevicePhysicalAddress(KMemoryRegionType type) const {
|
||||
return GetDeviceRegion(type).GetAddress();
|
||||
}
|
||||
VAddr GetDeviceVirtualAddress(KMemoryRegionType type) const {
|
||||
return GetDeviceRegion(type).GetPairAddress();
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetPoolManagementRegion() const {
|
||||
return Dereference(
|
||||
GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_VirtualDramPoolManagement));
|
||||
}
|
||||
const KMemoryRegion& GetPageTableHeapRegion() const {
|
||||
return Dereference(
|
||||
GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_VirtualDramKernelPtHeap));
|
||||
}
|
||||
const KMemoryRegion& GetKernelStackRegion() const {
|
||||
return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelStack));
|
||||
}
|
||||
const KMemoryRegion& GetTempRegion() const {
|
||||
return Dereference(GetVirtualMemoryRegionTree().FindByType(KMemoryRegionType_KernelTemp));
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetKernelTraceBufferRegion() const {
|
||||
return Dereference(GetVirtualLinearMemoryRegionTree().FindByType(
|
||||
KMemoryRegionType_VirtualDramKernelTraceBuffer));
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetVirtualLinearRegion(VAddr address) const {
|
||||
return Dereference(FindVirtualLinear(address));
|
||||
}
|
||||
|
||||
const KMemoryRegion& GetPhysicalLinearRegion(PAddr address) const {
|
||||
return Dereference(FindPhysicalLinear(address));
|
||||
}
|
||||
|
||||
const KMemoryRegion* GetPhysicalKernelTraceBufferRegion() const {
|
||||
return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_KernelTraceBuffer);
|
||||
}
|
||||
const KMemoryRegion* GetPhysicalOnMemoryBootImageRegion() const {
|
||||
return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_OnMemoryBootImage);
|
||||
}
|
||||
const KMemoryRegion* GetPhysicalDTBRegion() const {
|
||||
return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_DTB);
|
||||
}
|
||||
|
||||
bool IsHeapPhysicalAddress(const KMemoryRegion*& region, PAddr address) const {
|
||||
return IsTypedAddress(region, address, GetPhysicalLinearMemoryRegionTree(),
|
||||
KMemoryRegionType_DramUserPool);
|
||||
}
|
||||
bool IsHeapVirtualAddress(const KMemoryRegion*& region, VAddr address) const {
|
||||
return IsTypedAddress(region, address, GetVirtualLinearMemoryRegionTree(),
|
||||
KMemoryRegionType_VirtualDramUserPool);
|
||||
}
|
||||
|
||||
bool IsHeapPhysicalAddress(const KMemoryRegion*& region, PAddr address, size_t size) const {
|
||||
return IsTypedAddress(region, address, size, GetPhysicalLinearMemoryRegionTree(),
|
||||
KMemoryRegionType_DramUserPool);
|
||||
}
|
||||
bool IsHeapVirtualAddress(const KMemoryRegion*& region, VAddr address, size_t size) const {
|
||||
return IsTypedAddress(region, address, size, GetVirtualLinearMemoryRegionTree(),
|
||||
KMemoryRegionType_VirtualDramUserPool);
|
||||
}
|
||||
|
||||
bool IsLinearMappedPhysicalAddress(const KMemoryRegion*& region, PAddr address) const {
|
||||
return IsTypedAddress(region, address, GetPhysicalLinearMemoryRegionTree(),
|
||||
static_cast<KMemoryRegionType>(KMemoryRegionAttr_LinearMapped));
|
||||
}
|
||||
bool IsLinearMappedPhysicalAddress(const KMemoryRegion*& region, PAddr address,
|
||||
size_t size) const {
|
||||
return IsTypedAddress(region, address, size, GetPhysicalLinearMemoryRegionTree(),
|
||||
static_cast<KMemoryRegionType>(KMemoryRegionAttr_LinearMapped));
|
||||
}
|
||||
|
||||
std::pair<size_t, size_t> GetTotalAndKernelMemorySizes() const {
|
||||
size_t total_size = 0, kernel_size = 0;
|
||||
for (const auto& region : GetPhysicalMemoryRegionTree()) {
|
||||
if (region.IsDerivedFrom(KMemoryRegionType_Dram)) {
|
||||
total_size += region.GetSize();
|
||||
if (!region.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
|
||||
kernel_size += region.GetSize();
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::make_pair(total_size, kernel_size);
|
||||
}
|
||||
|
||||
void InitializeLinearMemoryRegionTrees(PAddr aligned_linear_phys_start,
|
||||
VAddr linear_virtual_start);
|
||||
static size_t GetResourceRegionSizeForInit();
|
||||
|
||||
auto GetKernelRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_Kernel);
|
||||
}
|
||||
auto GetKernelCodeRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelCode);
|
||||
}
|
||||
auto GetKernelStackRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelStack);
|
||||
}
|
||||
auto GetKernelMiscRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelMisc);
|
||||
}
|
||||
auto GetKernelSlabRegionExtents() const {
|
||||
return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelSlab);
|
||||
}
|
||||
|
||||
auto GetLinearRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionAttr_LinearMapped);
|
||||
}
|
||||
|
||||
auto GetLinearRegionVirtualExtents() const {
|
||||
const auto physical = GetLinearRegionPhysicalExtents();
|
||||
return KMemoryRegion(GetLinearVirtualAddress(physical.GetAddress()),
|
||||
GetLinearVirtualAddress(physical.GetLastAddress()), 0,
|
||||
KMemoryRegionType_None);
|
||||
}
|
||||
|
||||
auto GetMainMemoryPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_Dram);
|
||||
}
|
||||
auto GetCarveoutRegionExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionAttr_CarveoutProtected);
|
||||
}
|
||||
|
||||
auto GetKernelRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelBase);
|
||||
}
|
||||
auto GetKernelCodeRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelCode);
|
||||
}
|
||||
auto GetKernelSlabRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelSlab);
|
||||
}
|
||||
auto GetKernelPageTableHeapRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelPtHeap);
|
||||
}
|
||||
auto GetKernelInitPageTableRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramKernelInitPt);
|
||||
}
|
||||
|
||||
auto GetKernelPoolManagementRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramPoolManagement);
|
||||
}
|
||||
auto GetKernelPoolPartitionRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramPoolPartition);
|
||||
}
|
||||
auto GetKernelSystemPoolRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramSystemPool);
|
||||
}
|
||||
auto GetKernelSystemNonSecurePoolRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramSystemNonSecurePool);
|
||||
}
|
||||
auto GetKernelAppletPoolRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramAppletPool);
|
||||
}
|
||||
auto GetKernelApplicationPoolRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_DramApplicationPool);
|
||||
}
|
||||
|
||||
auto GetKernelTraceBufferRegionPhysicalExtents() const {
|
||||
return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
||||
KMemoryRegionType_KernelTraceBuffer);
|
||||
}
|
||||
|
||||
private:
|
||||
template <typename AddressType>
|
||||
static bool IsTypedAddress(const KMemoryRegion*& region, AddressType address,
|
||||
const KMemoryRegionTree& tree, KMemoryRegionType type) {
|
||||
// Check if the cached region already contains the address.
|
||||
if (region != nullptr && region->Contains(address)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Find the containing region, and update the cache.
|
||||
if (const KMemoryRegion* found = tree.Find(address);
|
||||
found != nullptr && found->IsDerivedFrom(type)) {
|
||||
region = found;
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename AddressType>
|
||||
static bool IsTypedAddress(const KMemoryRegion*& region, AddressType address, size_t size,
|
||||
const KMemoryRegionTree& tree, KMemoryRegionType type) {
|
||||
// Get the end of the checked region.
|
||||
const u64 last_address = address + size - 1;
|
||||
|
||||
// Walk the tree to verify the region is correct.
|
||||
const KMemoryRegion* cur =
|
||||
(region != nullptr && region->Contains(address)) ? region : tree.Find(address);
|
||||
while (cur != nullptr && cur->IsDerivedFrom(type)) {
|
||||
if (last_address <= cur->GetLastAddress()) {
|
||||
region = cur;
|
||||
return true;
|
||||
}
|
||||
|
||||
cur = cur->GetNext();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename AddressType>
|
||||
static const KMemoryRegion* Find(AddressType address, const KMemoryRegionTree& tree) {
|
||||
return tree.Find(address);
|
||||
}
|
||||
|
||||
static KMemoryRegion& Dereference(KMemoryRegion* region) {
|
||||
ASSERT(region != nullptr);
|
||||
return *region;
|
||||
}
|
||||
|
||||
static const KMemoryRegion& Dereference(const KMemoryRegion* region) {
|
||||
ASSERT(region != nullptr);
|
||||
return *region;
|
||||
}
|
||||
|
||||
VAddr GetStackTopAddress(s32 core_id, KMemoryRegionType type) const {
|
||||
const auto& region = Dereference(
|
||||
GetVirtualMemoryRegionTree().FindByTypeAndAttribute(type, static_cast<u32>(core_id)));
|
||||
ASSERT(region.GetEndAddress() != 0);
|
||||
return region.GetEndAddress();
|
||||
}
|
||||
|
||||
private:
|
||||
u64 linear_phys_to_virt_diff{};
|
||||
u64 linear_virt_to_phys_diff{};
|
||||
KMemoryRegionAllocator memory_region_allocator;
|
||||
KMemoryRegionTree virtual_tree;
|
||||
KMemoryRegionTree physical_tree;
|
||||
KMemoryRegionTree virtual_linear_tree;
|
||||
KMemoryRegionTree physical_linear_tree;
|
||||
};
|
||||
|
||||
namespace Init {
|
||||
|
||||
// These should be generic, regardless of board.
|
||||
void SetupPoolPartitionMemoryRegions(KMemoryLayout& memory_layout);
|
||||
|
||||
// These may be implemented in a board-specific manner.
|
||||
void SetupDevicePhysicalMemoryRegions(KMemoryLayout& memory_layout);
|
||||
void SetupDramPhysicalMemoryRegions(KMemoryLayout& memory_layout);
|
||||
|
||||
} // namespace Init
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,420 +1,420 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/scope_exit.h"
|
||||
#include "core/core.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/initial_process.h"
|
||||
#include "core/hle/kernel/k_memory_manager.h"
|
||||
#include "core/hle/kernel/k_page_group.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
constexpr KMemoryManager::Pool GetPoolFromMemoryRegionType(u32 type) {
|
||||
if ((type | KMemoryRegionType_DramApplicationPool) == type) {
|
||||
return KMemoryManager::Pool::Application;
|
||||
} else if ((type | KMemoryRegionType_DramAppletPool) == type) {
|
||||
return KMemoryManager::Pool::Applet;
|
||||
} else if ((type | KMemoryRegionType_DramSystemPool) == type) {
|
||||
return KMemoryManager::Pool::System;
|
||||
} else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) {
|
||||
return KMemoryManager::Pool::SystemNonSecure;
|
||||
} else {
|
||||
ASSERT_MSG(false, "InvalidMemoryRegionType for conversion to Pool");
|
||||
return {};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
KMemoryManager::KMemoryManager(Core::System& system_)
|
||||
: system{system_}, pool_locks{
|
||||
KLightLock{system_.Kernel()},
|
||||
KLightLock{system_.Kernel()},
|
||||
KLightLock{system_.Kernel()},
|
||||
KLightLock{system_.Kernel()},
|
||||
} {}
|
||||
|
||||
void KMemoryManager::Initialize(VAddr management_region, size_t management_region_size) {
|
||||
|
||||
// Clear the management region to zero.
|
||||
const VAddr management_region_end = management_region + management_region_size;
|
||||
|
||||
// Reset our manager count.
|
||||
num_managers = 0;
|
||||
|
||||
// Traverse the virtual memory layout tree, initializing each manager as appropriate.
|
||||
while (num_managers != MaxManagerCount) {
|
||||
// Locate the region that should initialize the current manager.
|
||||
PAddr region_address = 0;
|
||||
size_t region_size = 0;
|
||||
Pool region_pool = Pool::Count;
|
||||
for (const auto& it : system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
|
||||
// We only care about regions that we need to create managers for.
|
||||
if (!it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// We want to initialize the managers in order.
|
||||
if (it.GetAttributes() != num_managers) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const PAddr cur_start = it.GetAddress();
|
||||
const PAddr cur_end = it.GetEndAddress();
|
||||
|
||||
// Validate the region.
|
||||
ASSERT(cur_end != 0);
|
||||
ASSERT(cur_start != 0);
|
||||
ASSERT(it.GetSize() > 0);
|
||||
|
||||
// Update the region's extents.
|
||||
if (region_address == 0) {
|
||||
region_address = cur_start;
|
||||
region_size = it.GetSize();
|
||||
region_pool = GetPoolFromMemoryRegionType(it.GetType());
|
||||
} else {
|
||||
ASSERT(cur_start == region_address + region_size);
|
||||
|
||||
// Update the size.
|
||||
region_size = cur_end - region_address;
|
||||
ASSERT(GetPoolFromMemoryRegionType(it.GetType()) == region_pool);
|
||||
}
|
||||
}
|
||||
|
||||
// If we didn't find a region, we're done.
|
||||
if (region_size == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Initialize a new manager for the region.
|
||||
Impl* manager = std::addressof(managers[num_managers++]);
|
||||
ASSERT(num_managers <= managers.size());
|
||||
|
||||
const size_t cur_size = manager->Initialize(region_address, region_size, management_region,
|
||||
management_region_end, region_pool);
|
||||
management_region += cur_size;
|
||||
ASSERT(management_region <= management_region_end);
|
||||
|
||||
// Insert the manager into the pool list.
|
||||
const auto region_pool_index = static_cast<u32>(region_pool);
|
||||
if (pool_managers_tail[region_pool_index] == nullptr) {
|
||||
pool_managers_head[region_pool_index] = manager;
|
||||
} else {
|
||||
pool_managers_tail[region_pool_index]->SetNext(manager);
|
||||
manager->SetPrev(pool_managers_tail[region_pool_index]);
|
||||
}
|
||||
pool_managers_tail[region_pool_index] = manager;
|
||||
}
|
||||
|
||||
// Free each region to its corresponding heap.
|
||||
size_t reserved_sizes[MaxManagerCount] = {};
|
||||
const PAddr ini_start = GetInitialProcessBinaryPhysicalAddress();
|
||||
const PAddr ini_end = ini_start + InitialProcessBinarySizeMax;
|
||||
const PAddr ini_last = ini_end - 1;
|
||||
for (const auto& it : system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
|
||||
if (it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
|
||||
// Get the manager for the region.
|
||||
auto index = it.GetAttributes();
|
||||
auto& manager = managers[index];
|
||||
|
||||
const PAddr cur_start = it.GetAddress();
|
||||
const PAddr cur_last = it.GetLastAddress();
|
||||
const PAddr cur_end = it.GetEndAddress();
|
||||
|
||||
if (cur_start <= ini_start && ini_last <= cur_last) {
|
||||
// Free memory before the ini to the heap.
|
||||
if (cur_start != ini_start) {
|
||||
manager.Free(cur_start, (ini_start - cur_start) / PageSize);
|
||||
}
|
||||
|
||||
// Open/reserve the ini memory.
|
||||
manager.OpenFirst(ini_start, InitialProcessBinarySizeMax / PageSize);
|
||||
reserved_sizes[it.GetAttributes()] += InitialProcessBinarySizeMax;
|
||||
|
||||
// Free memory after the ini to the heap.
|
||||
if (ini_last != cur_last) {
|
||||
ASSERT(cur_end != 0);
|
||||
manager.Free(ini_end, cur_end - ini_end);
|
||||
}
|
||||
} else {
|
||||
// Ensure there's no partial overlap with the ini image.
|
||||
if (cur_start <= ini_last) {
|
||||
ASSERT(cur_last < ini_start);
|
||||
} else {
|
||||
// Otherwise, check the region for general validity.
|
||||
ASSERT(cur_end != 0);
|
||||
}
|
||||
|
||||
// Free the memory to the heap.
|
||||
manager.Free(cur_start, it.GetSize() / PageSize);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Update the used size for all managers.
|
||||
for (size_t i = 0; i < num_managers; ++i) {
|
||||
managers[i].SetInitialUsedHeapSize(reserved_sizes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
PAddr KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option) {
|
||||
// Early return if we're allocating no pages.
|
||||
if (num_pages == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Lock the pool that we're allocating from.
|
||||
const auto [pool, dir] = DecodeOption(option);
|
||||
KScopedLightLock lk(pool_locks[static_cast<std::size_t>(pool)]);
|
||||
|
||||
// Choose a heap based on our page size request.
|
||||
const s32 heap_index = KPageHeap::GetAlignedBlockIndex(num_pages, align_pages);
|
||||
|
||||
// Loop, trying to iterate from each block.
|
||||
Impl* chosen_manager = nullptr;
|
||||
PAddr allocated_block = 0;
|
||||
for (chosen_manager = this->GetFirstManager(pool, dir); chosen_manager != nullptr;
|
||||
chosen_manager = this->GetNextManager(chosen_manager, dir)) {
|
||||
allocated_block = chosen_manager->AllocateBlock(heap_index, true);
|
||||
if (allocated_block != 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If we failed to allocate, quit now.
|
||||
if (allocated_block == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// If we allocated more than we need, free some.
|
||||
const size_t allocated_pages = KPageHeap::GetBlockNumPages(heap_index);
|
||||
if (allocated_pages > num_pages) {
|
||||
chosen_manager->Free(allocated_block + num_pages * PageSize, allocated_pages - num_pages);
|
||||
}
|
||||
|
||||
// Open the first reference to the pages.
|
||||
chosen_manager->OpenFirst(allocated_block, num_pages);
|
||||
|
||||
return allocated_block;
|
||||
}
|
||||
|
||||
Result KMemoryManager::AllocatePageGroupImpl(KPageGroup* out, size_t num_pages, Pool pool,
|
||||
Direction dir, bool random) {
|
||||
// Choose a heap based on our page size request.
|
||||
const s32 heap_index = KPageHeap::GetBlockIndex(num_pages);
|
||||
R_UNLESS(0 <= heap_index, ResultOutOfMemory);
|
||||
|
||||
// Ensure that we don't leave anything un-freed.
|
||||
auto group_guard = SCOPE_GUARD({
|
||||
for (const auto& it : out->Nodes()) {
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), it.GetAddress());
|
||||
const size_t num_pages_to_free =
|
||||
std::min(it.GetNumPages(), (manager.GetEndAddress() - it.GetAddress()) / PageSize);
|
||||
manager.Free(it.GetAddress(), num_pages_to_free);
|
||||
}
|
||||
});
|
||||
|
||||
// Keep allocating until we've allocated all our pages.
|
||||
for (s32 index = heap_index; index >= 0 && num_pages > 0; index--) {
|
||||
const size_t pages_per_alloc = KPageHeap::GetBlockNumPages(index);
|
||||
for (Impl* cur_manager = this->GetFirstManager(pool, dir); cur_manager != nullptr;
|
||||
cur_manager = this->GetNextManager(cur_manager, dir)) {
|
||||
while (num_pages >= pages_per_alloc) {
|
||||
// Allocate a block.
|
||||
PAddr allocated_block = cur_manager->AllocateBlock(index, random);
|
||||
if (allocated_block == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Safely add it to our group.
|
||||
{
|
||||
auto block_guard =
|
||||
SCOPE_GUARD({ cur_manager->Free(allocated_block, pages_per_alloc); });
|
||||
R_TRY(out->AddBlock(allocated_block, pages_per_alloc));
|
||||
block_guard.Cancel();
|
||||
}
|
||||
|
||||
num_pages -= pages_per_alloc;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Only succeed if we allocated as many pages as we wanted.
|
||||
R_UNLESS(num_pages == 0, ResultOutOfMemory);
|
||||
|
||||
// We succeeded!
|
||||
group_guard.Cancel();
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KMemoryManager::AllocateAndOpen(KPageGroup* out, size_t num_pages, u32 option) {
|
||||
ASSERT(out != nullptr);
|
||||
ASSERT(out->GetNumPages() == 0);
|
||||
|
||||
// Early return if we're allocating no pages.
|
||||
R_SUCCEED_IF(num_pages == 0);
|
||||
|
||||
// Lock the pool that we're allocating from.
|
||||
const auto [pool, dir] = DecodeOption(option);
|
||||
KScopedLightLock lk(pool_locks[static_cast<size_t>(pool)]);
|
||||
|
||||
// Allocate the page group.
|
||||
R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, false));
|
||||
|
||||
// Open the first reference to the pages.
|
||||
for (const auto& block : out->Nodes()) {
|
||||
PAddr cur_address = block.GetAddress();
|
||||
size_t remaining_pages = block.GetNumPages();
|
||||
while (remaining_pages > 0) {
|
||||
// Get the manager for the current address.
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), cur_address);
|
||||
|
||||
// Process part or all of the block.
|
||||
const size_t cur_pages =
|
||||
std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
|
||||
manager.OpenFirst(cur_address, cur_pages);
|
||||
|
||||
// Advance.
|
||||
cur_address += cur_pages * PageSize;
|
||||
remaining_pages -= cur_pages;
|
||||
}
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KMemoryManager::AllocateAndOpenForProcess(KPageGroup* out, size_t num_pages, u32 option,
|
||||
u64 process_id, u8 fill_pattern) {
|
||||
ASSERT(out != nullptr);
|
||||
ASSERT(out->GetNumPages() == 0);
|
||||
|
||||
// Decode the option.
|
||||
const auto [pool, dir] = DecodeOption(option);
|
||||
|
||||
// Allocate the memory.
|
||||
{
|
||||
// Lock the pool that we're allocating from.
|
||||
KScopedLightLock lk(pool_locks[static_cast<size_t>(pool)]);
|
||||
|
||||
// Allocate the page group.
|
||||
R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, false));
|
||||
|
||||
// Open the first reference to the pages.
|
||||
for (const auto& block : out->Nodes()) {
|
||||
PAddr cur_address = block.GetAddress();
|
||||
size_t remaining_pages = block.GetNumPages();
|
||||
while (remaining_pages > 0) {
|
||||
// Get the manager for the current address.
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), cur_address);
|
||||
|
||||
// Process part or all of the block.
|
||||
const size_t cur_pages =
|
||||
std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
|
||||
manager.OpenFirst(cur_address, cur_pages);
|
||||
|
||||
// Advance.
|
||||
cur_address += cur_pages * PageSize;
|
||||
remaining_pages -= cur_pages;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Set all the allocated memory.
|
||||
for (const auto& block : out->Nodes()) {
|
||||
std::memset(system.DeviceMemory().GetPointer<void>(block.GetAddress()), fill_pattern,
|
||||
block.GetSize());
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KMemoryManager::Open(PAddr address, size_t num_pages) {
|
||||
// Repeatedly open references until we've done so for all pages.
|
||||
while (num_pages) {
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), address);
|
||||
const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
|
||||
|
||||
{
|
||||
KScopedLightLock lk(pool_locks[static_cast<size_t>(manager.GetPool())]);
|
||||
manager.Open(address, cur_pages);
|
||||
}
|
||||
|
||||
num_pages -= cur_pages;
|
||||
address += cur_pages * PageSize;
|
||||
}
|
||||
}
|
||||
|
||||
void KMemoryManager::Close(PAddr address, size_t num_pages) {
|
||||
// Repeatedly close references until we've done so for all pages.
|
||||
while (num_pages) {
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), address);
|
||||
const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
|
||||
|
||||
{
|
||||
KScopedLightLock lk(pool_locks[static_cast<size_t>(manager.GetPool())]);
|
||||
manager.Close(address, cur_pages);
|
||||
}
|
||||
|
||||
num_pages -= cur_pages;
|
||||
address += cur_pages * PageSize;
|
||||
}
|
||||
}
|
||||
|
||||
void KMemoryManager::Close(const KPageGroup& pg) {
|
||||
for (const auto& node : pg.Nodes()) {
|
||||
Close(node.GetAddress(), node.GetNumPages());
|
||||
}
|
||||
}
|
||||
void KMemoryManager::Open(const KPageGroup& pg) {
|
||||
for (const auto& node : pg.Nodes()) {
|
||||
Open(node.GetAddress(), node.GetNumPages());
|
||||
}
|
||||
}
|
||||
|
||||
size_t KMemoryManager::Impl::Initialize(PAddr address, size_t size, VAddr management,
|
||||
VAddr management_end, Pool p) {
|
||||
// Calculate management sizes.
|
||||
const size_t ref_count_size = (size / PageSize) * sizeof(u16);
|
||||
const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size);
|
||||
const size_t manager_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
|
||||
const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(size);
|
||||
const size_t total_management_size = manager_size + page_heap_size;
|
||||
ASSERT(manager_size <= total_management_size);
|
||||
ASSERT(management + total_management_size <= management_end);
|
||||
ASSERT(Common::IsAligned(total_management_size, PageSize));
|
||||
|
||||
// Setup region.
|
||||
pool = p;
|
||||
management_region = management;
|
||||
page_reference_counts.resize(
|
||||
Kernel::Board::Nintendo::Nx::KSystemControl::Init::GetIntendedMemorySize() / PageSize);
|
||||
ASSERT(Common::IsAligned(management_region, PageSize));
|
||||
|
||||
// Initialize the manager's KPageHeap.
|
||||
heap.Initialize(address, size, management + manager_size, page_heap_size);
|
||||
|
||||
return total_management_size;
|
||||
}
|
||||
|
||||
size_t KMemoryManager::Impl::CalculateManagementOverheadSize(size_t region_size) {
|
||||
const size_t ref_count_size = (region_size / PageSize) * sizeof(u16);
|
||||
const size_t optimize_map_size =
|
||||
(Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) /
|
||||
Common::BitSize<u64>()) *
|
||||
sizeof(u64);
|
||||
const size_t manager_meta_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
|
||||
const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(region_size);
|
||||
return manager_meta_size + page_heap_size;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/scope_exit.h"
|
||||
#include "core/core.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/initial_process.h"
|
||||
#include "core/hle/kernel/k_memory_manager.h"
|
||||
#include "core/hle/kernel/k_page_group.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
constexpr KMemoryManager::Pool GetPoolFromMemoryRegionType(u32 type) {
|
||||
if ((type | KMemoryRegionType_DramApplicationPool) == type) {
|
||||
return KMemoryManager::Pool::Application;
|
||||
} else if ((type | KMemoryRegionType_DramAppletPool) == type) {
|
||||
return KMemoryManager::Pool::Applet;
|
||||
} else if ((type | KMemoryRegionType_DramSystemPool) == type) {
|
||||
return KMemoryManager::Pool::System;
|
||||
} else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) {
|
||||
return KMemoryManager::Pool::SystemNonSecure;
|
||||
} else {
|
||||
ASSERT_MSG(false, "InvalidMemoryRegionType for conversion to Pool");
|
||||
return {};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
KMemoryManager::KMemoryManager(Core::System& system_)
|
||||
: system{system_}, pool_locks{
|
||||
KLightLock{system_.Kernel()},
|
||||
KLightLock{system_.Kernel()},
|
||||
KLightLock{system_.Kernel()},
|
||||
KLightLock{system_.Kernel()},
|
||||
} {}
|
||||
|
||||
void KMemoryManager::Initialize(VAddr management_region, size_t management_region_size) {
|
||||
|
||||
// Clear the management region to zero.
|
||||
const VAddr management_region_end = management_region + management_region_size;
|
||||
|
||||
// Reset our manager count.
|
||||
num_managers = 0;
|
||||
|
||||
// Traverse the virtual memory layout tree, initializing each manager as appropriate.
|
||||
while (num_managers != MaxManagerCount) {
|
||||
// Locate the region that should initialize the current manager.
|
||||
PAddr region_address = 0;
|
||||
size_t region_size = 0;
|
||||
Pool region_pool = Pool::Count;
|
||||
for (const auto& it : system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
|
||||
// We only care about regions that we need to create managers for.
|
||||
if (!it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// We want to initialize the managers in order.
|
||||
if (it.GetAttributes() != num_managers) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const PAddr cur_start = it.GetAddress();
|
||||
const PAddr cur_end = it.GetEndAddress();
|
||||
|
||||
// Validate the region.
|
||||
ASSERT(cur_end != 0);
|
||||
ASSERT(cur_start != 0);
|
||||
ASSERT(it.GetSize() > 0);
|
||||
|
||||
// Update the region's extents.
|
||||
if (region_address == 0) {
|
||||
region_address = cur_start;
|
||||
region_size = it.GetSize();
|
||||
region_pool = GetPoolFromMemoryRegionType(it.GetType());
|
||||
} else {
|
||||
ASSERT(cur_start == region_address + region_size);
|
||||
|
||||
// Update the size.
|
||||
region_size = cur_end - region_address;
|
||||
ASSERT(GetPoolFromMemoryRegionType(it.GetType()) == region_pool);
|
||||
}
|
||||
}
|
||||
|
||||
// If we didn't find a region, we're done.
|
||||
if (region_size == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Initialize a new manager for the region.
|
||||
Impl* manager = std::addressof(managers[num_managers++]);
|
||||
ASSERT(num_managers <= managers.size());
|
||||
|
||||
const size_t cur_size = manager->Initialize(region_address, region_size, management_region,
|
||||
management_region_end, region_pool);
|
||||
management_region += cur_size;
|
||||
ASSERT(management_region <= management_region_end);
|
||||
|
||||
// Insert the manager into the pool list.
|
||||
const auto region_pool_index = static_cast<u32>(region_pool);
|
||||
if (pool_managers_tail[region_pool_index] == nullptr) {
|
||||
pool_managers_head[region_pool_index] = manager;
|
||||
} else {
|
||||
pool_managers_tail[region_pool_index]->SetNext(manager);
|
||||
manager->SetPrev(pool_managers_tail[region_pool_index]);
|
||||
}
|
||||
pool_managers_tail[region_pool_index] = manager;
|
||||
}
|
||||
|
||||
// Free each region to its corresponding heap.
|
||||
size_t reserved_sizes[MaxManagerCount] = {};
|
||||
const PAddr ini_start = GetInitialProcessBinaryPhysicalAddress();
|
||||
const PAddr ini_end = ini_start + InitialProcessBinarySizeMax;
|
||||
const PAddr ini_last = ini_end - 1;
|
||||
for (const auto& it : system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
|
||||
if (it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
|
||||
// Get the manager for the region.
|
||||
auto index = it.GetAttributes();
|
||||
auto& manager = managers[index];
|
||||
|
||||
const PAddr cur_start = it.GetAddress();
|
||||
const PAddr cur_last = it.GetLastAddress();
|
||||
const PAddr cur_end = it.GetEndAddress();
|
||||
|
||||
if (cur_start <= ini_start && ini_last <= cur_last) {
|
||||
// Free memory before the ini to the heap.
|
||||
if (cur_start != ini_start) {
|
||||
manager.Free(cur_start, (ini_start - cur_start) / PageSize);
|
||||
}
|
||||
|
||||
// Open/reserve the ini memory.
|
||||
manager.OpenFirst(ini_start, InitialProcessBinarySizeMax / PageSize);
|
||||
reserved_sizes[it.GetAttributes()] += InitialProcessBinarySizeMax;
|
||||
|
||||
// Free memory after the ini to the heap.
|
||||
if (ini_last != cur_last) {
|
||||
ASSERT(cur_end != 0);
|
||||
manager.Free(ini_end, cur_end - ini_end);
|
||||
}
|
||||
} else {
|
||||
// Ensure there's no partial overlap with the ini image.
|
||||
if (cur_start <= ini_last) {
|
||||
ASSERT(cur_last < ini_start);
|
||||
} else {
|
||||
// Otherwise, check the region for general validity.
|
||||
ASSERT(cur_end != 0);
|
||||
}
|
||||
|
||||
// Free the memory to the heap.
|
||||
manager.Free(cur_start, it.GetSize() / PageSize);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Update the used size for all managers.
|
||||
for (size_t i = 0; i < num_managers; ++i) {
|
||||
managers[i].SetInitialUsedHeapSize(reserved_sizes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
PAddr KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option) {
|
||||
// Early return if we're allocating no pages.
|
||||
if (num_pages == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Lock the pool that we're allocating from.
|
||||
const auto [pool, dir] = DecodeOption(option);
|
||||
KScopedLightLock lk(pool_locks[static_cast<std::size_t>(pool)]);
|
||||
|
||||
// Choose a heap based on our page size request.
|
||||
const s32 heap_index = KPageHeap::GetAlignedBlockIndex(num_pages, align_pages);
|
||||
|
||||
// Loop, trying to iterate from each block.
|
||||
Impl* chosen_manager = nullptr;
|
||||
PAddr allocated_block = 0;
|
||||
for (chosen_manager = this->GetFirstManager(pool, dir); chosen_manager != nullptr;
|
||||
chosen_manager = this->GetNextManager(chosen_manager, dir)) {
|
||||
allocated_block = chosen_manager->AllocateBlock(heap_index, true);
|
||||
if (allocated_block != 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If we failed to allocate, quit now.
|
||||
if (allocated_block == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// If we allocated more than we need, free some.
|
||||
const size_t allocated_pages = KPageHeap::GetBlockNumPages(heap_index);
|
||||
if (allocated_pages > num_pages) {
|
||||
chosen_manager->Free(allocated_block + num_pages * PageSize, allocated_pages - num_pages);
|
||||
}
|
||||
|
||||
// Open the first reference to the pages.
|
||||
chosen_manager->OpenFirst(allocated_block, num_pages);
|
||||
|
||||
return allocated_block;
|
||||
}
|
||||
|
||||
Result KMemoryManager::AllocatePageGroupImpl(KPageGroup* out, size_t num_pages, Pool pool,
|
||||
Direction dir, bool random) {
|
||||
// Choose a heap based on our page size request.
|
||||
const s32 heap_index = KPageHeap::GetBlockIndex(num_pages);
|
||||
R_UNLESS(0 <= heap_index, ResultOutOfMemory);
|
||||
|
||||
// Ensure that we don't leave anything un-freed.
|
||||
auto group_guard = SCOPE_GUARD({
|
||||
for (const auto& it : out->Nodes()) {
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), it.GetAddress());
|
||||
const size_t num_pages_to_free =
|
||||
std::min(it.GetNumPages(), (manager.GetEndAddress() - it.GetAddress()) / PageSize);
|
||||
manager.Free(it.GetAddress(), num_pages_to_free);
|
||||
}
|
||||
});
|
||||
|
||||
// Keep allocating until we've allocated all our pages.
|
||||
for (s32 index = heap_index; index >= 0 && num_pages > 0; index--) {
|
||||
const size_t pages_per_alloc = KPageHeap::GetBlockNumPages(index);
|
||||
for (Impl* cur_manager = this->GetFirstManager(pool, dir); cur_manager != nullptr;
|
||||
cur_manager = this->GetNextManager(cur_manager, dir)) {
|
||||
while (num_pages >= pages_per_alloc) {
|
||||
// Allocate a block.
|
||||
PAddr allocated_block = cur_manager->AllocateBlock(index, random);
|
||||
if (allocated_block == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Safely add it to our group.
|
||||
{
|
||||
auto block_guard =
|
||||
SCOPE_GUARD({ cur_manager->Free(allocated_block, pages_per_alloc); });
|
||||
R_TRY(out->AddBlock(allocated_block, pages_per_alloc));
|
||||
block_guard.Cancel();
|
||||
}
|
||||
|
||||
num_pages -= pages_per_alloc;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Only succeed if we allocated as many pages as we wanted.
|
||||
R_UNLESS(num_pages == 0, ResultOutOfMemory);
|
||||
|
||||
// We succeeded!
|
||||
group_guard.Cancel();
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KMemoryManager::AllocateAndOpen(KPageGroup* out, size_t num_pages, u32 option) {
|
||||
ASSERT(out != nullptr);
|
||||
ASSERT(out->GetNumPages() == 0);
|
||||
|
||||
// Early return if we're allocating no pages.
|
||||
R_SUCCEED_IF(num_pages == 0);
|
||||
|
||||
// Lock the pool that we're allocating from.
|
||||
const auto [pool, dir] = DecodeOption(option);
|
||||
KScopedLightLock lk(pool_locks[static_cast<size_t>(pool)]);
|
||||
|
||||
// Allocate the page group.
|
||||
R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, false));
|
||||
|
||||
// Open the first reference to the pages.
|
||||
for (const auto& block : out->Nodes()) {
|
||||
PAddr cur_address = block.GetAddress();
|
||||
size_t remaining_pages = block.GetNumPages();
|
||||
while (remaining_pages > 0) {
|
||||
// Get the manager for the current address.
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), cur_address);
|
||||
|
||||
// Process part or all of the block.
|
||||
const size_t cur_pages =
|
||||
std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
|
||||
manager.OpenFirst(cur_address, cur_pages);
|
||||
|
||||
// Advance.
|
||||
cur_address += cur_pages * PageSize;
|
||||
remaining_pages -= cur_pages;
|
||||
}
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KMemoryManager::AllocateAndOpenForProcess(KPageGroup* out, size_t num_pages, u32 option,
|
||||
u64 process_id, u8 fill_pattern) {
|
||||
ASSERT(out != nullptr);
|
||||
ASSERT(out->GetNumPages() == 0);
|
||||
|
||||
// Decode the option.
|
||||
const auto [pool, dir] = DecodeOption(option);
|
||||
|
||||
// Allocate the memory.
|
||||
{
|
||||
// Lock the pool that we're allocating from.
|
||||
KScopedLightLock lk(pool_locks[static_cast<size_t>(pool)]);
|
||||
|
||||
// Allocate the page group.
|
||||
R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, false));
|
||||
|
||||
// Open the first reference to the pages.
|
||||
for (const auto& block : out->Nodes()) {
|
||||
PAddr cur_address = block.GetAddress();
|
||||
size_t remaining_pages = block.GetNumPages();
|
||||
while (remaining_pages > 0) {
|
||||
// Get the manager for the current address.
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), cur_address);
|
||||
|
||||
// Process part or all of the block.
|
||||
const size_t cur_pages =
|
||||
std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
|
||||
manager.OpenFirst(cur_address, cur_pages);
|
||||
|
||||
// Advance.
|
||||
cur_address += cur_pages * PageSize;
|
||||
remaining_pages -= cur_pages;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Set all the allocated memory.
|
||||
for (const auto& block : out->Nodes()) {
|
||||
std::memset(system.DeviceMemory().GetPointer<void>(block.GetAddress()), fill_pattern,
|
||||
block.GetSize());
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KMemoryManager::Open(PAddr address, size_t num_pages) {
|
||||
// Repeatedly open references until we've done so for all pages.
|
||||
while (num_pages) {
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), address);
|
||||
const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
|
||||
|
||||
{
|
||||
KScopedLightLock lk(pool_locks[static_cast<size_t>(manager.GetPool())]);
|
||||
manager.Open(address, cur_pages);
|
||||
}
|
||||
|
||||
num_pages -= cur_pages;
|
||||
address += cur_pages * PageSize;
|
||||
}
|
||||
}
|
||||
|
||||
void KMemoryManager::Close(PAddr address, size_t num_pages) {
|
||||
// Repeatedly close references until we've done so for all pages.
|
||||
while (num_pages) {
|
||||
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), address);
|
||||
const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
|
||||
|
||||
{
|
||||
KScopedLightLock lk(pool_locks[static_cast<size_t>(manager.GetPool())]);
|
||||
manager.Close(address, cur_pages);
|
||||
}
|
||||
|
||||
num_pages -= cur_pages;
|
||||
address += cur_pages * PageSize;
|
||||
}
|
||||
}
|
||||
|
||||
void KMemoryManager::Close(const KPageGroup& pg) {
|
||||
for (const auto& node : pg.Nodes()) {
|
||||
Close(node.GetAddress(), node.GetNumPages());
|
||||
}
|
||||
}
|
||||
void KMemoryManager::Open(const KPageGroup& pg) {
|
||||
for (const auto& node : pg.Nodes()) {
|
||||
Open(node.GetAddress(), node.GetNumPages());
|
||||
}
|
||||
}
|
||||
|
||||
size_t KMemoryManager::Impl::Initialize(PAddr address, size_t size, VAddr management,
|
||||
VAddr management_end, Pool p) {
|
||||
// Calculate management sizes.
|
||||
const size_t ref_count_size = (size / PageSize) * sizeof(u16);
|
||||
const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size);
|
||||
const size_t manager_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
|
||||
const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(size);
|
||||
const size_t total_management_size = manager_size + page_heap_size;
|
||||
ASSERT(manager_size <= total_management_size);
|
||||
ASSERT(management + total_management_size <= management_end);
|
||||
ASSERT(Common::IsAligned(total_management_size, PageSize));
|
||||
|
||||
// Setup region.
|
||||
pool = p;
|
||||
management_region = management;
|
||||
page_reference_counts.resize(
|
||||
Kernel::Board::Nintendo::Nx::KSystemControl::Init::GetIntendedMemorySize() / PageSize);
|
||||
ASSERT(Common::IsAligned(management_region, PageSize));
|
||||
|
||||
// Initialize the manager's KPageHeap.
|
||||
heap.Initialize(address, size, management + manager_size, page_heap_size);
|
||||
|
||||
return total_management_size;
|
||||
}
|
||||
|
||||
size_t KMemoryManager::Impl::CalculateManagementOverheadSize(size_t region_size) {
|
||||
const size_t ref_count_size = (region_size / PageSize) * sizeof(u16);
|
||||
const size_t optimize_map_size =
|
||||
(Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) /
|
||||
Common::BitSize<u64>()) *
|
||||
sizeof(u64);
|
||||
const size_t manager_meta_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
|
||||
const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(region_size);
|
||||
return manager_meta_size + page_heap_size;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,277 +1,277 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <tuple>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_page_heap.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageGroup;
|
||||
|
||||
class KMemoryManager final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KMemoryManager);
|
||||
YUZU_NON_MOVEABLE(KMemoryManager);
|
||||
|
||||
enum class Pool : u32 {
|
||||
Application = 0,
|
||||
Applet = 1,
|
||||
System = 2,
|
||||
SystemNonSecure = 3,
|
||||
|
||||
Count,
|
||||
|
||||
Shift = 4,
|
||||
Mask = (0xF << Shift),
|
||||
|
||||
// Aliases.
|
||||
Unsafe = Application,
|
||||
Secure = System,
|
||||
};
|
||||
|
||||
enum class Direction : u32 {
|
||||
FromFront = 0,
|
||||
FromBack = 1,
|
||||
|
||||
Shift = 0,
|
||||
Mask = (0xF << Shift),
|
||||
};
|
||||
|
||||
explicit KMemoryManager(Core::System& system_);
|
||||
|
||||
void Initialize(VAddr management_region, size_t management_region_size);
|
||||
|
||||
constexpr size_t GetSize(Pool pool) const {
|
||||
constexpr Direction GetSizeDirection = Direction::FromFront;
|
||||
size_t total = 0;
|
||||
for (auto* manager = this->GetFirstManager(pool, GetSizeDirection); manager != nullptr;
|
||||
manager = this->GetNextManager(manager, GetSizeDirection)) {
|
||||
total += manager->GetSize();
|
||||
}
|
||||
return total;
|
||||
}
|
||||
|
||||
PAddr AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option);
|
||||
Result AllocateAndOpen(KPageGroup* out, size_t num_pages, u32 option);
|
||||
Result AllocateAndOpenForProcess(KPageGroup* out, size_t num_pages, u32 option, u64 process_id,
|
||||
u8 fill_pattern);
|
||||
|
||||
static constexpr size_t MaxManagerCount = 10;
|
||||
|
||||
void Close(PAddr address, size_t num_pages);
|
||||
void Close(const KPageGroup& pg);
|
||||
|
||||
void Open(PAddr address, size_t num_pages);
|
||||
void Open(const KPageGroup& pg);
|
||||
|
||||
public:
|
||||
static size_t CalculateManagementOverheadSize(size_t region_size) {
|
||||
return Impl::CalculateManagementOverheadSize(region_size);
|
||||
}
|
||||
|
||||
static constexpr u32 EncodeOption(Pool pool, Direction dir) {
|
||||
return (static_cast<u32>(pool) << static_cast<u32>(Pool::Shift)) |
|
||||
(static_cast<u32>(dir) << static_cast<u32>(Direction::Shift));
|
||||
}
|
||||
|
||||
static constexpr Pool GetPool(u32 option) {
|
||||
return static_cast<Pool>((static_cast<u32>(option) & static_cast<u32>(Pool::Mask)) >>
|
||||
static_cast<u32>(Pool::Shift));
|
||||
}
|
||||
|
||||
static constexpr Direction GetDirection(u32 option) {
|
||||
return static_cast<Direction>(
|
||||
(static_cast<u32>(option) & static_cast<u32>(Direction::Mask)) >>
|
||||
static_cast<u32>(Direction::Shift));
|
||||
}
|
||||
|
||||
static constexpr std::tuple<Pool, Direction> DecodeOption(u32 option) {
|
||||
return std::make_tuple(GetPool(option), GetDirection(option));
|
||||
}
|
||||
|
||||
private:
|
||||
class Impl final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(Impl);
|
||||
YUZU_NON_MOVEABLE(Impl);
|
||||
|
||||
Impl() = default;
|
||||
~Impl() = default;
|
||||
|
||||
size_t Initialize(PAddr address, size_t size, VAddr management, VAddr management_end,
|
||||
Pool p);
|
||||
|
||||
VAddr AllocateBlock(s32 index, bool random) {
|
||||
return heap.AllocateBlock(index, random);
|
||||
}
|
||||
|
||||
void Free(VAddr addr, size_t num_pages) {
|
||||
heap.Free(addr, num_pages);
|
||||
}
|
||||
|
||||
void SetInitialUsedHeapSize(size_t reserved_size) {
|
||||
heap.SetInitialUsedSize(reserved_size);
|
||||
}
|
||||
|
||||
constexpr Pool GetPool() const {
|
||||
return pool;
|
||||
}
|
||||
|
||||
constexpr size_t GetSize() const {
|
||||
return heap.GetSize();
|
||||
}
|
||||
|
||||
constexpr VAddr GetAddress() const {
|
||||
return heap.GetAddress();
|
||||
}
|
||||
|
||||
constexpr VAddr GetEndAddress() const {
|
||||
return heap.GetEndAddress();
|
||||
}
|
||||
|
||||
constexpr size_t GetPageOffset(PAddr address) const {
|
||||
return heap.GetPageOffset(address);
|
||||
}
|
||||
|
||||
constexpr size_t GetPageOffsetToEnd(PAddr address) const {
|
||||
return heap.GetPageOffsetToEnd(address);
|
||||
}
|
||||
|
||||
constexpr void SetNext(Impl* n) {
|
||||
next = n;
|
||||
}
|
||||
|
||||
constexpr void SetPrev(Impl* n) {
|
||||
prev = n;
|
||||
}
|
||||
|
||||
constexpr Impl* GetNext() const {
|
||||
return next;
|
||||
}
|
||||
|
||||
constexpr Impl* GetPrev() const {
|
||||
return prev;
|
||||
}
|
||||
|
||||
void OpenFirst(PAddr address, size_t num_pages) {
|
||||
size_t index = this->GetPageOffset(address);
|
||||
const size_t end = index + num_pages;
|
||||
while (index < end) {
|
||||
const RefCount ref_count = (++page_reference_counts[index]);
|
||||
ASSERT(ref_count == 1);
|
||||
|
||||
index++;
|
||||
}
|
||||
}
|
||||
|
||||
void Open(PAddr address, size_t num_pages) {
|
||||
size_t index = this->GetPageOffset(address);
|
||||
const size_t end = index + num_pages;
|
||||
while (index < end) {
|
||||
const RefCount ref_count = (++page_reference_counts[index]);
|
||||
ASSERT(ref_count > 1);
|
||||
|
||||
index++;
|
||||
}
|
||||
}
|
||||
|
||||
void Close(PAddr address, size_t num_pages) {
|
||||
size_t index = this->GetPageOffset(address);
|
||||
const size_t end = index + num_pages;
|
||||
|
||||
size_t free_start = 0;
|
||||
size_t free_count = 0;
|
||||
while (index < end) {
|
||||
ASSERT(page_reference_counts[index] > 0);
|
||||
const RefCount ref_count = (--page_reference_counts[index]);
|
||||
|
||||
// Keep track of how many zero refcounts we see in a row, to minimize calls to free.
|
||||
if (ref_count == 0) {
|
||||
if (free_count > 0) {
|
||||
free_count++;
|
||||
} else {
|
||||
free_start = index;
|
||||
free_count = 1;
|
||||
}
|
||||
} else {
|
||||
if (free_count > 0) {
|
||||
this->Free(heap.GetAddress() + free_start * PageSize, free_count);
|
||||
free_count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
if (free_count > 0) {
|
||||
this->Free(heap.GetAddress() + free_start * PageSize, free_count);
|
||||
}
|
||||
}
|
||||
|
||||
static size_t CalculateManagementOverheadSize(size_t region_size);
|
||||
|
||||
static constexpr size_t CalculateOptimizedProcessOverheadSize(size_t region_size) {
|
||||
return (Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) /
|
||||
Common::BitSize<u64>()) *
|
||||
sizeof(u64);
|
||||
}
|
||||
|
||||
private:
|
||||
using RefCount = u16;
|
||||
|
||||
KPageHeap heap;
|
||||
std::vector<RefCount> page_reference_counts;
|
||||
VAddr management_region{};
|
||||
Pool pool{};
|
||||
Impl* next{};
|
||||
Impl* prev{};
|
||||
};
|
||||
|
||||
private:
|
||||
Impl& GetManager(const KMemoryLayout& memory_layout, PAddr address) {
|
||||
return managers[memory_layout.GetPhysicalLinearRegion(address).GetAttributes()];
|
||||
}
|
||||
|
||||
const Impl& GetManager(const KMemoryLayout& memory_layout, PAddr address) const {
|
||||
return managers[memory_layout.GetPhysicalLinearRegion(address).GetAttributes()];
|
||||
}
|
||||
|
||||
constexpr Impl* GetFirstManager(Pool pool, Direction dir) const {
|
||||
return dir == Direction::FromBack ? pool_managers_tail[static_cast<size_t>(pool)]
|
||||
: pool_managers_head[static_cast<size_t>(pool)];
|
||||
}
|
||||
|
||||
constexpr Impl* GetNextManager(Impl* cur, Direction dir) const {
|
||||
if (dir == Direction::FromBack) {
|
||||
return cur->GetPrev();
|
||||
} else {
|
||||
return cur->GetNext();
|
||||
}
|
||||
}
|
||||
|
||||
Result AllocatePageGroupImpl(KPageGroup* out, size_t num_pages, Pool pool, Direction dir,
|
||||
bool random);
|
||||
|
||||
private:
|
||||
Core::System& system;
|
||||
std::array<KLightLock, static_cast<size_t>(Pool::Count)> pool_locks;
|
||||
std::array<Impl*, MaxManagerCount> pool_managers_head{};
|
||||
std::array<Impl*, MaxManagerCount> pool_managers_tail{};
|
||||
std::array<Impl, MaxManagerCount> managers;
|
||||
size_t num_managers{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <tuple>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_page_heap.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageGroup;
|
||||
|
||||
class KMemoryManager final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KMemoryManager);
|
||||
YUZU_NON_MOVEABLE(KMemoryManager);
|
||||
|
||||
enum class Pool : u32 {
|
||||
Application = 0,
|
||||
Applet = 1,
|
||||
System = 2,
|
||||
SystemNonSecure = 3,
|
||||
|
||||
Count,
|
||||
|
||||
Shift = 4,
|
||||
Mask = (0xF << Shift),
|
||||
|
||||
// Aliases.
|
||||
Unsafe = Application,
|
||||
Secure = System,
|
||||
};
|
||||
|
||||
enum class Direction : u32 {
|
||||
FromFront = 0,
|
||||
FromBack = 1,
|
||||
|
||||
Shift = 0,
|
||||
Mask = (0xF << Shift),
|
||||
};
|
||||
|
||||
explicit KMemoryManager(Core::System& system_);
|
||||
|
||||
void Initialize(VAddr management_region, size_t management_region_size);
|
||||
|
||||
constexpr size_t GetSize(Pool pool) const {
|
||||
constexpr Direction GetSizeDirection = Direction::FromFront;
|
||||
size_t total = 0;
|
||||
for (auto* manager = this->GetFirstManager(pool, GetSizeDirection); manager != nullptr;
|
||||
manager = this->GetNextManager(manager, GetSizeDirection)) {
|
||||
total += manager->GetSize();
|
||||
}
|
||||
return total;
|
||||
}
|
||||
|
||||
PAddr AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option);
|
||||
Result AllocateAndOpen(KPageGroup* out, size_t num_pages, u32 option);
|
||||
Result AllocateAndOpenForProcess(KPageGroup* out, size_t num_pages, u32 option, u64 process_id,
|
||||
u8 fill_pattern);
|
||||
|
||||
static constexpr size_t MaxManagerCount = 10;
|
||||
|
||||
void Close(PAddr address, size_t num_pages);
|
||||
void Close(const KPageGroup& pg);
|
||||
|
||||
void Open(PAddr address, size_t num_pages);
|
||||
void Open(const KPageGroup& pg);
|
||||
|
||||
public:
|
||||
static size_t CalculateManagementOverheadSize(size_t region_size) {
|
||||
return Impl::CalculateManagementOverheadSize(region_size);
|
||||
}
|
||||
|
||||
static constexpr u32 EncodeOption(Pool pool, Direction dir) {
|
||||
return (static_cast<u32>(pool) << static_cast<u32>(Pool::Shift)) |
|
||||
(static_cast<u32>(dir) << static_cast<u32>(Direction::Shift));
|
||||
}
|
||||
|
||||
static constexpr Pool GetPool(u32 option) {
|
||||
return static_cast<Pool>((static_cast<u32>(option) & static_cast<u32>(Pool::Mask)) >>
|
||||
static_cast<u32>(Pool::Shift));
|
||||
}
|
||||
|
||||
static constexpr Direction GetDirection(u32 option) {
|
||||
return static_cast<Direction>(
|
||||
(static_cast<u32>(option) & static_cast<u32>(Direction::Mask)) >>
|
||||
static_cast<u32>(Direction::Shift));
|
||||
}
|
||||
|
||||
static constexpr std::tuple<Pool, Direction> DecodeOption(u32 option) {
|
||||
return std::make_tuple(GetPool(option), GetDirection(option));
|
||||
}
|
||||
|
||||
private:
|
||||
class Impl final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(Impl);
|
||||
YUZU_NON_MOVEABLE(Impl);
|
||||
|
||||
Impl() = default;
|
||||
~Impl() = default;
|
||||
|
||||
size_t Initialize(PAddr address, size_t size, VAddr management, VAddr management_end,
|
||||
Pool p);
|
||||
|
||||
VAddr AllocateBlock(s32 index, bool random) {
|
||||
return heap.AllocateBlock(index, random);
|
||||
}
|
||||
|
||||
void Free(VAddr addr, size_t num_pages) {
|
||||
heap.Free(addr, num_pages);
|
||||
}
|
||||
|
||||
void SetInitialUsedHeapSize(size_t reserved_size) {
|
||||
heap.SetInitialUsedSize(reserved_size);
|
||||
}
|
||||
|
||||
constexpr Pool GetPool() const {
|
||||
return pool;
|
||||
}
|
||||
|
||||
constexpr size_t GetSize() const {
|
||||
return heap.GetSize();
|
||||
}
|
||||
|
||||
constexpr VAddr GetAddress() const {
|
||||
return heap.GetAddress();
|
||||
}
|
||||
|
||||
constexpr VAddr GetEndAddress() const {
|
||||
return heap.GetEndAddress();
|
||||
}
|
||||
|
||||
constexpr size_t GetPageOffset(PAddr address) const {
|
||||
return heap.GetPageOffset(address);
|
||||
}
|
||||
|
||||
constexpr size_t GetPageOffsetToEnd(PAddr address) const {
|
||||
return heap.GetPageOffsetToEnd(address);
|
||||
}
|
||||
|
||||
constexpr void SetNext(Impl* n) {
|
||||
next = n;
|
||||
}
|
||||
|
||||
constexpr void SetPrev(Impl* n) {
|
||||
prev = n;
|
||||
}
|
||||
|
||||
constexpr Impl* GetNext() const {
|
||||
return next;
|
||||
}
|
||||
|
||||
constexpr Impl* GetPrev() const {
|
||||
return prev;
|
||||
}
|
||||
|
||||
void OpenFirst(PAddr address, size_t num_pages) {
|
||||
size_t index = this->GetPageOffset(address);
|
||||
const size_t end = index + num_pages;
|
||||
while (index < end) {
|
||||
const RefCount ref_count = (++page_reference_counts[index]);
|
||||
ASSERT(ref_count == 1);
|
||||
|
||||
index++;
|
||||
}
|
||||
}
|
||||
|
||||
void Open(PAddr address, size_t num_pages) {
|
||||
size_t index = this->GetPageOffset(address);
|
||||
const size_t end = index + num_pages;
|
||||
while (index < end) {
|
||||
const RefCount ref_count = (++page_reference_counts[index]);
|
||||
ASSERT(ref_count > 1);
|
||||
|
||||
index++;
|
||||
}
|
||||
}
|
||||
|
||||
void Close(PAddr address, size_t num_pages) {
|
||||
size_t index = this->GetPageOffset(address);
|
||||
const size_t end = index + num_pages;
|
||||
|
||||
size_t free_start = 0;
|
||||
size_t free_count = 0;
|
||||
while (index < end) {
|
||||
ASSERT(page_reference_counts[index] > 0);
|
||||
const RefCount ref_count = (--page_reference_counts[index]);
|
||||
|
||||
// Keep track of how many zero refcounts we see in a row, to minimize calls to free.
|
||||
if (ref_count == 0) {
|
||||
if (free_count > 0) {
|
||||
free_count++;
|
||||
} else {
|
||||
free_start = index;
|
||||
free_count = 1;
|
||||
}
|
||||
} else {
|
||||
if (free_count > 0) {
|
||||
this->Free(heap.GetAddress() + free_start * PageSize, free_count);
|
||||
free_count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
if (free_count > 0) {
|
||||
this->Free(heap.GetAddress() + free_start * PageSize, free_count);
|
||||
}
|
||||
}
|
||||
|
||||
static size_t CalculateManagementOverheadSize(size_t region_size);
|
||||
|
||||
static constexpr size_t CalculateOptimizedProcessOverheadSize(size_t region_size) {
|
||||
return (Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) /
|
||||
Common::BitSize<u64>()) *
|
||||
sizeof(u64);
|
||||
}
|
||||
|
||||
private:
|
||||
using RefCount = u16;
|
||||
|
||||
KPageHeap heap;
|
||||
std::vector<RefCount> page_reference_counts;
|
||||
VAddr management_region{};
|
||||
Pool pool{};
|
||||
Impl* next{};
|
||||
Impl* prev{};
|
||||
};
|
||||
|
||||
private:
|
||||
Impl& GetManager(const KMemoryLayout& memory_layout, PAddr address) {
|
||||
return managers[memory_layout.GetPhysicalLinearRegion(address).GetAttributes()];
|
||||
}
|
||||
|
||||
const Impl& GetManager(const KMemoryLayout& memory_layout, PAddr address) const {
|
||||
return managers[memory_layout.GetPhysicalLinearRegion(address).GetAttributes()];
|
||||
}
|
||||
|
||||
constexpr Impl* GetFirstManager(Pool pool, Direction dir) const {
|
||||
return dir == Direction::FromBack ? pool_managers_tail[static_cast<size_t>(pool)]
|
||||
: pool_managers_head[static_cast<size_t>(pool)];
|
||||
}
|
||||
|
||||
constexpr Impl* GetNextManager(Impl* cur, Direction dir) const {
|
||||
if (dir == Direction::FromBack) {
|
||||
return cur->GetPrev();
|
||||
} else {
|
||||
return cur->GetNext();
|
||||
}
|
||||
}
|
||||
|
||||
Result AllocatePageGroupImpl(KPageGroup* out, size_t num_pages, Pool pool, Direction dir,
|
||||
bool random);
|
||||
|
||||
private:
|
||||
Core::System& system;
|
||||
std::array<KLightLock, static_cast<size_t>(Pool::Count)> pool_locks;
|
||||
std::array<Impl*, MaxManagerCount> pool_managers_head{};
|
||||
std::array<Impl*, MaxManagerCount> pool_managers_tail{};
|
||||
std::array<Impl, MaxManagerCount> managers;
|
||||
size_t num_managers{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,355 +1,355 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/intrusive_red_black_tree.h"
|
||||
#include "core/hle/kernel/k_memory_region_type.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KMemoryRegionAllocator;
|
||||
|
||||
class KMemoryRegion final : public Common::IntrusiveRedBlackTreeBaseNode<KMemoryRegion> {
|
||||
friend class KMemoryRegionTree;
|
||||
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KMemoryRegion);
|
||||
YUZU_NON_MOVEABLE(KMemoryRegion);
|
||||
|
||||
constexpr KMemoryRegion() = default;
|
||||
constexpr KMemoryRegion(u64 address_, u64 last_address_)
|
||||
: address{address_}, last_address{last_address_} {}
|
||||
constexpr KMemoryRegion(u64 address_, u64 last_address_, u64 pair_address_, u32 attributes_,
|
||||
u32 type_id_)
|
||||
: address(address_), last_address(last_address_), pair_address(pair_address_),
|
||||
attributes(attributes_), type_id(type_id_) {}
|
||||
constexpr KMemoryRegion(u64 address_, u64 last_address_, u32 attributes_, u32 type_id_)
|
||||
: KMemoryRegion(address_, last_address_, std::numeric_limits<u64>::max(), attributes_,
|
||||
type_id_) {}
|
||||
|
||||
~KMemoryRegion() = default;
|
||||
|
||||
static constexpr int Compare(const KMemoryRegion& lhs, const KMemoryRegion& rhs) {
|
||||
if (lhs.GetAddress() < rhs.GetAddress()) {
|
||||
return -1;
|
||||
} else if (lhs.GetAddress() <= rhs.GetLastAddress()) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr u64 GetAddress() const {
|
||||
return address;
|
||||
}
|
||||
|
||||
constexpr u64 GetPairAddress() const {
|
||||
return pair_address;
|
||||
}
|
||||
|
||||
constexpr u64 GetLastAddress() const {
|
||||
return last_address;
|
||||
}
|
||||
|
||||
constexpr u64 GetEndAddress() const {
|
||||
return this->GetLastAddress() + 1;
|
||||
}
|
||||
|
||||
constexpr size_t GetSize() const {
|
||||
return this->GetEndAddress() - this->GetAddress();
|
||||
}
|
||||
|
||||
constexpr u32 GetAttributes() const {
|
||||
return attributes;
|
||||
}
|
||||
|
||||
constexpr u32 GetType() const {
|
||||
return type_id;
|
||||
}
|
||||
|
||||
constexpr void SetType(u32 type) {
|
||||
ASSERT(this->CanDerive(type));
|
||||
type_id = type;
|
||||
}
|
||||
|
||||
constexpr bool Contains(u64 addr) const {
|
||||
ASSERT(this->GetEndAddress() != 0);
|
||||
return this->GetAddress() <= addr && addr <= this->GetLastAddress();
|
||||
}
|
||||
|
||||
constexpr bool IsDerivedFrom(u32 type) const {
|
||||
return (this->GetType() | type) == this->GetType();
|
||||
}
|
||||
|
||||
constexpr bool HasTypeAttribute(u32 attr) const {
|
||||
return (this->GetType() | attr) == this->GetType();
|
||||
}
|
||||
|
||||
constexpr bool CanDerive(u32 type) const {
|
||||
return (this->GetType() | type) == type;
|
||||
}
|
||||
|
||||
constexpr void SetPairAddress(u64 a) {
|
||||
pair_address = a;
|
||||
}
|
||||
|
||||
constexpr void SetTypeAttribute(u32 attr) {
|
||||
type_id |= attr;
|
||||
}
|
||||
|
||||
private:
|
||||
constexpr void Reset(u64 a, u64 la, u64 p, u32 r, u32 t) {
|
||||
address = a;
|
||||
pair_address = p;
|
||||
last_address = la;
|
||||
attributes = r;
|
||||
type_id = t;
|
||||
}
|
||||
|
||||
u64 address{};
|
||||
u64 last_address{};
|
||||
u64 pair_address{};
|
||||
u32 attributes{};
|
||||
u32 type_id{};
|
||||
};
|
||||
|
||||
class KMemoryRegionTree final {
|
||||
private:
|
||||
using TreeType =
|
||||
Common::IntrusiveRedBlackTreeBaseTraits<KMemoryRegion>::TreeType<KMemoryRegion>;
|
||||
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KMemoryRegionTree);
|
||||
YUZU_NON_MOVEABLE(KMemoryRegionTree);
|
||||
|
||||
using value_type = TreeType::value_type;
|
||||
using size_type = TreeType::size_type;
|
||||
using difference_type = TreeType::difference_type;
|
||||
using pointer = TreeType::pointer;
|
||||
using const_pointer = TreeType::const_pointer;
|
||||
using reference = TreeType::reference;
|
||||
using const_reference = TreeType::const_reference;
|
||||
using iterator = TreeType::iterator;
|
||||
using const_iterator = TreeType::const_iterator;
|
||||
|
||||
struct DerivedRegionExtents {
|
||||
const KMemoryRegion* first_region{};
|
||||
const KMemoryRegion* last_region{};
|
||||
|
||||
constexpr DerivedRegionExtents() = default;
|
||||
|
||||
constexpr u64 GetAddress() const {
|
||||
return this->first_region->GetAddress();
|
||||
}
|
||||
|
||||
constexpr u64 GetLastAddress() const {
|
||||
return this->last_region->GetLastAddress();
|
||||
}
|
||||
|
||||
constexpr u64 GetEndAddress() const {
|
||||
return this->GetLastAddress() + 1;
|
||||
}
|
||||
|
||||
constexpr size_t GetSize() const {
|
||||
return this->GetEndAddress() - this->GetAddress();
|
||||
}
|
||||
};
|
||||
|
||||
explicit KMemoryRegionTree(KMemoryRegionAllocator& memory_region_allocator_);
|
||||
~KMemoryRegionTree() = default;
|
||||
|
||||
KMemoryRegion* FindModifiable(u64 address) {
|
||||
if (auto it = this->find(KMemoryRegion(address, address, 0, 0)); it != this->end()) {
|
||||
return std::addressof(*it);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
const KMemoryRegion* Find(u64 address) const {
|
||||
if (auto it = this->find(KMemoryRegion(address, address, 0, 0)); it != this->cend()) {
|
||||
return std::addressof(*it);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindByType(KMemoryRegionType type_id) const {
|
||||
for (auto it = this->cbegin(); it != this->cend(); ++it) {
|
||||
if (it->GetType() == static_cast<u32>(type_id)) {
|
||||
return std::addressof(*it);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindByTypeAndAttribute(u32 type_id, u32 attr) const {
|
||||
for (auto it = this->cbegin(); it != this->cend(); ++it) {
|
||||
if (it->GetType() == type_id && it->GetAttributes() == attr) {
|
||||
return std::addressof(*it);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindFirstDerived(KMemoryRegionType type_id) const {
|
||||
for (auto it = this->cbegin(); it != this->cend(); it++) {
|
||||
if (it->IsDerivedFrom(type_id)) {
|
||||
return std::addressof(*it);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindLastDerived(KMemoryRegionType type_id) const {
|
||||
const KMemoryRegion* region = nullptr;
|
||||
for (auto it = this->begin(); it != this->end(); it++) {
|
||||
if (it->IsDerivedFrom(type_id)) {
|
||||
region = std::addressof(*it);
|
||||
}
|
||||
}
|
||||
return region;
|
||||
}
|
||||
|
||||
DerivedRegionExtents GetDerivedRegionExtents(KMemoryRegionType type_id) const {
|
||||
DerivedRegionExtents extents;
|
||||
|
||||
ASSERT(extents.first_region == nullptr);
|
||||
ASSERT(extents.last_region == nullptr);
|
||||
|
||||
for (auto it = this->cbegin(); it != this->cend(); it++) {
|
||||
if (it->IsDerivedFrom(type_id)) {
|
||||
if (extents.first_region == nullptr) {
|
||||
extents.first_region = std::addressof(*it);
|
||||
}
|
||||
extents.last_region = std::addressof(*it);
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT(extents.first_region != nullptr);
|
||||
ASSERT(extents.last_region != nullptr);
|
||||
|
||||
return extents;
|
||||
}
|
||||
|
||||
DerivedRegionExtents GetDerivedRegionExtents(u32 type_id) const {
|
||||
return GetDerivedRegionExtents(static_cast<KMemoryRegionType>(type_id));
|
||||
}
|
||||
|
||||
void InsertDirectly(u64 address, u64 last_address, u32 attr = 0, u32 type_id = 0);
|
||||
bool Insert(u64 address, size_t size, u32 type_id, u32 new_attr = 0, u32 old_attr = 0);
|
||||
|
||||
VAddr GetRandomAlignedRegion(size_t size, size_t alignment, u32 type_id);
|
||||
|
||||
VAddr GetRandomAlignedRegionWithGuard(size_t size, size_t alignment, u32 type_id,
|
||||
size_t guard_size) {
|
||||
return this->GetRandomAlignedRegion(size + 2 * guard_size, alignment, type_id) + guard_size;
|
||||
}
|
||||
|
||||
// Iterator accessors.
|
||||
iterator begin() {
|
||||
return m_tree.begin();
|
||||
}
|
||||
|
||||
const_iterator begin() const {
|
||||
return m_tree.begin();
|
||||
}
|
||||
|
||||
iterator end() {
|
||||
return m_tree.end();
|
||||
}
|
||||
|
||||
const_iterator end() const {
|
||||
return m_tree.end();
|
||||
}
|
||||
|
||||
const_iterator cbegin() const {
|
||||
return this->begin();
|
||||
}
|
||||
|
||||
const_iterator cend() const {
|
||||
return this->end();
|
||||
}
|
||||
|
||||
iterator iterator_to(reference ref) {
|
||||
return m_tree.iterator_to(ref);
|
||||
}
|
||||
|
||||
const_iterator iterator_to(const_reference ref) const {
|
||||
return m_tree.iterator_to(ref);
|
||||
}
|
||||
|
||||
// Content management.
|
||||
bool empty() const {
|
||||
return m_tree.empty();
|
||||
}
|
||||
|
||||
reference back() {
|
||||
return m_tree.back();
|
||||
}
|
||||
|
||||
const_reference back() const {
|
||||
return m_tree.back();
|
||||
}
|
||||
|
||||
reference front() {
|
||||
return m_tree.front();
|
||||
}
|
||||
|
||||
const_reference front() const {
|
||||
return m_tree.front();
|
||||
}
|
||||
|
||||
iterator insert(reference ref) {
|
||||
return m_tree.insert(ref);
|
||||
}
|
||||
|
||||
iterator erase(iterator it) {
|
||||
return m_tree.erase(it);
|
||||
}
|
||||
|
||||
iterator find(const_reference ref) const {
|
||||
return m_tree.find(ref);
|
||||
}
|
||||
|
||||
iterator nfind(const_reference ref) const {
|
||||
return m_tree.nfind(ref);
|
||||
}
|
||||
|
||||
private:
|
||||
TreeType m_tree{};
|
||||
KMemoryRegionAllocator& memory_region_allocator;
|
||||
};
|
||||
|
||||
class KMemoryRegionAllocator final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KMemoryRegionAllocator);
|
||||
YUZU_NON_MOVEABLE(KMemoryRegionAllocator);
|
||||
|
||||
static constexpr size_t MaxMemoryRegions = 200;
|
||||
|
||||
constexpr KMemoryRegionAllocator() = default;
|
||||
constexpr ~KMemoryRegionAllocator() = default;
|
||||
|
||||
template <typename... Args>
|
||||
KMemoryRegion* Allocate(Args&&... args) {
|
||||
// Ensure we stay within the bounds of our heap.
|
||||
ASSERT(this->num_regions < MaxMemoryRegions);
|
||||
|
||||
// Create the new region.
|
||||
KMemoryRegion* region = std::addressof(this->region_heap[this->num_regions++]);
|
||||
new (region) KMemoryRegion(std::forward<Args>(args)...);
|
||||
|
||||
return region;
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<KMemoryRegion, MaxMemoryRegions> region_heap{};
|
||||
size_t num_regions{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/intrusive_red_black_tree.h"
|
||||
#include "core/hle/kernel/k_memory_region_type.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KMemoryRegionAllocator;
|
||||
|
||||
class KMemoryRegion final : public Common::IntrusiveRedBlackTreeBaseNode<KMemoryRegion> {
|
||||
friend class KMemoryRegionTree;
|
||||
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KMemoryRegion);
|
||||
YUZU_NON_MOVEABLE(KMemoryRegion);
|
||||
|
||||
constexpr KMemoryRegion() = default;
|
||||
constexpr KMemoryRegion(u64 address_, u64 last_address_)
|
||||
: address{address_}, last_address{last_address_} {}
|
||||
constexpr KMemoryRegion(u64 address_, u64 last_address_, u64 pair_address_, u32 attributes_,
|
||||
u32 type_id_)
|
||||
: address(address_), last_address(last_address_), pair_address(pair_address_),
|
||||
attributes(attributes_), type_id(type_id_) {}
|
||||
constexpr KMemoryRegion(u64 address_, u64 last_address_, u32 attributes_, u32 type_id_)
|
||||
: KMemoryRegion(address_, last_address_, std::numeric_limits<u64>::max(), attributes_,
|
||||
type_id_) {}
|
||||
|
||||
~KMemoryRegion() = default;
|
||||
|
||||
static constexpr int Compare(const KMemoryRegion& lhs, const KMemoryRegion& rhs) {
|
||||
if (lhs.GetAddress() < rhs.GetAddress()) {
|
||||
return -1;
|
||||
} else if (lhs.GetAddress() <= rhs.GetLastAddress()) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr u64 GetAddress() const {
|
||||
return address;
|
||||
}
|
||||
|
||||
constexpr u64 GetPairAddress() const {
|
||||
return pair_address;
|
||||
}
|
||||
|
||||
constexpr u64 GetLastAddress() const {
|
||||
return last_address;
|
||||
}
|
||||
|
||||
constexpr u64 GetEndAddress() const {
|
||||
return this->GetLastAddress() + 1;
|
||||
}
|
||||
|
||||
constexpr size_t GetSize() const {
|
||||
return this->GetEndAddress() - this->GetAddress();
|
||||
}
|
||||
|
||||
constexpr u32 GetAttributes() const {
|
||||
return attributes;
|
||||
}
|
||||
|
||||
constexpr u32 GetType() const {
|
||||
return type_id;
|
||||
}
|
||||
|
||||
constexpr void SetType(u32 type) {
|
||||
ASSERT(this->CanDerive(type));
|
||||
type_id = type;
|
||||
}
|
||||
|
||||
constexpr bool Contains(u64 addr) const {
|
||||
ASSERT(this->GetEndAddress() != 0);
|
||||
return this->GetAddress() <= addr && addr <= this->GetLastAddress();
|
||||
}
|
||||
|
||||
constexpr bool IsDerivedFrom(u32 type) const {
|
||||
return (this->GetType() | type) == this->GetType();
|
||||
}
|
||||
|
||||
constexpr bool HasTypeAttribute(u32 attr) const {
|
||||
return (this->GetType() | attr) == this->GetType();
|
||||
}
|
||||
|
||||
constexpr bool CanDerive(u32 type) const {
|
||||
return (this->GetType() | type) == type;
|
||||
}
|
||||
|
||||
constexpr void SetPairAddress(u64 a) {
|
||||
pair_address = a;
|
||||
}
|
||||
|
||||
constexpr void SetTypeAttribute(u32 attr) {
|
||||
type_id |= attr;
|
||||
}
|
||||
|
||||
private:
|
||||
constexpr void Reset(u64 a, u64 la, u64 p, u32 r, u32 t) {
|
||||
address = a;
|
||||
pair_address = p;
|
||||
last_address = la;
|
||||
attributes = r;
|
||||
type_id = t;
|
||||
}
|
||||
|
||||
u64 address{};
|
||||
u64 last_address{};
|
||||
u64 pair_address{};
|
||||
u32 attributes{};
|
||||
u32 type_id{};
|
||||
};
|
||||
|
||||
class KMemoryRegionTree final {
|
||||
private:
|
||||
using TreeType =
|
||||
Common::IntrusiveRedBlackTreeBaseTraits<KMemoryRegion>::TreeType<KMemoryRegion>;
|
||||
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KMemoryRegionTree);
|
||||
YUZU_NON_MOVEABLE(KMemoryRegionTree);
|
||||
|
||||
using value_type = TreeType::value_type;
|
||||
using size_type = TreeType::size_type;
|
||||
using difference_type = TreeType::difference_type;
|
||||
using pointer = TreeType::pointer;
|
||||
using const_pointer = TreeType::const_pointer;
|
||||
using reference = TreeType::reference;
|
||||
using const_reference = TreeType::const_reference;
|
||||
using iterator = TreeType::iterator;
|
||||
using const_iterator = TreeType::const_iterator;
|
||||
|
||||
struct DerivedRegionExtents {
|
||||
const KMemoryRegion* first_region{};
|
||||
const KMemoryRegion* last_region{};
|
||||
|
||||
constexpr DerivedRegionExtents() = default;
|
||||
|
||||
constexpr u64 GetAddress() const {
|
||||
return this->first_region->GetAddress();
|
||||
}
|
||||
|
||||
constexpr u64 GetLastAddress() const {
|
||||
return this->last_region->GetLastAddress();
|
||||
}
|
||||
|
||||
constexpr u64 GetEndAddress() const {
|
||||
return this->GetLastAddress() + 1;
|
||||
}
|
||||
|
||||
constexpr size_t GetSize() const {
|
||||
return this->GetEndAddress() - this->GetAddress();
|
||||
}
|
||||
};
|
||||
|
||||
explicit KMemoryRegionTree(KMemoryRegionAllocator& memory_region_allocator_);
|
||||
~KMemoryRegionTree() = default;
|
||||
|
||||
KMemoryRegion* FindModifiable(u64 address) {
|
||||
if (auto it = this->find(KMemoryRegion(address, address, 0, 0)); it != this->end()) {
|
||||
return std::addressof(*it);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
const KMemoryRegion* Find(u64 address) const {
|
||||
if (auto it = this->find(KMemoryRegion(address, address, 0, 0)); it != this->cend()) {
|
||||
return std::addressof(*it);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindByType(KMemoryRegionType type_id) const {
|
||||
for (auto it = this->cbegin(); it != this->cend(); ++it) {
|
||||
if (it->GetType() == static_cast<u32>(type_id)) {
|
||||
return std::addressof(*it);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindByTypeAndAttribute(u32 type_id, u32 attr) const {
|
||||
for (auto it = this->cbegin(); it != this->cend(); ++it) {
|
||||
if (it->GetType() == type_id && it->GetAttributes() == attr) {
|
||||
return std::addressof(*it);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindFirstDerived(KMemoryRegionType type_id) const {
|
||||
for (auto it = this->cbegin(); it != this->cend(); it++) {
|
||||
if (it->IsDerivedFrom(type_id)) {
|
||||
return std::addressof(*it);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const KMemoryRegion* FindLastDerived(KMemoryRegionType type_id) const {
|
||||
const KMemoryRegion* region = nullptr;
|
||||
for (auto it = this->begin(); it != this->end(); it++) {
|
||||
if (it->IsDerivedFrom(type_id)) {
|
||||
region = std::addressof(*it);
|
||||
}
|
||||
}
|
||||
return region;
|
||||
}
|
||||
|
||||
DerivedRegionExtents GetDerivedRegionExtents(KMemoryRegionType type_id) const {
|
||||
DerivedRegionExtents extents;
|
||||
|
||||
ASSERT(extents.first_region == nullptr);
|
||||
ASSERT(extents.last_region == nullptr);
|
||||
|
||||
for (auto it = this->cbegin(); it != this->cend(); it++) {
|
||||
if (it->IsDerivedFrom(type_id)) {
|
||||
if (extents.first_region == nullptr) {
|
||||
extents.first_region = std::addressof(*it);
|
||||
}
|
||||
extents.last_region = std::addressof(*it);
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT(extents.first_region != nullptr);
|
||||
ASSERT(extents.last_region != nullptr);
|
||||
|
||||
return extents;
|
||||
}
|
||||
|
||||
DerivedRegionExtents GetDerivedRegionExtents(u32 type_id) const {
|
||||
return GetDerivedRegionExtents(static_cast<KMemoryRegionType>(type_id));
|
||||
}
|
||||
|
||||
void InsertDirectly(u64 address, u64 last_address, u32 attr = 0, u32 type_id = 0);
|
||||
bool Insert(u64 address, size_t size, u32 type_id, u32 new_attr = 0, u32 old_attr = 0);
|
||||
|
||||
VAddr GetRandomAlignedRegion(size_t size, size_t alignment, u32 type_id);
|
||||
|
||||
VAddr GetRandomAlignedRegionWithGuard(size_t size, size_t alignment, u32 type_id,
|
||||
size_t guard_size) {
|
||||
return this->GetRandomAlignedRegion(size + 2 * guard_size, alignment, type_id) + guard_size;
|
||||
}
|
||||
|
||||
// Iterator accessors.
|
||||
iterator begin() {
|
||||
return m_tree.begin();
|
||||
}
|
||||
|
||||
const_iterator begin() const {
|
||||
return m_tree.begin();
|
||||
}
|
||||
|
||||
iterator end() {
|
||||
return m_tree.end();
|
||||
}
|
||||
|
||||
const_iterator end() const {
|
||||
return m_tree.end();
|
||||
}
|
||||
|
||||
const_iterator cbegin() const {
|
||||
return this->begin();
|
||||
}
|
||||
|
||||
const_iterator cend() const {
|
||||
return this->end();
|
||||
}
|
||||
|
||||
iterator iterator_to(reference ref) {
|
||||
return m_tree.iterator_to(ref);
|
||||
}
|
||||
|
||||
const_iterator iterator_to(const_reference ref) const {
|
||||
return m_tree.iterator_to(ref);
|
||||
}
|
||||
|
||||
// Content management.
|
||||
bool empty() const {
|
||||
return m_tree.empty();
|
||||
}
|
||||
|
||||
reference back() {
|
||||
return m_tree.back();
|
||||
}
|
||||
|
||||
const_reference back() const {
|
||||
return m_tree.back();
|
||||
}
|
||||
|
||||
reference front() {
|
||||
return m_tree.front();
|
||||
}
|
||||
|
||||
const_reference front() const {
|
||||
return m_tree.front();
|
||||
}
|
||||
|
||||
iterator insert(reference ref) {
|
||||
return m_tree.insert(ref);
|
||||
}
|
||||
|
||||
iterator erase(iterator it) {
|
||||
return m_tree.erase(it);
|
||||
}
|
||||
|
||||
iterator find(const_reference ref) const {
|
||||
return m_tree.find(ref);
|
||||
}
|
||||
|
||||
iterator nfind(const_reference ref) const {
|
||||
return m_tree.nfind(ref);
|
||||
}
|
||||
|
||||
private:
|
||||
TreeType m_tree{};
|
||||
KMemoryRegionAllocator& memory_region_allocator;
|
||||
};
|
||||
|
||||
class KMemoryRegionAllocator final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KMemoryRegionAllocator);
|
||||
YUZU_NON_MOVEABLE(KMemoryRegionAllocator);
|
||||
|
||||
static constexpr size_t MaxMemoryRegions = 200;
|
||||
|
||||
constexpr KMemoryRegionAllocator() = default;
|
||||
constexpr ~KMemoryRegionAllocator() = default;
|
||||
|
||||
template <typename... Args>
|
||||
KMemoryRegion* Allocate(Args&&... args) {
|
||||
// Ensure we stay within the bounds of our heap.
|
||||
ASSERT(this->num_regions < MaxMemoryRegions);
|
||||
|
||||
// Create the new region.
|
||||
KMemoryRegion* region = std::addressof(this->region_heap[this->num_regions++]);
|
||||
new (region) KMemoryRegion(std::forward<Args>(args)...);
|
||||
|
||||
return region;
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<KMemoryRegion, MaxMemoryRegions> region_heap{};
|
||||
size_t num_regions{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,345 +1,345 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/bit_util.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
|
||||
#define ARCH_ARM64
|
||||
#define BOARD_NINTENDO_NX
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
enum KMemoryRegionType : u32 {
|
||||
KMemoryRegionAttr_CarveoutProtected = 0x02000000,
|
||||
KMemoryRegionAttr_Uncached = 0x04000000,
|
||||
KMemoryRegionAttr_DidKernelMap = 0x08000000,
|
||||
KMemoryRegionAttr_ShouldKernelMap = 0x10000000,
|
||||
KMemoryRegionAttr_UserReadOnly = 0x20000000,
|
||||
KMemoryRegionAttr_NoUserMap = 0x40000000,
|
||||
KMemoryRegionAttr_LinearMapped = 0x80000000,
|
||||
};
|
||||
DECLARE_ENUM_FLAG_OPERATORS(KMemoryRegionType);
|
||||
|
||||
namespace impl {
|
||||
|
||||
constexpr size_t BitsForDeriveSparse(size_t n) {
|
||||
return n + 1;
|
||||
}
|
||||
|
||||
constexpr size_t BitsForDeriveDense(size_t n) {
|
||||
size_t low = 0, high = 1;
|
||||
for (size_t i = 0; i < n - 1; ++i) {
|
||||
if ((++low) == high) {
|
||||
++high;
|
||||
low = 0;
|
||||
}
|
||||
}
|
||||
return high + 1;
|
||||
}
|
||||
|
||||
class KMemoryRegionTypeValue {
|
||||
public:
|
||||
using ValueType = std::underlying_type_t<KMemoryRegionType>;
|
||||
|
||||
constexpr KMemoryRegionTypeValue() = default;
|
||||
|
||||
constexpr operator KMemoryRegionType() const {
|
||||
return static_cast<KMemoryRegionType>(m_value);
|
||||
}
|
||||
|
||||
constexpr ValueType GetValue() const {
|
||||
return m_value;
|
||||
}
|
||||
|
||||
constexpr const KMemoryRegionTypeValue& Finalize() {
|
||||
m_finalized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr const KMemoryRegionTypeValue& SetSparseOnly() {
|
||||
m_sparse_only = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr const KMemoryRegionTypeValue& SetDenseOnly() {
|
||||
m_dense_only = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue& SetAttribute(u32 attr) {
|
||||
m_value |= attr;
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue DeriveInitial(
|
||||
size_t i, size_t next = Common::BitSize<ValueType>()) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value = (ValueType{1} << i);
|
||||
new_type.m_next_bit = next;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue DeriveAttribute(u32 attr) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value |= attr;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue DeriveTransition(size_t ofs = 0, size_t adv = 1) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + ofs));
|
||||
new_type.m_next_bit += adv;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue DeriveSparse(size_t ofs, size_t n, size_t i) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + ofs));
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + ofs + 1 + i));
|
||||
new_type.m_next_bit += ofs + n + 1;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue Derive(size_t n, size_t i) const {
|
||||
size_t low = 0, high = 1;
|
||||
for (size_t j = 0; j < i; ++j) {
|
||||
if ((++low) == high) {
|
||||
++high;
|
||||
low = 0;
|
||||
}
|
||||
}
|
||||
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + low));
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + high));
|
||||
new_type.m_next_bit += BitsForDeriveDense(n);
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue Advance(size_t n) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_next_bit += n;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr bool IsAncestorOf(ValueType v) const {
|
||||
return (m_value | v) == v;
|
||||
}
|
||||
|
||||
private:
|
||||
constexpr KMemoryRegionTypeValue(ValueType v) : m_value(v) {}
|
||||
|
||||
private:
|
||||
ValueType m_value{};
|
||||
size_t m_next_bit{};
|
||||
bool m_finalized{};
|
||||
bool m_sparse_only{};
|
||||
bool m_dense_only{};
|
||||
};
|
||||
|
||||
} // namespace impl
|
||||
|
||||
constexpr auto KMemoryRegionType_None = impl::KMemoryRegionTypeValue();
|
||||
constexpr auto KMemoryRegionType_Kernel = KMemoryRegionType_None.DeriveInitial(0, 2);
|
||||
constexpr auto KMemoryRegionType_Dram = KMemoryRegionType_None.DeriveInitial(1, 2);
|
||||
static_assert(KMemoryRegionType_Kernel.GetValue() == 0x1);
|
||||
static_assert(KMemoryRegionType_Dram.GetValue() == 0x2);
|
||||
|
||||
constexpr auto KMemoryRegionType_DramKernelBase =
|
||||
KMemoryRegionType_Dram.DeriveSparse(0, 3, 0)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap)
|
||||
.SetAttribute(KMemoryRegionAttr_CarveoutProtected);
|
||||
constexpr auto KMemoryRegionType_DramReservedBase = KMemoryRegionType_Dram.DeriveSparse(0, 3, 1);
|
||||
constexpr auto KMemoryRegionType_DramHeapBase =
|
||||
KMemoryRegionType_Dram.DeriveSparse(0, 3, 2).SetAttribute(KMemoryRegionAttr_LinearMapped);
|
||||
static_assert(KMemoryRegionType_DramKernelBase.GetValue() ==
|
||||
(0xE | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramReservedBase.GetValue() == (0x16));
|
||||
static_assert(KMemoryRegionType_DramHeapBase.GetValue() == (0x26 | KMemoryRegionAttr_LinearMapped));
|
||||
|
||||
constexpr auto KMemoryRegionType_DramKernelCode =
|
||||
KMemoryRegionType_DramKernelBase.DeriveSparse(0, 4, 0);
|
||||
constexpr auto KMemoryRegionType_DramKernelSlab =
|
||||
KMemoryRegionType_DramKernelBase.DeriveSparse(0, 4, 1);
|
||||
constexpr auto KMemoryRegionType_DramKernelPtHeap =
|
||||
KMemoryRegionType_DramKernelBase.DeriveSparse(0, 4, 2).SetAttribute(
|
||||
KMemoryRegionAttr_LinearMapped);
|
||||
constexpr auto KMemoryRegionType_DramKernelInitPt =
|
||||
KMemoryRegionType_DramKernelBase.DeriveSparse(0, 4, 3).SetAttribute(
|
||||
KMemoryRegionAttr_LinearMapped);
|
||||
static_assert(KMemoryRegionType_DramKernelCode.GetValue() ==
|
||||
(0xCE | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramKernelSlab.GetValue() ==
|
||||
(0x14E | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramKernelPtHeap.GetValue() ==
|
||||
(0x24E | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap |
|
||||
KMemoryRegionAttr_LinearMapped));
|
||||
static_assert(KMemoryRegionType_DramKernelInitPt.GetValue() ==
|
||||
(0x44E | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap |
|
||||
KMemoryRegionAttr_LinearMapped));
|
||||
|
||||
constexpr auto KMemoryRegionType_DramReservedEarly =
|
||||
KMemoryRegionType_DramReservedBase.DeriveAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
static_assert(KMemoryRegionType_DramReservedEarly.GetValue() ==
|
||||
(0x16 | KMemoryRegionAttr_NoUserMap));
|
||||
|
||||
constexpr auto KMemoryRegionType_KernelTraceBuffer =
|
||||
KMemoryRegionType_DramReservedBase.DeriveSparse(0, 3, 0)
|
||||
.SetAttribute(KMemoryRegionAttr_LinearMapped)
|
||||
.SetAttribute(KMemoryRegionAttr_UserReadOnly);
|
||||
constexpr auto KMemoryRegionType_OnMemoryBootImage =
|
||||
KMemoryRegionType_DramReservedBase.DeriveSparse(0, 3, 1);
|
||||
constexpr auto KMemoryRegionType_DTB = KMemoryRegionType_DramReservedBase.DeriveSparse(0, 3, 2);
|
||||
static_assert(KMemoryRegionType_KernelTraceBuffer.GetValue() ==
|
||||
(0xD6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_UserReadOnly));
|
||||
static_assert(KMemoryRegionType_OnMemoryBootImage.GetValue() == 0x156);
|
||||
static_assert(KMemoryRegionType_DTB.GetValue() == 0x256);
|
||||
|
||||
constexpr auto KMemoryRegionType_DramPoolPartition =
|
||||
KMemoryRegionType_DramHeapBase.DeriveAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
static_assert(KMemoryRegionType_DramPoolPartition.GetValue() ==
|
||||
(0x26 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
|
||||
constexpr auto KMemoryRegionType_DramPoolManagement =
|
||||
KMemoryRegionType_DramPoolPartition.DeriveTransition(0, 2).DeriveTransition().SetAttribute(
|
||||
KMemoryRegionAttr_CarveoutProtected);
|
||||
constexpr auto KMemoryRegionType_DramUserPool =
|
||||
KMemoryRegionType_DramPoolPartition.DeriveTransition(1, 2).DeriveTransition();
|
||||
static_assert(KMemoryRegionType_DramPoolManagement.GetValue() ==
|
||||
(0x166 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap |
|
||||
KMemoryRegionAttr_CarveoutProtected));
|
||||
static_assert(KMemoryRegionType_DramUserPool.GetValue() ==
|
||||
(0x1A6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
|
||||
constexpr auto KMemoryRegionType_DramApplicationPool = KMemoryRegionType_DramUserPool.Derive(4, 0);
|
||||
constexpr auto KMemoryRegionType_DramAppletPool = KMemoryRegionType_DramUserPool.Derive(4, 1);
|
||||
constexpr auto KMemoryRegionType_DramSystemNonSecurePool =
|
||||
KMemoryRegionType_DramUserPool.Derive(4, 2);
|
||||
constexpr auto KMemoryRegionType_DramSystemPool =
|
||||
KMemoryRegionType_DramUserPool.Derive(4, 3).SetAttribute(KMemoryRegionAttr_CarveoutProtected);
|
||||
static_assert(KMemoryRegionType_DramApplicationPool.GetValue() ==
|
||||
(0x7A6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramAppletPool.GetValue() ==
|
||||
(0xBA6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramSystemNonSecurePool.GetValue() ==
|
||||
(0xDA6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramSystemPool.GetValue() ==
|
||||
(0x13A6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap |
|
||||
KMemoryRegionAttr_CarveoutProtected));
|
||||
|
||||
constexpr auto KMemoryRegionType_VirtualDramHeapBase = KMemoryRegionType_Dram.DeriveSparse(1, 3, 0);
|
||||
constexpr auto KMemoryRegionType_VirtualDramKernelPtHeap =
|
||||
KMemoryRegionType_Dram.DeriveSparse(1, 3, 1);
|
||||
constexpr auto KMemoryRegionType_VirtualDramKernelTraceBuffer =
|
||||
KMemoryRegionType_Dram.DeriveSparse(1, 3, 2);
|
||||
static_assert(KMemoryRegionType_VirtualDramHeapBase.GetValue() == 0x1A);
|
||||
static_assert(KMemoryRegionType_VirtualDramKernelPtHeap.GetValue() == 0x2A);
|
||||
static_assert(KMemoryRegionType_VirtualDramKernelTraceBuffer.GetValue() == 0x4A);
|
||||
|
||||
// UNUSED: .DeriveSparse(2, 2, 0);
|
||||
constexpr auto KMemoryRegionType_VirtualDramUnknownDebug =
|
||||
KMemoryRegionType_Dram.DeriveSparse(2, 2, 1);
|
||||
static_assert(KMemoryRegionType_VirtualDramUnknownDebug.GetValue() == (0x52));
|
||||
|
||||
constexpr auto KMemoryRegionType_VirtualDramKernelInitPt =
|
||||
KMemoryRegionType_VirtualDramHeapBase.Derive(3, 0);
|
||||
constexpr auto KMemoryRegionType_VirtualDramPoolManagement =
|
||||
KMemoryRegionType_VirtualDramHeapBase.Derive(3, 1);
|
||||
constexpr auto KMemoryRegionType_VirtualDramUserPool =
|
||||
KMemoryRegionType_VirtualDramHeapBase.Derive(3, 2);
|
||||
static_assert(KMemoryRegionType_VirtualDramKernelInitPt.GetValue() == 0x19A);
|
||||
static_assert(KMemoryRegionType_VirtualDramPoolManagement.GetValue() == 0x29A);
|
||||
static_assert(KMemoryRegionType_VirtualDramUserPool.GetValue() == 0x31A);
|
||||
|
||||
// NOTE: For unknown reason, the pools are derived out-of-order here. It's worth eventually trying
|
||||
// to understand why Nintendo made this choice.
|
||||
// UNUSED: .Derive(6, 0);
|
||||
// UNUSED: .Derive(6, 1);
|
||||
constexpr auto KMemoryRegionType_VirtualDramAppletPool =
|
||||
KMemoryRegionType_VirtualDramUserPool.Derive(6, 2);
|
||||
constexpr auto KMemoryRegionType_VirtualDramApplicationPool =
|
||||
KMemoryRegionType_VirtualDramUserPool.Derive(6, 3);
|
||||
constexpr auto KMemoryRegionType_VirtualDramSystemNonSecurePool =
|
||||
KMemoryRegionType_VirtualDramUserPool.Derive(6, 4);
|
||||
constexpr auto KMemoryRegionType_VirtualDramSystemPool =
|
||||
KMemoryRegionType_VirtualDramUserPool.Derive(6, 5);
|
||||
static_assert(KMemoryRegionType_VirtualDramAppletPool.GetValue() == 0x1B1A);
|
||||
static_assert(KMemoryRegionType_VirtualDramApplicationPool.GetValue() == 0x271A);
|
||||
static_assert(KMemoryRegionType_VirtualDramSystemNonSecurePool.GetValue() == 0x2B1A);
|
||||
static_assert(KMemoryRegionType_VirtualDramSystemPool.GetValue() == 0x331A);
|
||||
|
||||
constexpr auto KMemoryRegionType_ArchDeviceBase =
|
||||
KMemoryRegionType_Kernel.DeriveTransition(0, 1).SetSparseOnly();
|
||||
constexpr auto KMemoryRegionType_BoardDeviceBase =
|
||||
KMemoryRegionType_Kernel.DeriveTransition(0, 2).SetDenseOnly();
|
||||
static_assert(KMemoryRegionType_ArchDeviceBase.GetValue() == 0x5);
|
||||
static_assert(KMemoryRegionType_BoardDeviceBase.GetValue() == 0x5);
|
||||
|
||||
#if defined(ARCH_ARM64)
|
||||
#include "core/hle/kernel/arch/arm64/k_memory_region_device_types.inc"
|
||||
#elif defined(ARCH_ARM)
|
||||
#error "Unimplemented"
|
||||
#else
|
||||
// Default to no architecture devices.
|
||||
constexpr auto NumArchitectureDeviceRegions = 0;
|
||||
#endif
|
||||
static_assert(NumArchitectureDeviceRegions >= 0);
|
||||
|
||||
#if defined(BOARD_NINTENDO_NX)
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_memory_region_device_types.inc"
|
||||
#else
|
||||
// Default to no board devices.
|
||||
constexpr auto NumBoardDeviceRegions = 0;
|
||||
#endif
|
||||
static_assert(NumBoardDeviceRegions >= 0);
|
||||
|
||||
constexpr auto KMemoryRegionType_KernelCode = KMemoryRegionType_Kernel.DeriveSparse(1, 4, 0);
|
||||
constexpr auto KMemoryRegionType_KernelStack = KMemoryRegionType_Kernel.DeriveSparse(1, 4, 1);
|
||||
constexpr auto KMemoryRegionType_KernelMisc = KMemoryRegionType_Kernel.DeriveSparse(1, 4, 2);
|
||||
constexpr auto KMemoryRegionType_KernelSlab = KMemoryRegionType_Kernel.DeriveSparse(1, 4, 3);
|
||||
static_assert(KMemoryRegionType_KernelCode.GetValue() == 0x19);
|
||||
static_assert(KMemoryRegionType_KernelStack.GetValue() == 0x29);
|
||||
static_assert(KMemoryRegionType_KernelMisc.GetValue() == 0x49);
|
||||
static_assert(KMemoryRegionType_KernelSlab.GetValue() == 0x89);
|
||||
|
||||
constexpr auto KMemoryRegionType_KernelMiscDerivedBase =
|
||||
KMemoryRegionType_KernelMisc.DeriveTransition();
|
||||
static_assert(KMemoryRegionType_KernelMiscDerivedBase.GetValue() == 0x149);
|
||||
|
||||
// UNUSED: .Derive(7, 0);
|
||||
constexpr auto KMemoryRegionType_KernelMiscMainStack =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 1);
|
||||
constexpr auto KMemoryRegionType_KernelMiscMappedDevice =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 2);
|
||||
constexpr auto KMemoryRegionType_KernelMiscExceptionStack =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 3);
|
||||
constexpr auto KMemoryRegionType_KernelMiscUnknownDebug =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 4);
|
||||
// UNUSED: .Derive(7, 5);
|
||||
constexpr auto KMemoryRegionType_KernelMiscIdleStack =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 6);
|
||||
static_assert(KMemoryRegionType_KernelMiscMainStack.GetValue() == 0xB49);
|
||||
static_assert(KMemoryRegionType_KernelMiscMappedDevice.GetValue() == 0xD49);
|
||||
static_assert(KMemoryRegionType_KernelMiscExceptionStack.GetValue() == 0x1349);
|
||||
static_assert(KMemoryRegionType_KernelMiscUnknownDebug.GetValue() == 0x1549);
|
||||
static_assert(KMemoryRegionType_KernelMiscIdleStack.GetValue() == 0x2349);
|
||||
|
||||
constexpr auto KMemoryRegionType_KernelTemp = KMemoryRegionType_Kernel.Advance(2).Derive(2, 0);
|
||||
static_assert(KMemoryRegionType_KernelTemp.GetValue() == 0x31);
|
||||
|
||||
constexpr KMemoryRegionType GetTypeForVirtualLinearMapping(u32 type_id) {
|
||||
if (KMemoryRegionType_KernelTraceBuffer.IsAncestorOf(type_id)) {
|
||||
return KMemoryRegionType_VirtualDramKernelTraceBuffer;
|
||||
} else if (KMemoryRegionType_DramKernelPtHeap.IsAncestorOf(type_id)) {
|
||||
return KMemoryRegionType_VirtualDramKernelPtHeap;
|
||||
} else if ((type_id | KMemoryRegionAttr_ShouldKernelMap) == type_id) {
|
||||
return KMemoryRegionType_VirtualDramUnknownDebug;
|
||||
} else {
|
||||
return KMemoryRegionType_Dram;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/bit_util.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
|
||||
#define ARCH_ARM64
|
||||
#define BOARD_NINTENDO_NX
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
enum KMemoryRegionType : u32 {
|
||||
KMemoryRegionAttr_CarveoutProtected = 0x02000000,
|
||||
KMemoryRegionAttr_Uncached = 0x04000000,
|
||||
KMemoryRegionAttr_DidKernelMap = 0x08000000,
|
||||
KMemoryRegionAttr_ShouldKernelMap = 0x10000000,
|
||||
KMemoryRegionAttr_UserReadOnly = 0x20000000,
|
||||
KMemoryRegionAttr_NoUserMap = 0x40000000,
|
||||
KMemoryRegionAttr_LinearMapped = 0x80000000,
|
||||
};
|
||||
DECLARE_ENUM_FLAG_OPERATORS(KMemoryRegionType);
|
||||
|
||||
namespace impl {
|
||||
|
||||
constexpr size_t BitsForDeriveSparse(size_t n) {
|
||||
return n + 1;
|
||||
}
|
||||
|
||||
constexpr size_t BitsForDeriveDense(size_t n) {
|
||||
size_t low = 0, high = 1;
|
||||
for (size_t i = 0; i < n - 1; ++i) {
|
||||
if ((++low) == high) {
|
||||
++high;
|
||||
low = 0;
|
||||
}
|
||||
}
|
||||
return high + 1;
|
||||
}
|
||||
|
||||
class KMemoryRegionTypeValue {
|
||||
public:
|
||||
using ValueType = std::underlying_type_t<KMemoryRegionType>;
|
||||
|
||||
constexpr KMemoryRegionTypeValue() = default;
|
||||
|
||||
constexpr operator KMemoryRegionType() const {
|
||||
return static_cast<KMemoryRegionType>(m_value);
|
||||
}
|
||||
|
||||
constexpr ValueType GetValue() const {
|
||||
return m_value;
|
||||
}
|
||||
|
||||
constexpr const KMemoryRegionTypeValue& Finalize() {
|
||||
m_finalized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr const KMemoryRegionTypeValue& SetSparseOnly() {
|
||||
m_sparse_only = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr const KMemoryRegionTypeValue& SetDenseOnly() {
|
||||
m_dense_only = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue& SetAttribute(u32 attr) {
|
||||
m_value |= attr;
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue DeriveInitial(
|
||||
size_t i, size_t next = Common::BitSize<ValueType>()) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value = (ValueType{1} << i);
|
||||
new_type.m_next_bit = next;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue DeriveAttribute(u32 attr) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value |= attr;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue DeriveTransition(size_t ofs = 0, size_t adv = 1) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + ofs));
|
||||
new_type.m_next_bit += adv;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue DeriveSparse(size_t ofs, size_t n, size_t i) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + ofs));
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + ofs + 1 + i));
|
||||
new_type.m_next_bit += ofs + n + 1;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue Derive(size_t n, size_t i) const {
|
||||
size_t low = 0, high = 1;
|
||||
for (size_t j = 0; j < i; ++j) {
|
||||
if ((++low) == high) {
|
||||
++high;
|
||||
low = 0;
|
||||
}
|
||||
}
|
||||
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + low));
|
||||
new_type.m_value |= (ValueType{1} << (m_next_bit + high));
|
||||
new_type.m_next_bit += BitsForDeriveDense(n);
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr KMemoryRegionTypeValue Advance(size_t n) const {
|
||||
KMemoryRegionTypeValue new_type = *this;
|
||||
new_type.m_next_bit += n;
|
||||
return new_type;
|
||||
}
|
||||
|
||||
constexpr bool IsAncestorOf(ValueType v) const {
|
||||
return (m_value | v) == v;
|
||||
}
|
||||
|
||||
private:
|
||||
constexpr KMemoryRegionTypeValue(ValueType v) : m_value(v) {}
|
||||
|
||||
private:
|
||||
ValueType m_value{};
|
||||
size_t m_next_bit{};
|
||||
bool m_finalized{};
|
||||
bool m_sparse_only{};
|
||||
bool m_dense_only{};
|
||||
};
|
||||
|
||||
} // namespace impl
|
||||
|
||||
constexpr auto KMemoryRegionType_None = impl::KMemoryRegionTypeValue();
|
||||
constexpr auto KMemoryRegionType_Kernel = KMemoryRegionType_None.DeriveInitial(0, 2);
|
||||
constexpr auto KMemoryRegionType_Dram = KMemoryRegionType_None.DeriveInitial(1, 2);
|
||||
static_assert(KMemoryRegionType_Kernel.GetValue() == 0x1);
|
||||
static_assert(KMemoryRegionType_Dram.GetValue() == 0x2);
|
||||
|
||||
constexpr auto KMemoryRegionType_DramKernelBase =
|
||||
KMemoryRegionType_Dram.DeriveSparse(0, 3, 0)
|
||||
.SetAttribute(KMemoryRegionAttr_NoUserMap)
|
||||
.SetAttribute(KMemoryRegionAttr_CarveoutProtected);
|
||||
constexpr auto KMemoryRegionType_DramReservedBase = KMemoryRegionType_Dram.DeriveSparse(0, 3, 1);
|
||||
constexpr auto KMemoryRegionType_DramHeapBase =
|
||||
KMemoryRegionType_Dram.DeriveSparse(0, 3, 2).SetAttribute(KMemoryRegionAttr_LinearMapped);
|
||||
static_assert(KMemoryRegionType_DramKernelBase.GetValue() ==
|
||||
(0xE | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramReservedBase.GetValue() == (0x16));
|
||||
static_assert(KMemoryRegionType_DramHeapBase.GetValue() == (0x26 | KMemoryRegionAttr_LinearMapped));
|
||||
|
||||
constexpr auto KMemoryRegionType_DramKernelCode =
|
||||
KMemoryRegionType_DramKernelBase.DeriveSparse(0, 4, 0);
|
||||
constexpr auto KMemoryRegionType_DramKernelSlab =
|
||||
KMemoryRegionType_DramKernelBase.DeriveSparse(0, 4, 1);
|
||||
constexpr auto KMemoryRegionType_DramKernelPtHeap =
|
||||
KMemoryRegionType_DramKernelBase.DeriveSparse(0, 4, 2).SetAttribute(
|
||||
KMemoryRegionAttr_LinearMapped);
|
||||
constexpr auto KMemoryRegionType_DramKernelInitPt =
|
||||
KMemoryRegionType_DramKernelBase.DeriveSparse(0, 4, 3).SetAttribute(
|
||||
KMemoryRegionAttr_LinearMapped);
|
||||
static_assert(KMemoryRegionType_DramKernelCode.GetValue() ==
|
||||
(0xCE | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramKernelSlab.GetValue() ==
|
||||
(0x14E | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramKernelPtHeap.GetValue() ==
|
||||
(0x24E | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap |
|
||||
KMemoryRegionAttr_LinearMapped));
|
||||
static_assert(KMemoryRegionType_DramKernelInitPt.GetValue() ==
|
||||
(0x44E | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_NoUserMap |
|
||||
KMemoryRegionAttr_LinearMapped));
|
||||
|
||||
constexpr auto KMemoryRegionType_DramReservedEarly =
|
||||
KMemoryRegionType_DramReservedBase.DeriveAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
static_assert(KMemoryRegionType_DramReservedEarly.GetValue() ==
|
||||
(0x16 | KMemoryRegionAttr_NoUserMap));
|
||||
|
||||
constexpr auto KMemoryRegionType_KernelTraceBuffer =
|
||||
KMemoryRegionType_DramReservedBase.DeriveSparse(0, 3, 0)
|
||||
.SetAttribute(KMemoryRegionAttr_LinearMapped)
|
||||
.SetAttribute(KMemoryRegionAttr_UserReadOnly);
|
||||
constexpr auto KMemoryRegionType_OnMemoryBootImage =
|
||||
KMemoryRegionType_DramReservedBase.DeriveSparse(0, 3, 1);
|
||||
constexpr auto KMemoryRegionType_DTB = KMemoryRegionType_DramReservedBase.DeriveSparse(0, 3, 2);
|
||||
static_assert(KMemoryRegionType_KernelTraceBuffer.GetValue() ==
|
||||
(0xD6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_UserReadOnly));
|
||||
static_assert(KMemoryRegionType_OnMemoryBootImage.GetValue() == 0x156);
|
||||
static_assert(KMemoryRegionType_DTB.GetValue() == 0x256);
|
||||
|
||||
constexpr auto KMemoryRegionType_DramPoolPartition =
|
||||
KMemoryRegionType_DramHeapBase.DeriveAttribute(KMemoryRegionAttr_NoUserMap);
|
||||
static_assert(KMemoryRegionType_DramPoolPartition.GetValue() ==
|
||||
(0x26 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
|
||||
constexpr auto KMemoryRegionType_DramPoolManagement =
|
||||
KMemoryRegionType_DramPoolPartition.DeriveTransition(0, 2).DeriveTransition().SetAttribute(
|
||||
KMemoryRegionAttr_CarveoutProtected);
|
||||
constexpr auto KMemoryRegionType_DramUserPool =
|
||||
KMemoryRegionType_DramPoolPartition.DeriveTransition(1, 2).DeriveTransition();
|
||||
static_assert(KMemoryRegionType_DramPoolManagement.GetValue() ==
|
||||
(0x166 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap |
|
||||
KMemoryRegionAttr_CarveoutProtected));
|
||||
static_assert(KMemoryRegionType_DramUserPool.GetValue() ==
|
||||
(0x1A6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
|
||||
constexpr auto KMemoryRegionType_DramApplicationPool = KMemoryRegionType_DramUserPool.Derive(4, 0);
|
||||
constexpr auto KMemoryRegionType_DramAppletPool = KMemoryRegionType_DramUserPool.Derive(4, 1);
|
||||
constexpr auto KMemoryRegionType_DramSystemNonSecurePool =
|
||||
KMemoryRegionType_DramUserPool.Derive(4, 2);
|
||||
constexpr auto KMemoryRegionType_DramSystemPool =
|
||||
KMemoryRegionType_DramUserPool.Derive(4, 3).SetAttribute(KMemoryRegionAttr_CarveoutProtected);
|
||||
static_assert(KMemoryRegionType_DramApplicationPool.GetValue() ==
|
||||
(0x7A6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramAppletPool.GetValue() ==
|
||||
(0xBA6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramSystemNonSecurePool.GetValue() ==
|
||||
(0xDA6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap));
|
||||
static_assert(KMemoryRegionType_DramSystemPool.GetValue() ==
|
||||
(0x13A6 | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_NoUserMap |
|
||||
KMemoryRegionAttr_CarveoutProtected));
|
||||
|
||||
constexpr auto KMemoryRegionType_VirtualDramHeapBase = KMemoryRegionType_Dram.DeriveSparse(1, 3, 0);
|
||||
constexpr auto KMemoryRegionType_VirtualDramKernelPtHeap =
|
||||
KMemoryRegionType_Dram.DeriveSparse(1, 3, 1);
|
||||
constexpr auto KMemoryRegionType_VirtualDramKernelTraceBuffer =
|
||||
KMemoryRegionType_Dram.DeriveSparse(1, 3, 2);
|
||||
static_assert(KMemoryRegionType_VirtualDramHeapBase.GetValue() == 0x1A);
|
||||
static_assert(KMemoryRegionType_VirtualDramKernelPtHeap.GetValue() == 0x2A);
|
||||
static_assert(KMemoryRegionType_VirtualDramKernelTraceBuffer.GetValue() == 0x4A);
|
||||
|
||||
// UNUSED: .DeriveSparse(2, 2, 0);
|
||||
constexpr auto KMemoryRegionType_VirtualDramUnknownDebug =
|
||||
KMemoryRegionType_Dram.DeriveSparse(2, 2, 1);
|
||||
static_assert(KMemoryRegionType_VirtualDramUnknownDebug.GetValue() == (0x52));
|
||||
|
||||
constexpr auto KMemoryRegionType_VirtualDramKernelInitPt =
|
||||
KMemoryRegionType_VirtualDramHeapBase.Derive(3, 0);
|
||||
constexpr auto KMemoryRegionType_VirtualDramPoolManagement =
|
||||
KMemoryRegionType_VirtualDramHeapBase.Derive(3, 1);
|
||||
constexpr auto KMemoryRegionType_VirtualDramUserPool =
|
||||
KMemoryRegionType_VirtualDramHeapBase.Derive(3, 2);
|
||||
static_assert(KMemoryRegionType_VirtualDramKernelInitPt.GetValue() == 0x19A);
|
||||
static_assert(KMemoryRegionType_VirtualDramPoolManagement.GetValue() == 0x29A);
|
||||
static_assert(KMemoryRegionType_VirtualDramUserPool.GetValue() == 0x31A);
|
||||
|
||||
// NOTE: For unknown reason, the pools are derived out-of-order here. It's worth eventually trying
|
||||
// to understand why Nintendo made this choice.
|
||||
// UNUSED: .Derive(6, 0);
|
||||
// UNUSED: .Derive(6, 1);
|
||||
constexpr auto KMemoryRegionType_VirtualDramAppletPool =
|
||||
KMemoryRegionType_VirtualDramUserPool.Derive(6, 2);
|
||||
constexpr auto KMemoryRegionType_VirtualDramApplicationPool =
|
||||
KMemoryRegionType_VirtualDramUserPool.Derive(6, 3);
|
||||
constexpr auto KMemoryRegionType_VirtualDramSystemNonSecurePool =
|
||||
KMemoryRegionType_VirtualDramUserPool.Derive(6, 4);
|
||||
constexpr auto KMemoryRegionType_VirtualDramSystemPool =
|
||||
KMemoryRegionType_VirtualDramUserPool.Derive(6, 5);
|
||||
static_assert(KMemoryRegionType_VirtualDramAppletPool.GetValue() == 0x1B1A);
|
||||
static_assert(KMemoryRegionType_VirtualDramApplicationPool.GetValue() == 0x271A);
|
||||
static_assert(KMemoryRegionType_VirtualDramSystemNonSecurePool.GetValue() == 0x2B1A);
|
||||
static_assert(KMemoryRegionType_VirtualDramSystemPool.GetValue() == 0x331A);
|
||||
|
||||
constexpr auto KMemoryRegionType_ArchDeviceBase =
|
||||
KMemoryRegionType_Kernel.DeriveTransition(0, 1).SetSparseOnly();
|
||||
constexpr auto KMemoryRegionType_BoardDeviceBase =
|
||||
KMemoryRegionType_Kernel.DeriveTransition(0, 2).SetDenseOnly();
|
||||
static_assert(KMemoryRegionType_ArchDeviceBase.GetValue() == 0x5);
|
||||
static_assert(KMemoryRegionType_BoardDeviceBase.GetValue() == 0x5);
|
||||
|
||||
#if defined(ARCH_ARM64)
|
||||
#include "core/hle/kernel/arch/arm64/k_memory_region_device_types.inc"
|
||||
#elif defined(ARCH_ARM)
|
||||
#error "Unimplemented"
|
||||
#else
|
||||
// Default to no architecture devices.
|
||||
constexpr auto NumArchitectureDeviceRegions = 0;
|
||||
#endif
|
||||
static_assert(NumArchitectureDeviceRegions >= 0);
|
||||
|
||||
#if defined(BOARD_NINTENDO_NX)
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_memory_region_device_types.inc"
|
||||
#else
|
||||
// Default to no board devices.
|
||||
constexpr auto NumBoardDeviceRegions = 0;
|
||||
#endif
|
||||
static_assert(NumBoardDeviceRegions >= 0);
|
||||
|
||||
constexpr auto KMemoryRegionType_KernelCode = KMemoryRegionType_Kernel.DeriveSparse(1, 4, 0);
|
||||
constexpr auto KMemoryRegionType_KernelStack = KMemoryRegionType_Kernel.DeriveSparse(1, 4, 1);
|
||||
constexpr auto KMemoryRegionType_KernelMisc = KMemoryRegionType_Kernel.DeriveSparse(1, 4, 2);
|
||||
constexpr auto KMemoryRegionType_KernelSlab = KMemoryRegionType_Kernel.DeriveSparse(1, 4, 3);
|
||||
static_assert(KMemoryRegionType_KernelCode.GetValue() == 0x19);
|
||||
static_assert(KMemoryRegionType_KernelStack.GetValue() == 0x29);
|
||||
static_assert(KMemoryRegionType_KernelMisc.GetValue() == 0x49);
|
||||
static_assert(KMemoryRegionType_KernelSlab.GetValue() == 0x89);
|
||||
|
||||
constexpr auto KMemoryRegionType_KernelMiscDerivedBase =
|
||||
KMemoryRegionType_KernelMisc.DeriveTransition();
|
||||
static_assert(KMemoryRegionType_KernelMiscDerivedBase.GetValue() == 0x149);
|
||||
|
||||
// UNUSED: .Derive(7, 0);
|
||||
constexpr auto KMemoryRegionType_KernelMiscMainStack =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 1);
|
||||
constexpr auto KMemoryRegionType_KernelMiscMappedDevice =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 2);
|
||||
constexpr auto KMemoryRegionType_KernelMiscExceptionStack =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 3);
|
||||
constexpr auto KMemoryRegionType_KernelMiscUnknownDebug =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 4);
|
||||
// UNUSED: .Derive(7, 5);
|
||||
constexpr auto KMemoryRegionType_KernelMiscIdleStack =
|
||||
KMemoryRegionType_KernelMiscDerivedBase.Derive(7, 6);
|
||||
static_assert(KMemoryRegionType_KernelMiscMainStack.GetValue() == 0xB49);
|
||||
static_assert(KMemoryRegionType_KernelMiscMappedDevice.GetValue() == 0xD49);
|
||||
static_assert(KMemoryRegionType_KernelMiscExceptionStack.GetValue() == 0x1349);
|
||||
static_assert(KMemoryRegionType_KernelMiscUnknownDebug.GetValue() == 0x1549);
|
||||
static_assert(KMemoryRegionType_KernelMiscIdleStack.GetValue() == 0x2349);
|
||||
|
||||
constexpr auto KMemoryRegionType_KernelTemp = KMemoryRegionType_Kernel.Advance(2).Derive(2, 0);
|
||||
static_assert(KMemoryRegionType_KernelTemp.GetValue() == 0x31);
|
||||
|
||||
constexpr KMemoryRegionType GetTypeForVirtualLinearMapping(u32 type_id) {
|
||||
if (KMemoryRegionType_KernelTraceBuffer.IsAncestorOf(type_id)) {
|
||||
return KMemoryRegionType_VirtualDramKernelTraceBuffer;
|
||||
} else if (KMemoryRegionType_DramKernelPtHeap.IsAncestorOf(type_id)) {
|
||||
return KMemoryRegionType_VirtualDramKernelPtHeap;
|
||||
} else if ((type_id | KMemoryRegionAttr_ShouldKernelMap) == type_id) {
|
||||
return KMemoryRegionType_VirtualDramUnknownDebug;
|
||||
} else {
|
||||
return KMemoryRegionType_Dram;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,278 +1,278 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <bit>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/assert.h"
|
||||
#include "common/bit_util.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/tiny_mt.h"
|
||||
#include "core/hle/kernel/k_system_control.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageBitmap {
|
||||
private:
|
||||
class RandomBitGenerator {
|
||||
private:
|
||||
Common::TinyMT rng{};
|
||||
u32 entropy{};
|
||||
u32 bits_available{};
|
||||
|
||||
private:
|
||||
void RefreshEntropy() {
|
||||
entropy = rng.GenerateRandomU32();
|
||||
bits_available = static_cast<u32>(Common::BitSize<decltype(entropy)>());
|
||||
}
|
||||
|
||||
bool GenerateRandomBit() {
|
||||
if (bits_available == 0) {
|
||||
this->RefreshEntropy();
|
||||
}
|
||||
|
||||
const bool rnd_bit = (entropy & 1) != 0;
|
||||
entropy >>= 1;
|
||||
--bits_available;
|
||||
return rnd_bit;
|
||||
}
|
||||
|
||||
public:
|
||||
RandomBitGenerator() {
|
||||
rng.Initialize(static_cast<u32>(KSystemControl::GenerateRandomU64()));
|
||||
}
|
||||
|
||||
std::size_t SelectRandomBit(u64 bitmap) {
|
||||
u64 selected = 0;
|
||||
|
||||
u64 cur_num_bits = Common::BitSize<decltype(bitmap)>() / 2;
|
||||
u64 cur_mask = (1ULL << cur_num_bits) - 1;
|
||||
|
||||
while (cur_num_bits) {
|
||||
const u64 low = (bitmap >> 0) & cur_mask;
|
||||
const u64 high = (bitmap >> cur_num_bits) & cur_mask;
|
||||
|
||||
bool choose_low;
|
||||
if (high == 0) {
|
||||
// If only low val is set, choose low.
|
||||
choose_low = true;
|
||||
} else if (low == 0) {
|
||||
// If only high val is set, choose high.
|
||||
choose_low = false;
|
||||
} else {
|
||||
// If both are set, choose random.
|
||||
choose_low = this->GenerateRandomBit();
|
||||
}
|
||||
|
||||
// If we chose low, proceed with low.
|
||||
if (choose_low) {
|
||||
bitmap = low;
|
||||
selected += 0;
|
||||
} else {
|
||||
bitmap = high;
|
||||
selected += cur_num_bits;
|
||||
}
|
||||
|
||||
// Proceed.
|
||||
cur_num_bits /= 2;
|
||||
cur_mask >>= cur_num_bits;
|
||||
}
|
||||
|
||||
return selected;
|
||||
}
|
||||
};
|
||||
|
||||
public:
|
||||
static constexpr std::size_t MaxDepth = 4;
|
||||
|
||||
private:
|
||||
std::array<u64*, MaxDepth> bit_storages{};
|
||||
RandomBitGenerator rng{};
|
||||
std::size_t num_bits{};
|
||||
std::size_t used_depths{};
|
||||
|
||||
public:
|
||||
KPageBitmap() = default;
|
||||
|
||||
constexpr std::size_t GetNumBits() const {
|
||||
return num_bits;
|
||||
}
|
||||
constexpr s32 GetHighestDepthIndex() const {
|
||||
return static_cast<s32>(used_depths) - 1;
|
||||
}
|
||||
|
||||
u64* Initialize(u64* storage, std::size_t size) {
|
||||
// Initially, everything is un-set.
|
||||
num_bits = 0;
|
||||
|
||||
// Calculate the needed bitmap depth.
|
||||
used_depths = static_cast<std::size_t>(GetRequiredDepth(size));
|
||||
ASSERT(used_depths <= MaxDepth);
|
||||
|
||||
// Set the bitmap pointers.
|
||||
for (s32 depth = this->GetHighestDepthIndex(); depth >= 0; depth--) {
|
||||
bit_storages[depth] = storage;
|
||||
size = Common::AlignUp(size, Common::BitSize<u64>()) / Common::BitSize<u64>();
|
||||
storage += size;
|
||||
}
|
||||
|
||||
return storage;
|
||||
}
|
||||
|
||||
s64 FindFreeBlock(bool random) {
|
||||
uintptr_t offset = 0;
|
||||
s32 depth = 0;
|
||||
|
||||
if (random) {
|
||||
do {
|
||||
const u64 v = bit_storages[depth][offset];
|
||||
if (v == 0) {
|
||||
// If depth is bigger than zero, then a previous level indicated a block was
|
||||
// free.
|
||||
ASSERT(depth == 0);
|
||||
return -1;
|
||||
}
|
||||
offset = offset * Common::BitSize<u64>() + rng.SelectRandomBit(v);
|
||||
++depth;
|
||||
} while (depth < static_cast<s32>(used_depths));
|
||||
} else {
|
||||
do {
|
||||
const u64 v = bit_storages[depth][offset];
|
||||
if (v == 0) {
|
||||
// If depth is bigger than zero, then a previous level indicated a block was
|
||||
// free.
|
||||
ASSERT(depth == 0);
|
||||
return -1;
|
||||
}
|
||||
offset = offset * Common::BitSize<u64>() + std::countr_zero(v);
|
||||
++depth;
|
||||
} while (depth < static_cast<s32>(used_depths));
|
||||
}
|
||||
|
||||
return static_cast<s64>(offset);
|
||||
}
|
||||
|
||||
void SetBit(std::size_t offset) {
|
||||
this->SetBit(this->GetHighestDepthIndex(), offset);
|
||||
num_bits++;
|
||||
}
|
||||
|
||||
void ClearBit(std::size_t offset) {
|
||||
this->ClearBit(this->GetHighestDepthIndex(), offset);
|
||||
num_bits--;
|
||||
}
|
||||
|
||||
bool ClearRange(std::size_t offset, std::size_t count) {
|
||||
s32 depth = this->GetHighestDepthIndex();
|
||||
u64* bits = bit_storages[depth];
|
||||
std::size_t bit_ind = offset / Common::BitSize<u64>();
|
||||
if (count < Common::BitSize<u64>()) {
|
||||
const std::size_t shift = offset % Common::BitSize<u64>();
|
||||
ASSERT(shift + count <= Common::BitSize<u64>());
|
||||
// Check that all the bits are set.
|
||||
const u64 mask = ((u64(1) << count) - 1) << shift;
|
||||
u64 v = bits[bit_ind];
|
||||
if ((v & mask) != mask) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Clear the bits.
|
||||
v &= ~mask;
|
||||
bits[bit_ind] = v;
|
||||
if (v == 0) {
|
||||
this->ClearBit(depth - 1, bit_ind);
|
||||
}
|
||||
} else {
|
||||
ASSERT(offset % Common::BitSize<u64>() == 0);
|
||||
ASSERT(count % Common::BitSize<u64>() == 0);
|
||||
// Check that all the bits are set.
|
||||
std::size_t remaining = count;
|
||||
std::size_t i = 0;
|
||||
do {
|
||||
if (bits[bit_ind + i++] != ~u64(0)) {
|
||||
return false;
|
||||
}
|
||||
remaining -= Common::BitSize<u64>();
|
||||
} while (remaining > 0);
|
||||
|
||||
// Clear the bits.
|
||||
remaining = count;
|
||||
i = 0;
|
||||
do {
|
||||
bits[bit_ind + i] = 0;
|
||||
this->ClearBit(depth - 1, bit_ind + i);
|
||||
i++;
|
||||
remaining -= Common::BitSize<u64>();
|
||||
} while (remaining > 0);
|
||||
}
|
||||
|
||||
num_bits -= count;
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
void SetBit(s32 depth, std::size_t offset) {
|
||||
while (depth >= 0) {
|
||||
std::size_t ind = offset / Common::BitSize<u64>();
|
||||
std::size_t which = offset % Common::BitSize<u64>();
|
||||
const u64 mask = u64(1) << which;
|
||||
|
||||
u64* bit = std::addressof(bit_storages[depth][ind]);
|
||||
u64 v = *bit;
|
||||
ASSERT((v & mask) == 0);
|
||||
*bit = v | mask;
|
||||
if (v) {
|
||||
break;
|
||||
}
|
||||
offset = ind;
|
||||
depth--;
|
||||
}
|
||||
}
|
||||
|
||||
void ClearBit(s32 depth, std::size_t offset) {
|
||||
while (depth >= 0) {
|
||||
std::size_t ind = offset / Common::BitSize<u64>();
|
||||
std::size_t which = offset % Common::BitSize<u64>();
|
||||
const u64 mask = u64(1) << which;
|
||||
|
||||
u64* bit = std::addressof(bit_storages[depth][ind]);
|
||||
u64 v = *bit;
|
||||
ASSERT((v & mask) != 0);
|
||||
v &= ~mask;
|
||||
*bit = v;
|
||||
if (v) {
|
||||
break;
|
||||
}
|
||||
offset = ind;
|
||||
depth--;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr s32 GetRequiredDepth(std::size_t region_size) {
|
||||
s32 depth = 0;
|
||||
while (true) {
|
||||
region_size /= Common::BitSize<u64>();
|
||||
depth++;
|
||||
if (region_size == 0) {
|
||||
return depth;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
static constexpr std::size_t CalculateManagementOverheadSize(std::size_t region_size) {
|
||||
std::size_t overhead_bits = 0;
|
||||
for (s32 depth = GetRequiredDepth(region_size) - 1; depth >= 0; depth--) {
|
||||
region_size =
|
||||
Common::AlignUp(region_size, Common::BitSize<u64>()) / Common::BitSize<u64>();
|
||||
overhead_bits += region_size;
|
||||
}
|
||||
return overhead_bits * sizeof(u64);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <bit>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/assert.h"
|
||||
#include "common/bit_util.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/tiny_mt.h"
|
||||
#include "core/hle/kernel/k_system_control.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageBitmap {
|
||||
private:
|
||||
class RandomBitGenerator {
|
||||
private:
|
||||
Common::TinyMT rng{};
|
||||
u32 entropy{};
|
||||
u32 bits_available{};
|
||||
|
||||
private:
|
||||
void RefreshEntropy() {
|
||||
entropy = rng.GenerateRandomU32();
|
||||
bits_available = static_cast<u32>(Common::BitSize<decltype(entropy)>());
|
||||
}
|
||||
|
||||
bool GenerateRandomBit() {
|
||||
if (bits_available == 0) {
|
||||
this->RefreshEntropy();
|
||||
}
|
||||
|
||||
const bool rnd_bit = (entropy & 1) != 0;
|
||||
entropy >>= 1;
|
||||
--bits_available;
|
||||
return rnd_bit;
|
||||
}
|
||||
|
||||
public:
|
||||
RandomBitGenerator() {
|
||||
rng.Initialize(static_cast<u32>(KSystemControl::GenerateRandomU64()));
|
||||
}
|
||||
|
||||
std::size_t SelectRandomBit(u64 bitmap) {
|
||||
u64 selected = 0;
|
||||
|
||||
u64 cur_num_bits = Common::BitSize<decltype(bitmap)>() / 2;
|
||||
u64 cur_mask = (1ULL << cur_num_bits) - 1;
|
||||
|
||||
while (cur_num_bits) {
|
||||
const u64 low = (bitmap >> 0) & cur_mask;
|
||||
const u64 high = (bitmap >> cur_num_bits) & cur_mask;
|
||||
|
||||
bool choose_low;
|
||||
if (high == 0) {
|
||||
// If only low val is set, choose low.
|
||||
choose_low = true;
|
||||
} else if (low == 0) {
|
||||
// If only high val is set, choose high.
|
||||
choose_low = false;
|
||||
} else {
|
||||
// If both are set, choose random.
|
||||
choose_low = this->GenerateRandomBit();
|
||||
}
|
||||
|
||||
// If we chose low, proceed with low.
|
||||
if (choose_low) {
|
||||
bitmap = low;
|
||||
selected += 0;
|
||||
} else {
|
||||
bitmap = high;
|
||||
selected += cur_num_bits;
|
||||
}
|
||||
|
||||
// Proceed.
|
||||
cur_num_bits /= 2;
|
||||
cur_mask >>= cur_num_bits;
|
||||
}
|
||||
|
||||
return selected;
|
||||
}
|
||||
};
|
||||
|
||||
public:
|
||||
static constexpr std::size_t MaxDepth = 4;
|
||||
|
||||
private:
|
||||
std::array<u64*, MaxDepth> bit_storages{};
|
||||
RandomBitGenerator rng{};
|
||||
std::size_t num_bits{};
|
||||
std::size_t used_depths{};
|
||||
|
||||
public:
|
||||
KPageBitmap() = default;
|
||||
|
||||
constexpr std::size_t GetNumBits() const {
|
||||
return num_bits;
|
||||
}
|
||||
constexpr s32 GetHighestDepthIndex() const {
|
||||
return static_cast<s32>(used_depths) - 1;
|
||||
}
|
||||
|
||||
u64* Initialize(u64* storage, std::size_t size) {
|
||||
// Initially, everything is un-set.
|
||||
num_bits = 0;
|
||||
|
||||
// Calculate the needed bitmap depth.
|
||||
used_depths = static_cast<std::size_t>(GetRequiredDepth(size));
|
||||
ASSERT(used_depths <= MaxDepth);
|
||||
|
||||
// Set the bitmap pointers.
|
||||
for (s32 depth = this->GetHighestDepthIndex(); depth >= 0; depth--) {
|
||||
bit_storages[depth] = storage;
|
||||
size = Common::AlignUp(size, Common::BitSize<u64>()) / Common::BitSize<u64>();
|
||||
storage += size;
|
||||
}
|
||||
|
||||
return storage;
|
||||
}
|
||||
|
||||
s64 FindFreeBlock(bool random) {
|
||||
uintptr_t offset = 0;
|
||||
s32 depth = 0;
|
||||
|
||||
if (random) {
|
||||
do {
|
||||
const u64 v = bit_storages[depth][offset];
|
||||
if (v == 0) {
|
||||
// If depth is bigger than zero, then a previous level indicated a block was
|
||||
// free.
|
||||
ASSERT(depth == 0);
|
||||
return -1;
|
||||
}
|
||||
offset = offset * Common::BitSize<u64>() + rng.SelectRandomBit(v);
|
||||
++depth;
|
||||
} while (depth < static_cast<s32>(used_depths));
|
||||
} else {
|
||||
do {
|
||||
const u64 v = bit_storages[depth][offset];
|
||||
if (v == 0) {
|
||||
// If depth is bigger than zero, then a previous level indicated a block was
|
||||
// free.
|
||||
ASSERT(depth == 0);
|
||||
return -1;
|
||||
}
|
||||
offset = offset * Common::BitSize<u64>() + std::countr_zero(v);
|
||||
++depth;
|
||||
} while (depth < static_cast<s32>(used_depths));
|
||||
}
|
||||
|
||||
return static_cast<s64>(offset);
|
||||
}
|
||||
|
||||
void SetBit(std::size_t offset) {
|
||||
this->SetBit(this->GetHighestDepthIndex(), offset);
|
||||
num_bits++;
|
||||
}
|
||||
|
||||
void ClearBit(std::size_t offset) {
|
||||
this->ClearBit(this->GetHighestDepthIndex(), offset);
|
||||
num_bits--;
|
||||
}
|
||||
|
||||
bool ClearRange(std::size_t offset, std::size_t count) {
|
||||
s32 depth = this->GetHighestDepthIndex();
|
||||
u64* bits = bit_storages[depth];
|
||||
std::size_t bit_ind = offset / Common::BitSize<u64>();
|
||||
if (count < Common::BitSize<u64>()) {
|
||||
const std::size_t shift = offset % Common::BitSize<u64>();
|
||||
ASSERT(shift + count <= Common::BitSize<u64>());
|
||||
// Check that all the bits are set.
|
||||
const u64 mask = ((u64(1) << count) - 1) << shift;
|
||||
u64 v = bits[bit_ind];
|
||||
if ((v & mask) != mask) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Clear the bits.
|
||||
v &= ~mask;
|
||||
bits[bit_ind] = v;
|
||||
if (v == 0) {
|
||||
this->ClearBit(depth - 1, bit_ind);
|
||||
}
|
||||
} else {
|
||||
ASSERT(offset % Common::BitSize<u64>() == 0);
|
||||
ASSERT(count % Common::BitSize<u64>() == 0);
|
||||
// Check that all the bits are set.
|
||||
std::size_t remaining = count;
|
||||
std::size_t i = 0;
|
||||
do {
|
||||
if (bits[bit_ind + i++] != ~u64(0)) {
|
||||
return false;
|
||||
}
|
||||
remaining -= Common::BitSize<u64>();
|
||||
} while (remaining > 0);
|
||||
|
||||
// Clear the bits.
|
||||
remaining = count;
|
||||
i = 0;
|
||||
do {
|
||||
bits[bit_ind + i] = 0;
|
||||
this->ClearBit(depth - 1, bit_ind + i);
|
||||
i++;
|
||||
remaining -= Common::BitSize<u64>();
|
||||
} while (remaining > 0);
|
||||
}
|
||||
|
||||
num_bits -= count;
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
void SetBit(s32 depth, std::size_t offset) {
|
||||
while (depth >= 0) {
|
||||
std::size_t ind = offset / Common::BitSize<u64>();
|
||||
std::size_t which = offset % Common::BitSize<u64>();
|
||||
const u64 mask = u64(1) << which;
|
||||
|
||||
u64* bit = std::addressof(bit_storages[depth][ind]);
|
||||
u64 v = *bit;
|
||||
ASSERT((v & mask) == 0);
|
||||
*bit = v | mask;
|
||||
if (v) {
|
||||
break;
|
||||
}
|
||||
offset = ind;
|
||||
depth--;
|
||||
}
|
||||
}
|
||||
|
||||
void ClearBit(s32 depth, std::size_t offset) {
|
||||
while (depth >= 0) {
|
||||
std::size_t ind = offset / Common::BitSize<u64>();
|
||||
std::size_t which = offset % Common::BitSize<u64>();
|
||||
const u64 mask = u64(1) << which;
|
||||
|
||||
u64* bit = std::addressof(bit_storages[depth][ind]);
|
||||
u64 v = *bit;
|
||||
ASSERT((v & mask) != 0);
|
||||
v &= ~mask;
|
||||
*bit = v;
|
||||
if (v) {
|
||||
break;
|
||||
}
|
||||
offset = ind;
|
||||
depth--;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr s32 GetRequiredDepth(std::size_t region_size) {
|
||||
s32 depth = 0;
|
||||
while (true) {
|
||||
region_size /= Common::BitSize<u64>();
|
||||
depth++;
|
||||
if (region_size == 0) {
|
||||
return depth;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
static constexpr std::size_t CalculateManagementOverheadSize(std::size_t region_size) {
|
||||
std::size_t overhead_bits = 0;
|
||||
for (s32 depth = GetRequiredDepth(region_size) - 1; depth >= 0; depth--) {
|
||||
region_size =
|
||||
Common::AlignUp(region_size, Common::BitSize<u64>()) / Common::BitSize<u64>();
|
||||
overhead_bits += region_size;
|
||||
}
|
||||
return overhead_bits * sizeof(u64);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,18 +1,18 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/assert.h"
|
||||
#include "core/core.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_page_buffer.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KPageBuffer* KPageBuffer::FromPhysicalAddress(Core::System& system, PAddr phys_addr) {
|
||||
ASSERT(Common::IsAligned(phys_addr, PageSize));
|
||||
return system.DeviceMemory().GetPointer<KPageBuffer>(phys_addr);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/assert.h"
|
||||
#include "core/core.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_page_buffer.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KPageBuffer* KPageBuffer::FromPhysicalAddress(Core::System& system, PAddr phys_addr) {
|
||||
ASSERT(Common::IsAligned(phys_addr, PageSize));
|
||||
return system.DeviceMemory().GetPointer<KPageBuffer>(phys_addr);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,28 +1,28 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageBuffer final : public KSlabAllocated<KPageBuffer> {
|
||||
public:
|
||||
explicit KPageBuffer(KernelCore&) {}
|
||||
KPageBuffer() = default;
|
||||
|
||||
static KPageBuffer* FromPhysicalAddress(Core::System& system, PAddr phys_addr);
|
||||
|
||||
private:
|
||||
[[maybe_unused]] alignas(PageSize) std::array<u8, PageSize> m_buffer{};
|
||||
};
|
||||
|
||||
static_assert(sizeof(KPageBuffer) == PageSize);
|
||||
static_assert(alignof(KPageBuffer) == PageSize);
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageBuffer final : public KSlabAllocated<KPageBuffer> {
|
||||
public:
|
||||
explicit KPageBuffer(KernelCore&) {}
|
||||
KPageBuffer() = default;
|
||||
|
||||
static KPageBuffer* FromPhysicalAddress(Core::System& system, PAddr phys_addr);
|
||||
|
||||
private:
|
||||
[[maybe_unused]] alignas(PageSize) std::array<u8, PageSize> m_buffer{};
|
||||
};
|
||||
|
||||
static_assert(sizeof(KPageBuffer) == PageSize);
|
||||
static_assert(alignof(KPageBuffer) == PageSize);
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,99 +1,99 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <list>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageGroup final {
|
||||
public:
|
||||
class Node final {
|
||||
public:
|
||||
constexpr Node(u64 addr_, std::size_t num_pages_) : addr{addr_}, num_pages{num_pages_} {}
|
||||
|
||||
constexpr u64 GetAddress() const {
|
||||
return addr;
|
||||
}
|
||||
|
||||
constexpr std::size_t GetNumPages() const {
|
||||
return num_pages;
|
||||
}
|
||||
|
||||
constexpr std::size_t GetSize() const {
|
||||
return GetNumPages() * PageSize;
|
||||
}
|
||||
|
||||
private:
|
||||
u64 addr{};
|
||||
std::size_t num_pages{};
|
||||
};
|
||||
|
||||
public:
|
||||
KPageGroup() = default;
|
||||
KPageGroup(u64 address, u64 num_pages) {
|
||||
ASSERT(AddBlock(address, num_pages).IsSuccess());
|
||||
}
|
||||
|
||||
constexpr std::list<Node>& Nodes() {
|
||||
return nodes;
|
||||
}
|
||||
|
||||
constexpr const std::list<Node>& Nodes() const {
|
||||
return nodes;
|
||||
}
|
||||
|
||||
std::size_t GetNumPages() const {
|
||||
std::size_t num_pages = 0;
|
||||
for (const Node& node : nodes) {
|
||||
num_pages += node.GetNumPages();
|
||||
}
|
||||
return num_pages;
|
||||
}
|
||||
|
||||
bool IsEqual(KPageGroup& other) const {
|
||||
auto this_node = nodes.begin();
|
||||
auto other_node = other.nodes.begin();
|
||||
while (this_node != nodes.end() && other_node != other.nodes.end()) {
|
||||
if (this_node->GetAddress() != other_node->GetAddress() ||
|
||||
this_node->GetNumPages() != other_node->GetNumPages()) {
|
||||
return false;
|
||||
}
|
||||
this_node = std::next(this_node);
|
||||
other_node = std::next(other_node);
|
||||
}
|
||||
|
||||
return this_node == nodes.end() && other_node == other.nodes.end();
|
||||
}
|
||||
|
||||
Result AddBlock(u64 address, u64 num_pages) {
|
||||
if (!num_pages) {
|
||||
return ResultSuccess;
|
||||
}
|
||||
if (!nodes.empty()) {
|
||||
const auto node = nodes.back();
|
||||
if (node.GetAddress() + node.GetNumPages() * PageSize == address) {
|
||||
address = node.GetAddress();
|
||||
num_pages += node.GetNumPages();
|
||||
nodes.pop_back();
|
||||
}
|
||||
}
|
||||
nodes.push_back({address, num_pages});
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
bool Empty() const {
|
||||
return nodes.empty();
|
||||
}
|
||||
|
||||
private:
|
||||
std::list<Node> nodes;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <list>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageGroup final {
|
||||
public:
|
||||
class Node final {
|
||||
public:
|
||||
constexpr Node(u64 addr_, std::size_t num_pages_) : addr{addr_}, num_pages{num_pages_} {}
|
||||
|
||||
constexpr u64 GetAddress() const {
|
||||
return addr;
|
||||
}
|
||||
|
||||
constexpr std::size_t GetNumPages() const {
|
||||
return num_pages;
|
||||
}
|
||||
|
||||
constexpr std::size_t GetSize() const {
|
||||
return GetNumPages() * PageSize;
|
||||
}
|
||||
|
||||
private:
|
||||
u64 addr{};
|
||||
std::size_t num_pages{};
|
||||
};
|
||||
|
||||
public:
|
||||
KPageGroup() = default;
|
||||
KPageGroup(u64 address, u64 num_pages) {
|
||||
ASSERT(AddBlock(address, num_pages).IsSuccess());
|
||||
}
|
||||
|
||||
constexpr std::list<Node>& Nodes() {
|
||||
return nodes;
|
||||
}
|
||||
|
||||
constexpr const std::list<Node>& Nodes() const {
|
||||
return nodes;
|
||||
}
|
||||
|
||||
std::size_t GetNumPages() const {
|
||||
std::size_t num_pages = 0;
|
||||
for (const Node& node : nodes) {
|
||||
num_pages += node.GetNumPages();
|
||||
}
|
||||
return num_pages;
|
||||
}
|
||||
|
||||
bool IsEqual(KPageGroup& other) const {
|
||||
auto this_node = nodes.begin();
|
||||
auto other_node = other.nodes.begin();
|
||||
while (this_node != nodes.end() && other_node != other.nodes.end()) {
|
||||
if (this_node->GetAddress() != other_node->GetAddress() ||
|
||||
this_node->GetNumPages() != other_node->GetNumPages()) {
|
||||
return false;
|
||||
}
|
||||
this_node = std::next(this_node);
|
||||
other_node = std::next(other_node);
|
||||
}
|
||||
|
||||
return this_node == nodes.end() && other_node == other.nodes.end();
|
||||
}
|
||||
|
||||
Result AddBlock(u64 address, u64 num_pages) {
|
||||
if (!num_pages) {
|
||||
return ResultSuccess;
|
||||
}
|
||||
if (!nodes.empty()) {
|
||||
const auto node = nodes.back();
|
||||
if (node.GetAddress() + node.GetNumPages() * PageSize == address) {
|
||||
address = node.GetAddress();
|
||||
num_pages += node.GetNumPages();
|
||||
nodes.pop_back();
|
||||
}
|
||||
}
|
||||
nodes.push_back({address, num_pages});
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
bool Empty() const {
|
||||
return nodes.empty();
|
||||
}
|
||||
|
||||
private:
|
||||
std::list<Node> nodes;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,130 +1,130 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/k_page_heap.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
void KPageHeap::Initialize(PAddr address, size_t size, VAddr management_address,
|
||||
size_t management_size, const size_t* block_shifts,
|
||||
size_t num_block_shifts) {
|
||||
// Check our assumptions.
|
||||
ASSERT(Common::IsAligned(address, PageSize));
|
||||
ASSERT(Common::IsAligned(size, PageSize));
|
||||
ASSERT(0 < num_block_shifts && num_block_shifts <= NumMemoryBlockPageShifts);
|
||||
const VAddr management_end = management_address + management_size;
|
||||
|
||||
// Set our members.
|
||||
m_heap_address = address;
|
||||
m_heap_size = size;
|
||||
m_num_blocks = num_block_shifts;
|
||||
|
||||
// Setup bitmaps.
|
||||
m_management_data.resize(management_size / sizeof(u64));
|
||||
u64* cur_bitmap_storage{m_management_data.data()};
|
||||
for (size_t i = 0; i < num_block_shifts; i++) {
|
||||
const size_t cur_block_shift = block_shifts[i];
|
||||
const size_t next_block_shift = (i != num_block_shifts - 1) ? block_shifts[i + 1] : 0;
|
||||
cur_bitmap_storage = m_blocks[i].Initialize(m_heap_address, m_heap_size, cur_block_shift,
|
||||
next_block_shift, cur_bitmap_storage);
|
||||
}
|
||||
|
||||
// Ensure we didn't overextend our bounds.
|
||||
ASSERT(VAddr(cur_bitmap_storage) <= management_end);
|
||||
}
|
||||
|
||||
size_t KPageHeap::GetNumFreePages() const {
|
||||
size_t num_free = 0;
|
||||
|
||||
for (size_t i = 0; i < m_num_blocks; i++) {
|
||||
num_free += m_blocks[i].GetNumFreePages();
|
||||
}
|
||||
|
||||
return num_free;
|
||||
}
|
||||
|
||||
PAddr KPageHeap::AllocateBlock(s32 index, bool random) {
|
||||
const size_t needed_size = m_blocks[index].GetSize();
|
||||
|
||||
for (s32 i = index; i < static_cast<s32>(m_num_blocks); i++) {
|
||||
if (const PAddr addr = m_blocks[i].PopBlock(random); addr != 0) {
|
||||
if (const size_t allocated_size = m_blocks[i].GetSize(); allocated_size > needed_size) {
|
||||
this->Free(addr + needed_size, (allocated_size - needed_size) / PageSize);
|
||||
}
|
||||
return addr;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void KPageHeap::FreeBlock(PAddr block, s32 index) {
|
||||
do {
|
||||
block = m_blocks[index++].PushBlock(block);
|
||||
} while (block != 0);
|
||||
}
|
||||
|
||||
void KPageHeap::Free(PAddr addr, size_t num_pages) {
|
||||
// Freeing no pages is a no-op.
|
||||
if (num_pages == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Find the largest block size that we can free, and free as many as possible.
|
||||
s32 big_index = static_cast<s32>(m_num_blocks) - 1;
|
||||
const PAddr start = addr;
|
||||
const PAddr end = addr + num_pages * PageSize;
|
||||
PAddr before_start = start;
|
||||
PAddr before_end = start;
|
||||
PAddr after_start = end;
|
||||
PAddr after_end = end;
|
||||
while (big_index >= 0) {
|
||||
const size_t block_size = m_blocks[big_index].GetSize();
|
||||
const PAddr big_start = Common::AlignUp(start, block_size);
|
||||
const PAddr big_end = Common::AlignDown(end, block_size);
|
||||
if (big_start < big_end) {
|
||||
// Free as many big blocks as we can.
|
||||
for (auto block = big_start; block < big_end; block += block_size) {
|
||||
this->FreeBlock(block, big_index);
|
||||
}
|
||||
before_end = big_start;
|
||||
after_start = big_end;
|
||||
break;
|
||||
}
|
||||
big_index--;
|
||||
}
|
||||
ASSERT(big_index >= 0);
|
||||
|
||||
// Free space before the big blocks.
|
||||
for (s32 i = big_index - 1; i >= 0; i--) {
|
||||
const size_t block_size = m_blocks[i].GetSize();
|
||||
while (before_start + block_size <= before_end) {
|
||||
before_end -= block_size;
|
||||
this->FreeBlock(before_end, i);
|
||||
}
|
||||
}
|
||||
|
||||
// Free space after the big blocks.
|
||||
for (s32 i = big_index - 1; i >= 0; i--) {
|
||||
const size_t block_size = m_blocks[i].GetSize();
|
||||
while (after_start + block_size <= after_end) {
|
||||
this->FreeBlock(after_start, i);
|
||||
after_start += block_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t KPageHeap::CalculateManagementOverheadSize(size_t region_size, const size_t* block_shifts,
|
||||
size_t num_block_shifts) {
|
||||
size_t overhead_size = 0;
|
||||
for (size_t i = 0; i < num_block_shifts; i++) {
|
||||
const size_t cur_block_shift = block_shifts[i];
|
||||
const size_t next_block_shift = (i != num_block_shifts - 1) ? block_shifts[i + 1] : 0;
|
||||
overhead_size += KPageHeap::Block::CalculateManagementOverheadSize(
|
||||
region_size, cur_block_shift, next_block_shift);
|
||||
}
|
||||
return Common::AlignUp(overhead_size, PageSize);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/k_page_heap.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
void KPageHeap::Initialize(PAddr address, size_t size, VAddr management_address,
|
||||
size_t management_size, const size_t* block_shifts,
|
||||
size_t num_block_shifts) {
|
||||
// Check our assumptions.
|
||||
ASSERT(Common::IsAligned(address, PageSize));
|
||||
ASSERT(Common::IsAligned(size, PageSize));
|
||||
ASSERT(0 < num_block_shifts && num_block_shifts <= NumMemoryBlockPageShifts);
|
||||
const VAddr management_end = management_address + management_size;
|
||||
|
||||
// Set our members.
|
||||
m_heap_address = address;
|
||||
m_heap_size = size;
|
||||
m_num_blocks = num_block_shifts;
|
||||
|
||||
// Setup bitmaps.
|
||||
m_management_data.resize(management_size / sizeof(u64));
|
||||
u64* cur_bitmap_storage{m_management_data.data()};
|
||||
for (size_t i = 0; i < num_block_shifts; i++) {
|
||||
const size_t cur_block_shift = block_shifts[i];
|
||||
const size_t next_block_shift = (i != num_block_shifts - 1) ? block_shifts[i + 1] : 0;
|
||||
cur_bitmap_storage = m_blocks[i].Initialize(m_heap_address, m_heap_size, cur_block_shift,
|
||||
next_block_shift, cur_bitmap_storage);
|
||||
}
|
||||
|
||||
// Ensure we didn't overextend our bounds.
|
||||
ASSERT(VAddr(cur_bitmap_storage) <= management_end);
|
||||
}
|
||||
|
||||
size_t KPageHeap::GetNumFreePages() const {
|
||||
size_t num_free = 0;
|
||||
|
||||
for (size_t i = 0; i < m_num_blocks; i++) {
|
||||
num_free += m_blocks[i].GetNumFreePages();
|
||||
}
|
||||
|
||||
return num_free;
|
||||
}
|
||||
|
||||
PAddr KPageHeap::AllocateBlock(s32 index, bool random) {
|
||||
const size_t needed_size = m_blocks[index].GetSize();
|
||||
|
||||
for (s32 i = index; i < static_cast<s32>(m_num_blocks); i++) {
|
||||
if (const PAddr addr = m_blocks[i].PopBlock(random); addr != 0) {
|
||||
if (const size_t allocated_size = m_blocks[i].GetSize(); allocated_size > needed_size) {
|
||||
this->Free(addr + needed_size, (allocated_size - needed_size) / PageSize);
|
||||
}
|
||||
return addr;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void KPageHeap::FreeBlock(PAddr block, s32 index) {
|
||||
do {
|
||||
block = m_blocks[index++].PushBlock(block);
|
||||
} while (block != 0);
|
||||
}
|
||||
|
||||
void KPageHeap::Free(PAddr addr, size_t num_pages) {
|
||||
// Freeing no pages is a no-op.
|
||||
if (num_pages == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Find the largest block size that we can free, and free as many as possible.
|
||||
s32 big_index = static_cast<s32>(m_num_blocks) - 1;
|
||||
const PAddr start = addr;
|
||||
const PAddr end = addr + num_pages * PageSize;
|
||||
PAddr before_start = start;
|
||||
PAddr before_end = start;
|
||||
PAddr after_start = end;
|
||||
PAddr after_end = end;
|
||||
while (big_index >= 0) {
|
||||
const size_t block_size = m_blocks[big_index].GetSize();
|
||||
const PAddr big_start = Common::AlignUp(start, block_size);
|
||||
const PAddr big_end = Common::AlignDown(end, block_size);
|
||||
if (big_start < big_end) {
|
||||
// Free as many big blocks as we can.
|
||||
for (auto block = big_start; block < big_end; block += block_size) {
|
||||
this->FreeBlock(block, big_index);
|
||||
}
|
||||
before_end = big_start;
|
||||
after_start = big_end;
|
||||
break;
|
||||
}
|
||||
big_index--;
|
||||
}
|
||||
ASSERT(big_index >= 0);
|
||||
|
||||
// Free space before the big blocks.
|
||||
for (s32 i = big_index - 1; i >= 0; i--) {
|
||||
const size_t block_size = m_blocks[i].GetSize();
|
||||
while (before_start + block_size <= before_end) {
|
||||
before_end -= block_size;
|
||||
this->FreeBlock(before_end, i);
|
||||
}
|
||||
}
|
||||
|
||||
// Free space after the big blocks.
|
||||
for (s32 i = big_index - 1; i >= 0; i--) {
|
||||
const size_t block_size = m_blocks[i].GetSize();
|
||||
while (after_start + block_size <= after_end) {
|
||||
this->FreeBlock(after_start, i);
|
||||
after_start += block_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t KPageHeap::CalculateManagementOverheadSize(size_t region_size, const size_t* block_shifts,
|
||||
size_t num_block_shifts) {
|
||||
size_t overhead_size = 0;
|
||||
for (size_t i = 0; i < num_block_shifts; i++) {
|
||||
const size_t cur_block_shift = block_shifts[i];
|
||||
const size_t next_block_shift = (i != num_block_shifts - 1) ? block_shifts[i + 1] : 0;
|
||||
overhead_size += KPageHeap::Block::CalculateManagementOverheadSize(
|
||||
region_size, cur_block_shift, next_block_shift);
|
||||
}
|
||||
return Common::AlignUp(overhead_size, PageSize);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,216 +1,216 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <vector>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_page_bitmap.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageHeap final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KPageHeap);
|
||||
YUZU_NON_MOVEABLE(KPageHeap);
|
||||
|
||||
KPageHeap() = default;
|
||||
~KPageHeap() = default;
|
||||
|
||||
constexpr PAddr GetAddress() const {
|
||||
return m_heap_address;
|
||||
}
|
||||
constexpr size_t GetSize() const {
|
||||
return m_heap_size;
|
||||
}
|
||||
constexpr PAddr GetEndAddress() const {
|
||||
return this->GetAddress() + this->GetSize();
|
||||
}
|
||||
constexpr size_t GetPageOffset(PAddr block) const {
|
||||
return (block - this->GetAddress()) / PageSize;
|
||||
}
|
||||
constexpr size_t GetPageOffsetToEnd(PAddr block) const {
|
||||
return (this->GetEndAddress() - block) / PageSize;
|
||||
}
|
||||
|
||||
void Initialize(PAddr heap_address, size_t heap_size, VAddr management_address,
|
||||
size_t management_size) {
|
||||
return this->Initialize(heap_address, heap_size, management_address, management_size,
|
||||
MemoryBlockPageShifts.data(), NumMemoryBlockPageShifts);
|
||||
}
|
||||
|
||||
size_t GetFreeSize() const {
|
||||
return this->GetNumFreePages() * PageSize;
|
||||
}
|
||||
|
||||
void SetInitialUsedSize(size_t reserved_size) {
|
||||
// Check that the reserved size is valid.
|
||||
const size_t free_size = this->GetNumFreePages() * PageSize;
|
||||
ASSERT(m_heap_size >= free_size + reserved_size);
|
||||
|
||||
// Set the initial used size.
|
||||
m_initial_used_size = m_heap_size - free_size - reserved_size;
|
||||
}
|
||||
|
||||
PAddr AllocateBlock(s32 index, bool random);
|
||||
void Free(PAddr addr, size_t num_pages);
|
||||
|
||||
static size_t CalculateManagementOverheadSize(size_t region_size) {
|
||||
return CalculateManagementOverheadSize(region_size, MemoryBlockPageShifts.data(),
|
||||
NumMemoryBlockPageShifts);
|
||||
}
|
||||
|
||||
static constexpr s32 GetAlignedBlockIndex(size_t num_pages, size_t align_pages) {
|
||||
const size_t target_pages = std::max(num_pages, align_pages);
|
||||
for (size_t i = 0; i < NumMemoryBlockPageShifts; i++) {
|
||||
if (target_pages <= (size_t(1) << MemoryBlockPageShifts[i]) / PageSize) {
|
||||
return static_cast<s32>(i);
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static constexpr s32 GetBlockIndex(size_t num_pages) {
|
||||
for (s32 i = static_cast<s32>(NumMemoryBlockPageShifts) - 1; i >= 0; i--) {
|
||||
if (num_pages >= (size_t(1) << MemoryBlockPageShifts[i]) / PageSize) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static constexpr size_t GetBlockSize(size_t index) {
|
||||
return size_t(1) << MemoryBlockPageShifts[index];
|
||||
}
|
||||
|
||||
static constexpr size_t GetBlockNumPages(size_t index) {
|
||||
return GetBlockSize(index) / PageSize;
|
||||
}
|
||||
|
||||
private:
|
||||
class Block final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(Block);
|
||||
YUZU_NON_MOVEABLE(Block);
|
||||
|
||||
Block() = default;
|
||||
~Block() = default;
|
||||
|
||||
constexpr size_t GetShift() const {
|
||||
return m_block_shift;
|
||||
}
|
||||
constexpr size_t GetNextShift() const {
|
||||
return m_next_block_shift;
|
||||
}
|
||||
constexpr size_t GetSize() const {
|
||||
return u64(1) << this->GetShift();
|
||||
}
|
||||
constexpr size_t GetNumPages() const {
|
||||
return this->GetSize() / PageSize;
|
||||
}
|
||||
constexpr size_t GetNumFreeBlocks() const {
|
||||
return m_bitmap.GetNumBits();
|
||||
}
|
||||
constexpr size_t GetNumFreePages() const {
|
||||
return this->GetNumFreeBlocks() * this->GetNumPages();
|
||||
}
|
||||
|
||||
u64* Initialize(PAddr addr, size_t size, size_t bs, size_t nbs, u64* bit_storage) {
|
||||
// Set shifts.
|
||||
m_block_shift = bs;
|
||||
m_next_block_shift = nbs;
|
||||
|
||||
// Align up the address.
|
||||
PAddr end = addr + size;
|
||||
const size_t align = (m_next_block_shift != 0) ? (u64(1) << m_next_block_shift)
|
||||
: (u64(1) << m_block_shift);
|
||||
addr = Common::AlignDown(addr, align);
|
||||
end = Common::AlignUp(end, align);
|
||||
|
||||
m_heap_address = addr;
|
||||
m_end_offset = (end - addr) / (u64(1) << m_block_shift);
|
||||
return m_bitmap.Initialize(bit_storage, m_end_offset);
|
||||
}
|
||||
|
||||
PAddr PushBlock(PAddr address) {
|
||||
// Set the bit for the free block.
|
||||
size_t offset = (address - m_heap_address) >> this->GetShift();
|
||||
m_bitmap.SetBit(offset);
|
||||
|
||||
// If we have a next shift, try to clear the blocks below this one and return the new
|
||||
// address.
|
||||
if (this->GetNextShift()) {
|
||||
const size_t diff = u64(1) << (this->GetNextShift() - this->GetShift());
|
||||
offset = Common::AlignDown(offset, diff);
|
||||
if (m_bitmap.ClearRange(offset, diff)) {
|
||||
return m_heap_address + (offset << this->GetShift());
|
||||
}
|
||||
}
|
||||
|
||||
// We couldn't coalesce, or we're already as big as possible.
|
||||
return {};
|
||||
}
|
||||
|
||||
PAddr PopBlock(bool random) {
|
||||
// Find a free block.
|
||||
s64 soffset = m_bitmap.FindFreeBlock(random);
|
||||
if (soffset < 0) {
|
||||
return {};
|
||||
}
|
||||
const size_t offset = static_cast<size_t>(soffset);
|
||||
|
||||
// Update our tracking and return it.
|
||||
m_bitmap.ClearBit(offset);
|
||||
return m_heap_address + (offset << this->GetShift());
|
||||
}
|
||||
|
||||
public:
|
||||
static constexpr size_t CalculateManagementOverheadSize(size_t region_size,
|
||||
size_t cur_block_shift,
|
||||
size_t next_block_shift) {
|
||||
const size_t cur_block_size = (u64(1) << cur_block_shift);
|
||||
const size_t next_block_size = (u64(1) << next_block_shift);
|
||||
const size_t align = (next_block_shift != 0) ? next_block_size : cur_block_size;
|
||||
return KPageBitmap::CalculateManagementOverheadSize(
|
||||
(align * 2 + Common::AlignUp(region_size, align)) / cur_block_size);
|
||||
}
|
||||
|
||||
private:
|
||||
KPageBitmap m_bitmap;
|
||||
PAddr m_heap_address{};
|
||||
uintptr_t m_end_offset{};
|
||||
size_t m_block_shift{};
|
||||
size_t m_next_block_shift{};
|
||||
};
|
||||
|
||||
private:
|
||||
void Initialize(PAddr heap_address, size_t heap_size, VAddr management_address,
|
||||
size_t management_size, const size_t* block_shifts, size_t num_block_shifts);
|
||||
size_t GetNumFreePages() const;
|
||||
|
||||
void FreeBlock(PAddr block, s32 index);
|
||||
|
||||
static constexpr size_t NumMemoryBlockPageShifts{7};
|
||||
static constexpr std::array<size_t, NumMemoryBlockPageShifts> MemoryBlockPageShifts{
|
||||
0xC, 0x10, 0x15, 0x16, 0x19, 0x1D, 0x1E,
|
||||
};
|
||||
|
||||
private:
|
||||
static size_t CalculateManagementOverheadSize(size_t region_size, const size_t* block_shifts,
|
||||
size_t num_block_shifts);
|
||||
|
||||
private:
|
||||
PAddr m_heap_address{};
|
||||
size_t m_heap_size{};
|
||||
size_t m_initial_used_size{};
|
||||
size_t m_num_blocks{};
|
||||
std::array<Block, NumMemoryBlockPageShifts> m_blocks{};
|
||||
std::vector<u64> m_management_data;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <vector>
|
||||
|
||||
#include "common/alignment.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_page_bitmap.h"
|
||||
#include "core/hle/kernel/memory_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KPageHeap final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KPageHeap);
|
||||
YUZU_NON_MOVEABLE(KPageHeap);
|
||||
|
||||
KPageHeap() = default;
|
||||
~KPageHeap() = default;
|
||||
|
||||
constexpr PAddr GetAddress() const {
|
||||
return m_heap_address;
|
||||
}
|
||||
constexpr size_t GetSize() const {
|
||||
return m_heap_size;
|
||||
}
|
||||
constexpr PAddr GetEndAddress() const {
|
||||
return this->GetAddress() + this->GetSize();
|
||||
}
|
||||
constexpr size_t GetPageOffset(PAddr block) const {
|
||||
return (block - this->GetAddress()) / PageSize;
|
||||
}
|
||||
constexpr size_t GetPageOffsetToEnd(PAddr block) const {
|
||||
return (this->GetEndAddress() - block) / PageSize;
|
||||
}
|
||||
|
||||
void Initialize(PAddr heap_address, size_t heap_size, VAddr management_address,
|
||||
size_t management_size) {
|
||||
return this->Initialize(heap_address, heap_size, management_address, management_size,
|
||||
MemoryBlockPageShifts.data(), NumMemoryBlockPageShifts);
|
||||
}
|
||||
|
||||
size_t GetFreeSize() const {
|
||||
return this->GetNumFreePages() * PageSize;
|
||||
}
|
||||
|
||||
void SetInitialUsedSize(size_t reserved_size) {
|
||||
// Check that the reserved size is valid.
|
||||
const size_t free_size = this->GetNumFreePages() * PageSize;
|
||||
ASSERT(m_heap_size >= free_size + reserved_size);
|
||||
|
||||
// Set the initial used size.
|
||||
m_initial_used_size = m_heap_size - free_size - reserved_size;
|
||||
}
|
||||
|
||||
PAddr AllocateBlock(s32 index, bool random);
|
||||
void Free(PAddr addr, size_t num_pages);
|
||||
|
||||
static size_t CalculateManagementOverheadSize(size_t region_size) {
|
||||
return CalculateManagementOverheadSize(region_size, MemoryBlockPageShifts.data(),
|
||||
NumMemoryBlockPageShifts);
|
||||
}
|
||||
|
||||
static constexpr s32 GetAlignedBlockIndex(size_t num_pages, size_t align_pages) {
|
||||
const size_t target_pages = std::max(num_pages, align_pages);
|
||||
for (size_t i = 0; i < NumMemoryBlockPageShifts; i++) {
|
||||
if (target_pages <= (size_t(1) << MemoryBlockPageShifts[i]) / PageSize) {
|
||||
return static_cast<s32>(i);
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static constexpr s32 GetBlockIndex(size_t num_pages) {
|
||||
for (s32 i = static_cast<s32>(NumMemoryBlockPageShifts) - 1; i >= 0; i--) {
|
||||
if (num_pages >= (size_t(1) << MemoryBlockPageShifts[i]) / PageSize) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static constexpr size_t GetBlockSize(size_t index) {
|
||||
return size_t(1) << MemoryBlockPageShifts[index];
|
||||
}
|
||||
|
||||
static constexpr size_t GetBlockNumPages(size_t index) {
|
||||
return GetBlockSize(index) / PageSize;
|
||||
}
|
||||
|
||||
private:
|
||||
class Block final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(Block);
|
||||
YUZU_NON_MOVEABLE(Block);
|
||||
|
||||
Block() = default;
|
||||
~Block() = default;
|
||||
|
||||
constexpr size_t GetShift() const {
|
||||
return m_block_shift;
|
||||
}
|
||||
constexpr size_t GetNextShift() const {
|
||||
return m_next_block_shift;
|
||||
}
|
||||
constexpr size_t GetSize() const {
|
||||
return u64(1) << this->GetShift();
|
||||
}
|
||||
constexpr size_t GetNumPages() const {
|
||||
return this->GetSize() / PageSize;
|
||||
}
|
||||
constexpr size_t GetNumFreeBlocks() const {
|
||||
return m_bitmap.GetNumBits();
|
||||
}
|
||||
constexpr size_t GetNumFreePages() const {
|
||||
return this->GetNumFreeBlocks() * this->GetNumPages();
|
||||
}
|
||||
|
||||
u64* Initialize(PAddr addr, size_t size, size_t bs, size_t nbs, u64* bit_storage) {
|
||||
// Set shifts.
|
||||
m_block_shift = bs;
|
||||
m_next_block_shift = nbs;
|
||||
|
||||
// Align up the address.
|
||||
PAddr end = addr + size;
|
||||
const size_t align = (m_next_block_shift != 0) ? (u64(1) << m_next_block_shift)
|
||||
: (u64(1) << m_block_shift);
|
||||
addr = Common::AlignDown(addr, align);
|
||||
end = Common::AlignUp(end, align);
|
||||
|
||||
m_heap_address = addr;
|
||||
m_end_offset = (end - addr) / (u64(1) << m_block_shift);
|
||||
return m_bitmap.Initialize(bit_storage, m_end_offset);
|
||||
}
|
||||
|
||||
PAddr PushBlock(PAddr address) {
|
||||
// Set the bit for the free block.
|
||||
size_t offset = (address - m_heap_address) >> this->GetShift();
|
||||
m_bitmap.SetBit(offset);
|
||||
|
||||
// If we have a next shift, try to clear the blocks below this one and return the new
|
||||
// address.
|
||||
if (this->GetNextShift()) {
|
||||
const size_t diff = u64(1) << (this->GetNextShift() - this->GetShift());
|
||||
offset = Common::AlignDown(offset, diff);
|
||||
if (m_bitmap.ClearRange(offset, diff)) {
|
||||
return m_heap_address + (offset << this->GetShift());
|
||||
}
|
||||
}
|
||||
|
||||
// We couldn't coalesce, or we're already as big as possible.
|
||||
return {};
|
||||
}
|
||||
|
||||
PAddr PopBlock(bool random) {
|
||||
// Find a free block.
|
||||
s64 soffset = m_bitmap.FindFreeBlock(random);
|
||||
if (soffset < 0) {
|
||||
return {};
|
||||
}
|
||||
const size_t offset = static_cast<size_t>(soffset);
|
||||
|
||||
// Update our tracking and return it.
|
||||
m_bitmap.ClearBit(offset);
|
||||
return m_heap_address + (offset << this->GetShift());
|
||||
}
|
||||
|
||||
public:
|
||||
static constexpr size_t CalculateManagementOverheadSize(size_t region_size,
|
||||
size_t cur_block_shift,
|
||||
size_t next_block_shift) {
|
||||
const size_t cur_block_size = (u64(1) << cur_block_shift);
|
||||
const size_t next_block_size = (u64(1) << next_block_shift);
|
||||
const size_t align = (next_block_shift != 0) ? next_block_size : cur_block_size;
|
||||
return KPageBitmap::CalculateManagementOverheadSize(
|
||||
(align * 2 + Common::AlignUp(region_size, align)) / cur_block_size);
|
||||
}
|
||||
|
||||
private:
|
||||
KPageBitmap m_bitmap;
|
||||
PAddr m_heap_address{};
|
||||
uintptr_t m_end_offset{};
|
||||
size_t m_block_shift{};
|
||||
size_t m_next_block_shift{};
|
||||
};
|
||||
|
||||
private:
|
||||
void Initialize(PAddr heap_address, size_t heap_size, VAddr management_address,
|
||||
size_t management_size, const size_t* block_shifts, size_t num_block_shifts);
|
||||
size_t GetNumFreePages() const;
|
||||
|
||||
void FreeBlock(PAddr block, s32 index);
|
||||
|
||||
static constexpr size_t NumMemoryBlockPageShifts{7};
|
||||
static constexpr std::array<size_t, NumMemoryBlockPageShifts> MemoryBlockPageShifts{
|
||||
0xC, 0x10, 0x15, 0x16, 0x19, 0x1D, 0x1E,
|
||||
};
|
||||
|
||||
private:
|
||||
static size_t CalculateManagementOverheadSize(size_t region_size, const size_t* block_shifts,
|
||||
size_t num_block_shifts);
|
||||
|
||||
private:
|
||||
PAddr m_heap_address{};
|
||||
size_t m_heap_size{};
|
||||
size_t m_initial_used_size{};
|
||||
size_t m_num_blocks{};
|
||||
std::array<Block, NumMemoryBlockPageShifts> m_blocks{};
|
||||
std::vector<u64> m_management_data;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,374 +1,374 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/page_table.h"
|
||||
#include "core/file_sys/program_metadata.h"
|
||||
#include "core/hle/kernel/k_dynamic_resource_manager.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
#include "core/hle/kernel/k_memory_block_manager.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_memory_manager.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KMemoryBlockManager;
|
||||
|
||||
class KPageTable final {
|
||||
public:
|
||||
enum class ICacheInvalidationStrategy : u32 { InvalidateRange, InvalidateAll };
|
||||
|
||||
YUZU_NON_COPYABLE(KPageTable);
|
||||
YUZU_NON_MOVEABLE(KPageTable);
|
||||
|
||||
explicit KPageTable(Core::System& system_);
|
||||
~KPageTable();
|
||||
|
||||
Result InitializeForProcess(FileSys::ProgramAddressSpaceType as_type, bool enable_aslr,
|
||||
VAddr code_addr, size_t code_size,
|
||||
KMemoryBlockSlabManager* mem_block_slab_manager,
|
||||
KMemoryManager::Pool pool);
|
||||
|
||||
void Finalize();
|
||||
|
||||
Result MapProcessCode(VAddr addr, size_t pages_count, KMemoryState state,
|
||||
KMemoryPermission perm);
|
||||
Result MapCodeMemory(VAddr dst_address, VAddr src_address, size_t size);
|
||||
Result UnmapCodeMemory(VAddr dst_address, VAddr src_address, size_t size,
|
||||
ICacheInvalidationStrategy icache_invalidation_strategy);
|
||||
Result UnmapProcessMemory(VAddr dst_addr, size_t size, KPageTable& src_page_table,
|
||||
VAddr src_addr);
|
||||
Result MapPhysicalMemory(VAddr addr, size_t size);
|
||||
Result UnmapPhysicalMemory(VAddr addr, size_t size);
|
||||
Result MapMemory(VAddr dst_addr, VAddr src_addr, size_t size);
|
||||
Result UnmapMemory(VAddr dst_addr, VAddr src_addr, size_t size);
|
||||
Result MapPages(VAddr addr, KPageGroup& page_linked_list, KMemoryState state,
|
||||
KMemoryPermission perm);
|
||||
Result MapPages(VAddr* out_addr, size_t num_pages, size_t alignment, PAddr phys_addr,
|
||||
KMemoryState state, KMemoryPermission perm) {
|
||||
R_RETURN(this->MapPages(out_addr, num_pages, alignment, phys_addr, true,
|
||||
this->GetRegionAddress(state),
|
||||
this->GetRegionSize(state) / PageSize, state, perm));
|
||||
}
|
||||
Result UnmapPages(VAddr addr, KPageGroup& page_linked_list, KMemoryState state);
|
||||
Result UnmapPages(VAddr address, size_t num_pages, KMemoryState state);
|
||||
Result SetProcessMemoryPermission(VAddr addr, size_t size, Svc::MemoryPermission svc_perm);
|
||||
KMemoryInfo QueryInfo(VAddr addr);
|
||||
Result SetMemoryPermission(VAddr addr, size_t size, Svc::MemoryPermission perm);
|
||||
Result SetMemoryAttribute(VAddr addr, size_t size, u32 mask, u32 attr);
|
||||
Result SetMaxHeapSize(size_t size);
|
||||
Result SetHeapSize(VAddr* out, size_t size);
|
||||
ResultVal<VAddr> AllocateAndMapMemory(size_t needed_num_pages, size_t align, bool is_map_only,
|
||||
VAddr region_start, size_t region_num_pages,
|
||||
KMemoryState state, KMemoryPermission perm,
|
||||
PAddr map_addr = 0);
|
||||
|
||||
Result LockForMapDeviceAddressSpace(VAddr address, size_t size, KMemoryPermission perm,
|
||||
bool is_aligned);
|
||||
Result LockForUnmapDeviceAddressSpace(VAddr address, size_t size);
|
||||
|
||||
Result UnlockForDeviceAddressSpace(VAddr addr, size_t size);
|
||||
|
||||
Result LockForCodeMemory(KPageGroup* out, VAddr addr, size_t size);
|
||||
Result UnlockForCodeMemory(VAddr addr, size_t size, const KPageGroup& pg);
|
||||
Result MakeAndOpenPageGroup(KPageGroup* out, VAddr address, size_t num_pages,
|
||||
KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr);
|
||||
|
||||
Common::PageTable& PageTableImpl() {
|
||||
return *m_page_table_impl;
|
||||
}
|
||||
|
||||
const Common::PageTable& PageTableImpl() const {
|
||||
return *m_page_table_impl;
|
||||
}
|
||||
|
||||
bool CanContain(VAddr addr, size_t size, KMemoryState state) const;
|
||||
|
||||
private:
|
||||
enum class OperationType : u32 {
|
||||
Map,
|
||||
MapGroup,
|
||||
Unmap,
|
||||
ChangePermissions,
|
||||
ChangePermissionsAndRefresh,
|
||||
};
|
||||
|
||||
static constexpr KMemoryAttribute DefaultMemoryIgnoreAttr =
|
||||
KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared;
|
||||
|
||||
Result MapPages(VAddr addr, const KPageGroup& page_linked_list, KMemoryPermission perm);
|
||||
Result MapPages(VAddr* out_addr, size_t num_pages, size_t alignment, PAddr phys_addr,
|
||||
bool is_pa_valid, VAddr region_start, size_t region_num_pages,
|
||||
KMemoryState state, KMemoryPermission perm);
|
||||
Result UnmapPages(VAddr addr, const KPageGroup& page_linked_list);
|
||||
bool IsRegionContiguous(VAddr addr, u64 size) const;
|
||||
void AddRegionToPages(VAddr start, size_t num_pages, KPageGroup& page_linked_list);
|
||||
KMemoryInfo QueryInfoImpl(VAddr addr);
|
||||
VAddr AllocateVirtualMemory(VAddr start, size_t region_num_pages, u64 needed_num_pages,
|
||||
size_t align);
|
||||
Result Operate(VAddr addr, size_t num_pages, const KPageGroup& page_group,
|
||||
OperationType operation);
|
||||
Result Operate(VAddr addr, size_t num_pages, KMemoryPermission perm, OperationType operation,
|
||||
PAddr map_addr = 0);
|
||||
VAddr GetRegionAddress(KMemoryState state) const;
|
||||
size_t GetRegionSize(KMemoryState state) const;
|
||||
|
||||
VAddr FindFreeArea(VAddr region_start, size_t region_num_pages, size_t num_pages,
|
||||
size_t alignment, size_t offset, size_t guard_pages);
|
||||
|
||||
Result CheckMemoryStateContiguous(size_t* out_blocks_needed, VAddr addr, size_t size,
|
||||
KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr) const;
|
||||
Result CheckMemoryStateContiguous(VAddr addr, size_t size, KMemoryState state_mask,
|
||||
KMemoryState state, KMemoryPermission perm_mask,
|
||||
KMemoryPermission perm, KMemoryAttribute attr_mask,
|
||||
KMemoryAttribute attr) const {
|
||||
R_RETURN(this->CheckMemoryStateContiguous(nullptr, addr, size, state_mask, state, perm_mask,
|
||||
perm, attr_mask, attr));
|
||||
}
|
||||
|
||||
Result CheckMemoryState(const KMemoryInfo& info, KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr) const;
|
||||
Result CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
|
||||
KMemoryAttribute* out_attr, size_t* out_blocks_needed, VAddr addr,
|
||||
size_t size, KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const;
|
||||
Result CheckMemoryState(size_t* out_blocks_needed, VAddr addr, size_t size,
|
||||
KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const {
|
||||
R_RETURN(CheckMemoryState(nullptr, nullptr, nullptr, out_blocks_needed, addr, size,
|
||||
state_mask, state, perm_mask, perm, attr_mask, attr,
|
||||
ignore_attr));
|
||||
}
|
||||
Result CheckMemoryState(VAddr addr, size_t size, KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const {
|
||||
R_RETURN(this->CheckMemoryState(nullptr, addr, size, state_mask, state, perm_mask, perm,
|
||||
attr_mask, attr, ignore_attr));
|
||||
}
|
||||
|
||||
Result LockMemoryAndOpen(KPageGroup* out_pg, PAddr* out_paddr, VAddr addr, size_t size,
|
||||
KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryPermission new_perm, KMemoryAttribute lock_attr);
|
||||
Result UnlockMemory(VAddr addr, size_t size, KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryPermission new_perm, KMemoryAttribute lock_attr,
|
||||
const KPageGroup* pg);
|
||||
|
||||
Result MakePageGroup(KPageGroup& pg, VAddr addr, size_t num_pages);
|
||||
bool IsValidPageGroup(const KPageGroup& pg, VAddr addr, size_t num_pages);
|
||||
|
||||
bool IsLockedByCurrentThread() const {
|
||||
return m_general_lock.IsLockedByCurrentThread();
|
||||
}
|
||||
|
||||
bool IsHeapPhysicalAddress(const KMemoryLayout& layout, PAddr phys_addr) {
|
||||
ASSERT(this->IsLockedByCurrentThread());
|
||||
|
||||
return layout.IsHeapPhysicalAddress(m_cached_physical_heap_region, phys_addr);
|
||||
}
|
||||
|
||||
bool GetPhysicalAddressLocked(PAddr* out, VAddr virt_addr) const {
|
||||
ASSERT(this->IsLockedByCurrentThread());
|
||||
|
||||
*out = GetPhysicalAddr(virt_addr);
|
||||
|
||||
return *out != 0;
|
||||
}
|
||||
|
||||
mutable KLightLock m_general_lock;
|
||||
mutable KLightLock m_map_physical_memory_lock;
|
||||
|
||||
public:
|
||||
constexpr VAddr GetAddressSpaceStart() const {
|
||||
return m_address_space_start;
|
||||
}
|
||||
constexpr VAddr GetAddressSpaceEnd() const {
|
||||
return m_address_space_end;
|
||||
}
|
||||
constexpr size_t GetAddressSpaceSize() const {
|
||||
return m_address_space_end - m_address_space_start;
|
||||
}
|
||||
constexpr VAddr GetHeapRegionStart() const {
|
||||
return m_heap_region_start;
|
||||
}
|
||||
constexpr VAddr GetHeapRegionEnd() const {
|
||||
return m_heap_region_end;
|
||||
}
|
||||
constexpr size_t GetHeapRegionSize() const {
|
||||
return m_heap_region_end - m_heap_region_start;
|
||||
}
|
||||
constexpr VAddr GetAliasRegionStart() const {
|
||||
return m_alias_region_start;
|
||||
}
|
||||
constexpr VAddr GetAliasRegionEnd() const {
|
||||
return m_alias_region_end;
|
||||
}
|
||||
constexpr size_t GetAliasRegionSize() const {
|
||||
return m_alias_region_end - m_alias_region_start;
|
||||
}
|
||||
constexpr VAddr GetStackRegionStart() const {
|
||||
return m_stack_region_start;
|
||||
}
|
||||
constexpr VAddr GetStackRegionEnd() const {
|
||||
return m_stack_region_end;
|
||||
}
|
||||
constexpr size_t GetStackRegionSize() const {
|
||||
return m_stack_region_end - m_stack_region_start;
|
||||
}
|
||||
constexpr VAddr GetKernelMapRegionStart() const {
|
||||
return m_kernel_map_region_start;
|
||||
}
|
||||
constexpr VAddr GetKernelMapRegionEnd() const {
|
||||
return m_kernel_map_region_end;
|
||||
}
|
||||
constexpr VAddr GetCodeRegionStart() const {
|
||||
return m_code_region_start;
|
||||
}
|
||||
constexpr VAddr GetCodeRegionEnd() const {
|
||||
return m_code_region_end;
|
||||
}
|
||||
constexpr VAddr GetAliasCodeRegionStart() const {
|
||||
return m_alias_code_region_start;
|
||||
}
|
||||
constexpr VAddr GetAliasCodeRegionSize() const {
|
||||
return m_alias_code_region_end - m_alias_code_region_start;
|
||||
}
|
||||
size_t GetNormalMemorySize() {
|
||||
KScopedLightLock lk(m_general_lock);
|
||||
return GetHeapSize() + m_mapped_physical_memory_size;
|
||||
}
|
||||
constexpr size_t GetAddressSpaceWidth() const {
|
||||
return m_address_space_width;
|
||||
}
|
||||
constexpr size_t GetHeapSize() const {
|
||||
return m_current_heap_end - m_heap_region_start;
|
||||
}
|
||||
constexpr bool IsInsideAddressSpace(VAddr address, size_t size) const {
|
||||
return m_address_space_start <= address && address + size - 1 <= m_address_space_end - 1;
|
||||
}
|
||||
constexpr bool IsOutsideAliasRegion(VAddr address, size_t size) const {
|
||||
return m_alias_region_start > address || address + size - 1 > m_alias_region_end - 1;
|
||||
}
|
||||
constexpr bool IsOutsideStackRegion(VAddr address, size_t size) const {
|
||||
return m_stack_region_start > address || address + size - 1 > m_stack_region_end - 1;
|
||||
}
|
||||
constexpr bool IsInvalidRegion(VAddr address, size_t size) const {
|
||||
return address + size - 1 > GetAliasCodeRegionStart() + GetAliasCodeRegionSize() - 1;
|
||||
}
|
||||
constexpr bool IsInsideHeapRegion(VAddr address, size_t size) const {
|
||||
return address + size > m_heap_region_start && m_heap_region_end > address;
|
||||
}
|
||||
constexpr bool IsInsideAliasRegion(VAddr address, size_t size) const {
|
||||
return address + size > m_alias_region_start && m_alias_region_end > address;
|
||||
}
|
||||
constexpr bool IsOutsideASLRRegion(VAddr address, size_t size) const {
|
||||
if (IsInvalidRegion(address, size)) {
|
||||
return true;
|
||||
}
|
||||
if (IsInsideHeapRegion(address, size)) {
|
||||
return true;
|
||||
}
|
||||
if (IsInsideAliasRegion(address, size)) {
|
||||
return true;
|
||||
}
|
||||
return {};
|
||||
}
|
||||
constexpr bool IsInsideASLRRegion(VAddr address, size_t size) const {
|
||||
return !IsOutsideASLRRegion(address, size);
|
||||
}
|
||||
constexpr size_t GetNumGuardPages() const {
|
||||
return IsKernel() ? 1 : 4;
|
||||
}
|
||||
PAddr GetPhysicalAddr(VAddr addr) const {
|
||||
const auto backing_addr = m_page_table_impl->backing_addr[addr >> PageBits];
|
||||
ASSERT(backing_addr);
|
||||
return backing_addr + addr;
|
||||
}
|
||||
constexpr bool Contains(VAddr addr) const {
|
||||
return m_address_space_start <= addr && addr <= m_address_space_end - 1;
|
||||
}
|
||||
constexpr bool Contains(VAddr addr, size_t size) const {
|
||||
return m_address_space_start <= addr && addr < addr + size &&
|
||||
addr + size - 1 <= m_address_space_end - 1;
|
||||
}
|
||||
|
||||
private:
|
||||
constexpr bool IsKernel() const {
|
||||
return m_is_kernel;
|
||||
}
|
||||
constexpr bool IsAslrEnabled() const {
|
||||
return m_enable_aslr;
|
||||
}
|
||||
|
||||
constexpr bool ContainsPages(VAddr addr, size_t num_pages) const {
|
||||
return (m_address_space_start <= addr) &&
|
||||
(num_pages <= (m_address_space_end - m_address_space_start) / PageSize) &&
|
||||
(addr + num_pages * PageSize - 1 <= m_address_space_end - 1);
|
||||
}
|
||||
|
||||
private:
|
||||
VAddr m_address_space_start{};
|
||||
VAddr m_address_space_end{};
|
||||
VAddr m_heap_region_start{};
|
||||
VAddr m_heap_region_end{};
|
||||
VAddr m_current_heap_end{};
|
||||
VAddr m_alias_region_start{};
|
||||
VAddr m_alias_region_end{};
|
||||
VAddr m_stack_region_start{};
|
||||
VAddr m_stack_region_end{};
|
||||
VAddr m_kernel_map_region_start{};
|
||||
VAddr m_kernel_map_region_end{};
|
||||
VAddr m_code_region_start{};
|
||||
VAddr m_code_region_end{};
|
||||
VAddr m_alias_code_region_start{};
|
||||
VAddr m_alias_code_region_end{};
|
||||
|
||||
size_t m_mapped_physical_memory_size{};
|
||||
size_t m_max_heap_size{};
|
||||
size_t m_max_physical_memory_size{};
|
||||
size_t m_address_space_width{};
|
||||
|
||||
KMemoryBlockManager m_memory_block_manager;
|
||||
|
||||
bool m_is_kernel{};
|
||||
bool m_enable_aslr{};
|
||||
bool m_enable_device_address_space_merge{};
|
||||
|
||||
KMemoryBlockSlabManager* m_memory_block_slab_manager{};
|
||||
|
||||
u32 m_heap_fill_value{};
|
||||
const KMemoryRegion* m_cached_physical_heap_region{};
|
||||
|
||||
KMemoryManager::Pool m_memory_pool{KMemoryManager::Pool::Application};
|
||||
KMemoryManager::Direction m_allocation_option{KMemoryManager::Direction::FromFront};
|
||||
|
||||
std::unique_ptr<Common::PageTable> m_page_table_impl;
|
||||
|
||||
Core::System& m_system;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/page_table.h"
|
||||
#include "core/file_sys/program_metadata.h"
|
||||
#include "core/hle/kernel/k_dynamic_resource_manager.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
#include "core/hle/kernel/k_memory_block_manager.h"
|
||||
#include "core/hle/kernel/k_memory_layout.h"
|
||||
#include "core/hle/kernel/k_memory_manager.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KMemoryBlockManager;
|
||||
|
||||
class KPageTable final {
|
||||
public:
|
||||
enum class ICacheInvalidationStrategy : u32 { InvalidateRange, InvalidateAll };
|
||||
|
||||
YUZU_NON_COPYABLE(KPageTable);
|
||||
YUZU_NON_MOVEABLE(KPageTable);
|
||||
|
||||
explicit KPageTable(Core::System& system_);
|
||||
~KPageTable();
|
||||
|
||||
Result InitializeForProcess(FileSys::ProgramAddressSpaceType as_type, bool enable_aslr,
|
||||
VAddr code_addr, size_t code_size,
|
||||
KMemoryBlockSlabManager* mem_block_slab_manager,
|
||||
KMemoryManager::Pool pool);
|
||||
|
||||
void Finalize();
|
||||
|
||||
Result MapProcessCode(VAddr addr, size_t pages_count, KMemoryState state,
|
||||
KMemoryPermission perm);
|
||||
Result MapCodeMemory(VAddr dst_address, VAddr src_address, size_t size);
|
||||
Result UnmapCodeMemory(VAddr dst_address, VAddr src_address, size_t size,
|
||||
ICacheInvalidationStrategy icache_invalidation_strategy);
|
||||
Result UnmapProcessMemory(VAddr dst_addr, size_t size, KPageTable& src_page_table,
|
||||
VAddr src_addr);
|
||||
Result MapPhysicalMemory(VAddr addr, size_t size);
|
||||
Result UnmapPhysicalMemory(VAddr addr, size_t size);
|
||||
Result MapMemory(VAddr dst_addr, VAddr src_addr, size_t size);
|
||||
Result UnmapMemory(VAddr dst_addr, VAddr src_addr, size_t size);
|
||||
Result MapPages(VAddr addr, KPageGroup& page_linked_list, KMemoryState state,
|
||||
KMemoryPermission perm);
|
||||
Result MapPages(VAddr* out_addr, size_t num_pages, size_t alignment, PAddr phys_addr,
|
||||
KMemoryState state, KMemoryPermission perm) {
|
||||
R_RETURN(this->MapPages(out_addr, num_pages, alignment, phys_addr, true,
|
||||
this->GetRegionAddress(state),
|
||||
this->GetRegionSize(state) / PageSize, state, perm));
|
||||
}
|
||||
Result UnmapPages(VAddr addr, KPageGroup& page_linked_list, KMemoryState state);
|
||||
Result UnmapPages(VAddr address, size_t num_pages, KMemoryState state);
|
||||
Result SetProcessMemoryPermission(VAddr addr, size_t size, Svc::MemoryPermission svc_perm);
|
||||
KMemoryInfo QueryInfo(VAddr addr);
|
||||
Result SetMemoryPermission(VAddr addr, size_t size, Svc::MemoryPermission perm);
|
||||
Result SetMemoryAttribute(VAddr addr, size_t size, u32 mask, u32 attr);
|
||||
Result SetMaxHeapSize(size_t size);
|
||||
Result SetHeapSize(VAddr* out, size_t size);
|
||||
ResultVal<VAddr> AllocateAndMapMemory(size_t needed_num_pages, size_t align, bool is_map_only,
|
||||
VAddr region_start, size_t region_num_pages,
|
||||
KMemoryState state, KMemoryPermission perm,
|
||||
PAddr map_addr = 0);
|
||||
|
||||
Result LockForMapDeviceAddressSpace(VAddr address, size_t size, KMemoryPermission perm,
|
||||
bool is_aligned);
|
||||
Result LockForUnmapDeviceAddressSpace(VAddr address, size_t size);
|
||||
|
||||
Result UnlockForDeviceAddressSpace(VAddr addr, size_t size);
|
||||
|
||||
Result LockForCodeMemory(KPageGroup* out, VAddr addr, size_t size);
|
||||
Result UnlockForCodeMemory(VAddr addr, size_t size, const KPageGroup& pg);
|
||||
Result MakeAndOpenPageGroup(KPageGroup* out, VAddr address, size_t num_pages,
|
||||
KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr);
|
||||
|
||||
Common::PageTable& PageTableImpl() {
|
||||
return *m_page_table_impl;
|
||||
}
|
||||
|
||||
const Common::PageTable& PageTableImpl() const {
|
||||
return *m_page_table_impl;
|
||||
}
|
||||
|
||||
bool CanContain(VAddr addr, size_t size, KMemoryState state) const;
|
||||
|
||||
private:
|
||||
enum class OperationType : u32 {
|
||||
Map,
|
||||
MapGroup,
|
||||
Unmap,
|
||||
ChangePermissions,
|
||||
ChangePermissionsAndRefresh,
|
||||
};
|
||||
|
||||
static constexpr KMemoryAttribute DefaultMemoryIgnoreAttr =
|
||||
KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared;
|
||||
|
||||
Result MapPages(VAddr addr, const KPageGroup& page_linked_list, KMemoryPermission perm);
|
||||
Result MapPages(VAddr* out_addr, size_t num_pages, size_t alignment, PAddr phys_addr,
|
||||
bool is_pa_valid, VAddr region_start, size_t region_num_pages,
|
||||
KMemoryState state, KMemoryPermission perm);
|
||||
Result UnmapPages(VAddr addr, const KPageGroup& page_linked_list);
|
||||
bool IsRegionContiguous(VAddr addr, u64 size) const;
|
||||
void AddRegionToPages(VAddr start, size_t num_pages, KPageGroup& page_linked_list);
|
||||
KMemoryInfo QueryInfoImpl(VAddr addr);
|
||||
VAddr AllocateVirtualMemory(VAddr start, size_t region_num_pages, u64 needed_num_pages,
|
||||
size_t align);
|
||||
Result Operate(VAddr addr, size_t num_pages, const KPageGroup& page_group,
|
||||
OperationType operation);
|
||||
Result Operate(VAddr addr, size_t num_pages, KMemoryPermission perm, OperationType operation,
|
||||
PAddr map_addr = 0);
|
||||
VAddr GetRegionAddress(KMemoryState state) const;
|
||||
size_t GetRegionSize(KMemoryState state) const;
|
||||
|
||||
VAddr FindFreeArea(VAddr region_start, size_t region_num_pages, size_t num_pages,
|
||||
size_t alignment, size_t offset, size_t guard_pages);
|
||||
|
||||
Result CheckMemoryStateContiguous(size_t* out_blocks_needed, VAddr addr, size_t size,
|
||||
KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr) const;
|
||||
Result CheckMemoryStateContiguous(VAddr addr, size_t size, KMemoryState state_mask,
|
||||
KMemoryState state, KMemoryPermission perm_mask,
|
||||
KMemoryPermission perm, KMemoryAttribute attr_mask,
|
||||
KMemoryAttribute attr) const {
|
||||
R_RETURN(this->CheckMemoryStateContiguous(nullptr, addr, size, state_mask, state, perm_mask,
|
||||
perm, attr_mask, attr));
|
||||
}
|
||||
|
||||
Result CheckMemoryState(const KMemoryInfo& info, KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr) const;
|
||||
Result CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
|
||||
KMemoryAttribute* out_attr, size_t* out_blocks_needed, VAddr addr,
|
||||
size_t size, KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const;
|
||||
Result CheckMemoryState(size_t* out_blocks_needed, VAddr addr, size_t size,
|
||||
KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const {
|
||||
R_RETURN(CheckMemoryState(nullptr, nullptr, nullptr, out_blocks_needed, addr, size,
|
||||
state_mask, state, perm_mask, perm, attr_mask, attr,
|
||||
ignore_attr));
|
||||
}
|
||||
Result CheckMemoryState(VAddr addr, size_t size, KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const {
|
||||
R_RETURN(this->CheckMemoryState(nullptr, addr, size, state_mask, state, perm_mask, perm,
|
||||
attr_mask, attr, ignore_attr));
|
||||
}
|
||||
|
||||
Result LockMemoryAndOpen(KPageGroup* out_pg, PAddr* out_paddr, VAddr addr, size_t size,
|
||||
KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryPermission new_perm, KMemoryAttribute lock_attr);
|
||||
Result UnlockMemory(VAddr addr, size_t size, KMemoryState state_mask, KMemoryState state,
|
||||
KMemoryPermission perm_mask, KMemoryPermission perm,
|
||||
KMemoryAttribute attr_mask, KMemoryAttribute attr,
|
||||
KMemoryPermission new_perm, KMemoryAttribute lock_attr,
|
||||
const KPageGroup* pg);
|
||||
|
||||
Result MakePageGroup(KPageGroup& pg, VAddr addr, size_t num_pages);
|
||||
bool IsValidPageGroup(const KPageGroup& pg, VAddr addr, size_t num_pages);
|
||||
|
||||
bool IsLockedByCurrentThread() const {
|
||||
return m_general_lock.IsLockedByCurrentThread();
|
||||
}
|
||||
|
||||
bool IsHeapPhysicalAddress(const KMemoryLayout& layout, PAddr phys_addr) {
|
||||
ASSERT(this->IsLockedByCurrentThread());
|
||||
|
||||
return layout.IsHeapPhysicalAddress(m_cached_physical_heap_region, phys_addr);
|
||||
}
|
||||
|
||||
bool GetPhysicalAddressLocked(PAddr* out, VAddr virt_addr) const {
|
||||
ASSERT(this->IsLockedByCurrentThread());
|
||||
|
||||
*out = GetPhysicalAddr(virt_addr);
|
||||
|
||||
return *out != 0;
|
||||
}
|
||||
|
||||
mutable KLightLock m_general_lock;
|
||||
mutable KLightLock m_map_physical_memory_lock;
|
||||
|
||||
public:
|
||||
constexpr VAddr GetAddressSpaceStart() const {
|
||||
return m_address_space_start;
|
||||
}
|
||||
constexpr VAddr GetAddressSpaceEnd() const {
|
||||
return m_address_space_end;
|
||||
}
|
||||
constexpr size_t GetAddressSpaceSize() const {
|
||||
return m_address_space_end - m_address_space_start;
|
||||
}
|
||||
constexpr VAddr GetHeapRegionStart() const {
|
||||
return m_heap_region_start;
|
||||
}
|
||||
constexpr VAddr GetHeapRegionEnd() const {
|
||||
return m_heap_region_end;
|
||||
}
|
||||
constexpr size_t GetHeapRegionSize() const {
|
||||
return m_heap_region_end - m_heap_region_start;
|
||||
}
|
||||
constexpr VAddr GetAliasRegionStart() const {
|
||||
return m_alias_region_start;
|
||||
}
|
||||
constexpr VAddr GetAliasRegionEnd() const {
|
||||
return m_alias_region_end;
|
||||
}
|
||||
constexpr size_t GetAliasRegionSize() const {
|
||||
return m_alias_region_end - m_alias_region_start;
|
||||
}
|
||||
constexpr VAddr GetStackRegionStart() const {
|
||||
return m_stack_region_start;
|
||||
}
|
||||
constexpr VAddr GetStackRegionEnd() const {
|
||||
return m_stack_region_end;
|
||||
}
|
||||
constexpr size_t GetStackRegionSize() const {
|
||||
return m_stack_region_end - m_stack_region_start;
|
||||
}
|
||||
constexpr VAddr GetKernelMapRegionStart() const {
|
||||
return m_kernel_map_region_start;
|
||||
}
|
||||
constexpr VAddr GetKernelMapRegionEnd() const {
|
||||
return m_kernel_map_region_end;
|
||||
}
|
||||
constexpr VAddr GetCodeRegionStart() const {
|
||||
return m_code_region_start;
|
||||
}
|
||||
constexpr VAddr GetCodeRegionEnd() const {
|
||||
return m_code_region_end;
|
||||
}
|
||||
constexpr VAddr GetAliasCodeRegionStart() const {
|
||||
return m_alias_code_region_start;
|
||||
}
|
||||
constexpr VAddr GetAliasCodeRegionSize() const {
|
||||
return m_alias_code_region_end - m_alias_code_region_start;
|
||||
}
|
||||
size_t GetNormalMemorySize() {
|
||||
KScopedLightLock lk(m_general_lock);
|
||||
return GetHeapSize() + m_mapped_physical_memory_size;
|
||||
}
|
||||
constexpr size_t GetAddressSpaceWidth() const {
|
||||
return m_address_space_width;
|
||||
}
|
||||
constexpr size_t GetHeapSize() const {
|
||||
return m_current_heap_end - m_heap_region_start;
|
||||
}
|
||||
constexpr bool IsInsideAddressSpace(VAddr address, size_t size) const {
|
||||
return m_address_space_start <= address && address + size - 1 <= m_address_space_end - 1;
|
||||
}
|
||||
constexpr bool IsOutsideAliasRegion(VAddr address, size_t size) const {
|
||||
return m_alias_region_start > address || address + size - 1 > m_alias_region_end - 1;
|
||||
}
|
||||
constexpr bool IsOutsideStackRegion(VAddr address, size_t size) const {
|
||||
return m_stack_region_start > address || address + size - 1 > m_stack_region_end - 1;
|
||||
}
|
||||
constexpr bool IsInvalidRegion(VAddr address, size_t size) const {
|
||||
return address + size - 1 > GetAliasCodeRegionStart() + GetAliasCodeRegionSize() - 1;
|
||||
}
|
||||
constexpr bool IsInsideHeapRegion(VAddr address, size_t size) const {
|
||||
return address + size > m_heap_region_start && m_heap_region_end > address;
|
||||
}
|
||||
constexpr bool IsInsideAliasRegion(VAddr address, size_t size) const {
|
||||
return address + size > m_alias_region_start && m_alias_region_end > address;
|
||||
}
|
||||
constexpr bool IsOutsideASLRRegion(VAddr address, size_t size) const {
|
||||
if (IsInvalidRegion(address, size)) {
|
||||
return true;
|
||||
}
|
||||
if (IsInsideHeapRegion(address, size)) {
|
||||
return true;
|
||||
}
|
||||
if (IsInsideAliasRegion(address, size)) {
|
||||
return true;
|
||||
}
|
||||
return {};
|
||||
}
|
||||
constexpr bool IsInsideASLRRegion(VAddr address, size_t size) const {
|
||||
return !IsOutsideASLRRegion(address, size);
|
||||
}
|
||||
constexpr size_t GetNumGuardPages() const {
|
||||
return IsKernel() ? 1 : 4;
|
||||
}
|
||||
PAddr GetPhysicalAddr(VAddr addr) const {
|
||||
const auto backing_addr = m_page_table_impl->backing_addr[addr >> PageBits];
|
||||
ASSERT(backing_addr);
|
||||
return backing_addr + addr;
|
||||
}
|
||||
constexpr bool Contains(VAddr addr) const {
|
||||
return m_address_space_start <= addr && addr <= m_address_space_end - 1;
|
||||
}
|
||||
constexpr bool Contains(VAddr addr, size_t size) const {
|
||||
return m_address_space_start <= addr && addr < addr + size &&
|
||||
addr + size - 1 <= m_address_space_end - 1;
|
||||
}
|
||||
|
||||
private:
|
||||
constexpr bool IsKernel() const {
|
||||
return m_is_kernel;
|
||||
}
|
||||
constexpr bool IsAslrEnabled() const {
|
||||
return m_enable_aslr;
|
||||
}
|
||||
|
||||
constexpr bool ContainsPages(VAddr addr, size_t num_pages) const {
|
||||
return (m_address_space_start <= addr) &&
|
||||
(num_pages <= (m_address_space_end - m_address_space_start) / PageSize) &&
|
||||
(addr + num_pages * PageSize - 1 <= m_address_space_end - 1);
|
||||
}
|
||||
|
||||
private:
|
||||
VAddr m_address_space_start{};
|
||||
VAddr m_address_space_end{};
|
||||
VAddr m_heap_region_start{};
|
||||
VAddr m_heap_region_end{};
|
||||
VAddr m_current_heap_end{};
|
||||
VAddr m_alias_region_start{};
|
||||
VAddr m_alias_region_end{};
|
||||
VAddr m_stack_region_start{};
|
||||
VAddr m_stack_region_end{};
|
||||
VAddr m_kernel_map_region_start{};
|
||||
VAddr m_kernel_map_region_end{};
|
||||
VAddr m_code_region_start{};
|
||||
VAddr m_code_region_end{};
|
||||
VAddr m_alias_code_region_start{};
|
||||
VAddr m_alias_code_region_end{};
|
||||
|
||||
size_t m_mapped_physical_memory_size{};
|
||||
size_t m_max_heap_size{};
|
||||
size_t m_max_physical_memory_size{};
|
||||
size_t m_address_space_width{};
|
||||
|
||||
KMemoryBlockManager m_memory_block_manager;
|
||||
|
||||
bool m_is_kernel{};
|
||||
bool m_enable_aslr{};
|
||||
bool m_enable_device_address_space_merge{};
|
||||
|
||||
KMemoryBlockSlabManager* m_memory_block_slab_manager{};
|
||||
|
||||
u32 m_heap_fill_value{};
|
||||
const KMemoryRegion* m_cached_physical_heap_region{};
|
||||
|
||||
KMemoryManager::Pool m_memory_pool{KMemoryManager::Pool::Application};
|
||||
KMemoryManager::Direction m_allocation_option{KMemoryManager::Direction::FromFront};
|
||||
|
||||
std::unique_ptr<Common::PageTable> m_page_table_impl;
|
||||
|
||||
Core::System& m_system;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,63 +1,63 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KPort::KPort(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, server{kernel_}, client{kernel_} {}
|
||||
|
||||
KPort::~KPort() = default;
|
||||
|
||||
void KPort::Initialize(s32 max_sessions_, bool is_light_, const std::string& name_) {
|
||||
// Open a new reference count to the initialized port.
|
||||
Open();
|
||||
|
||||
// Create and initialize our server/client pair.
|
||||
KAutoObject::Create(std::addressof(server));
|
||||
KAutoObject::Create(std::addressof(client));
|
||||
server.Initialize(this, name_ + ":Server");
|
||||
client.Initialize(this, max_sessions_, name_ + ":Client");
|
||||
|
||||
// Set our member variables.
|
||||
is_light = is_light_;
|
||||
name = name_;
|
||||
state = State::Normal;
|
||||
}
|
||||
|
||||
void KPort::OnClientClosed() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (state == State::Normal) {
|
||||
state = State::ClientClosed;
|
||||
}
|
||||
}
|
||||
|
||||
void KPort::OnServerClosed() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (state == State::Normal) {
|
||||
state = State::ServerClosed;
|
||||
}
|
||||
}
|
||||
|
||||
bool KPort::IsServerClosed() const {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
return state == State::ServerClosed;
|
||||
}
|
||||
|
||||
Result KPort::EnqueueSession(KServerSession* session) {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
R_UNLESS(state == State::Normal, ResultPortClosed);
|
||||
|
||||
server.EnqueueSession(session);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KPort::KPort(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, server{kernel_}, client{kernel_} {}
|
||||
|
||||
KPort::~KPort() = default;
|
||||
|
||||
void KPort::Initialize(s32 max_sessions_, bool is_light_, const std::string& name_) {
|
||||
// Open a new reference count to the initialized port.
|
||||
Open();
|
||||
|
||||
// Create and initialize our server/client pair.
|
||||
KAutoObject::Create(std::addressof(server));
|
||||
KAutoObject::Create(std::addressof(client));
|
||||
server.Initialize(this, name_ + ":Server");
|
||||
client.Initialize(this, max_sessions_, name_ + ":Client");
|
||||
|
||||
// Set our member variables.
|
||||
is_light = is_light_;
|
||||
name = name_;
|
||||
state = State::Normal;
|
||||
}
|
||||
|
||||
void KPort::OnClientClosed() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (state == State::Normal) {
|
||||
state = State::ClientClosed;
|
||||
}
|
||||
}
|
||||
|
||||
void KPort::OnServerClosed() {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (state == State::Normal) {
|
||||
state = State::ServerClosed;
|
||||
}
|
||||
}
|
||||
|
||||
bool KPort::IsServerClosed() const {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
return state == State::ServerClosed;
|
||||
}
|
||||
|
||||
Result KPort::EnqueueSession(KServerSession* session) {
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
R_UNLESS(state == State::Normal, ResultPortClosed);
|
||||
|
||||
server.EnqueueSession(session);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,66 +1,66 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_server_port.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KServerSession;
|
||||
|
||||
class KPort final : public KAutoObjectWithSlabHeapAndContainer<KPort, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KPort, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KPort(KernelCore& kernel_);
|
||||
~KPort() override;
|
||||
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
void Initialize(s32 max_sessions_, bool is_light_, const std::string& name_);
|
||||
void OnClientClosed();
|
||||
void OnServerClosed();
|
||||
|
||||
bool IsLight() const {
|
||||
return is_light;
|
||||
}
|
||||
|
||||
bool IsServerClosed() const;
|
||||
|
||||
Result EnqueueSession(KServerSession* session);
|
||||
|
||||
KClientPort& GetClientPort() {
|
||||
return client;
|
||||
}
|
||||
KServerPort& GetServerPort() {
|
||||
return server;
|
||||
}
|
||||
const KClientPort& GetClientPort() const {
|
||||
return client;
|
||||
}
|
||||
const KServerPort& GetServerPort() const {
|
||||
return server;
|
||||
}
|
||||
|
||||
private:
|
||||
enum class State : u8 {
|
||||
Invalid = 0,
|
||||
Normal = 1,
|
||||
ClientClosed = 2,
|
||||
ServerClosed = 3,
|
||||
};
|
||||
|
||||
KServerPort server;
|
||||
KClientPort client;
|
||||
State state{State::Invalid};
|
||||
bool is_light{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_server_port.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KServerSession;
|
||||
|
||||
class KPort final : public KAutoObjectWithSlabHeapAndContainer<KPort, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KPort, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KPort(KernelCore& kernel_);
|
||||
~KPort() override;
|
||||
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
void Initialize(s32 max_sessions_, bool is_light_, const std::string& name_);
|
||||
void OnClientClosed();
|
||||
void OnServerClosed();
|
||||
|
||||
bool IsLight() const {
|
||||
return is_light;
|
||||
}
|
||||
|
||||
bool IsServerClosed() const;
|
||||
|
||||
Result EnqueueSession(KServerSession* session);
|
||||
|
||||
KClientPort& GetClientPort() {
|
||||
return client;
|
||||
}
|
||||
KServerPort& GetServerPort() {
|
||||
return server;
|
||||
}
|
||||
const KClientPort& GetClientPort() const {
|
||||
return client;
|
||||
}
|
||||
const KServerPort& GetServerPort() const {
|
||||
return server;
|
||||
}
|
||||
|
||||
private:
|
||||
enum class State : u8 {
|
||||
Invalid = 0,
|
||||
Normal = 1,
|
||||
ClientClosed = 2,
|
||||
ServerClosed = 3,
|
||||
};
|
||||
|
||||
KServerPort server;
|
||||
KClientPort client;
|
||||
State state{State::Invalid};
|
||||
bool is_light{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,476 +1,476 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <bit>
|
||||
#include <concepts>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/bit_set.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/concepts.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KThread;
|
||||
|
||||
template <typename T>
|
||||
concept KPriorityQueueAffinityMask = !std::is_reference_v<T> && requires(T & t) {
|
||||
{ t.GetAffinityMask() } -> Common::ConvertibleTo<u64>;
|
||||
{t.SetAffinityMask(0)};
|
||||
|
||||
{ t.GetAffinity(0) } -> std::same_as<bool>;
|
||||
{t.SetAffinity(0, false)};
|
||||
{t.SetAll()};
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
concept KPriorityQueueMember = !std::is_reference_v<T> && requires(T & t) {
|
||||
{typename T::QueueEntry()};
|
||||
{(typename T::QueueEntry()).Initialize()};
|
||||
{(typename T::QueueEntry()).SetPrev(std::addressof(t))};
|
||||
{(typename T::QueueEntry()).SetNext(std::addressof(t))};
|
||||
{ (typename T::QueueEntry()).GetNext() } -> std::same_as<T*>;
|
||||
{ (typename T::QueueEntry()).GetPrev() } -> std::same_as<T*>;
|
||||
{ t.GetPriorityQueueEntry(0) } -> std::same_as<typename T::QueueEntry&>;
|
||||
|
||||
{t.GetAffinityMask()};
|
||||
{ std::remove_cvref_t<decltype(t.GetAffinityMask())>() } -> KPriorityQueueAffinityMask;
|
||||
|
||||
{ t.GetActiveCore() } -> Common::ConvertibleTo<s32>;
|
||||
{ t.GetPriority() } -> Common::ConvertibleTo<s32>;
|
||||
{ t.IsDummyThread() } -> Common::ConvertibleTo<bool>;
|
||||
};
|
||||
|
||||
template <typename Member, size_t NumCores_, int LowestPriority, int HighestPriority>
|
||||
requires KPriorityQueueMember<Member>
|
||||
class KPriorityQueue {
|
||||
public:
|
||||
using AffinityMaskType = std::remove_cv_t<
|
||||
std::remove_reference_t<decltype(std::declval<Member>().GetAffinityMask())>>;
|
||||
|
||||
static_assert(LowestPriority >= 0);
|
||||
static_assert(HighestPriority >= 0);
|
||||
static_assert(LowestPriority >= HighestPriority);
|
||||
static constexpr size_t NumPriority = LowestPriority - HighestPriority + 1;
|
||||
static constexpr size_t NumCores = NumCores_;
|
||||
|
||||
static constexpr bool IsValidCore(s32 core) {
|
||||
return 0 <= core && core < static_cast<s32>(NumCores);
|
||||
}
|
||||
|
||||
static constexpr bool IsValidPriority(s32 priority) {
|
||||
return HighestPriority <= priority && priority <= LowestPriority + 1;
|
||||
}
|
||||
|
||||
private:
|
||||
using Entry = typename Member::QueueEntry;
|
||||
|
||||
public:
|
||||
class KPerCoreQueue {
|
||||
private:
|
||||
std::array<Entry, NumCores> root{};
|
||||
|
||||
public:
|
||||
constexpr KPerCoreQueue() {
|
||||
for (auto& per_core_root : root) {
|
||||
per_core_root.Initialize();
|
||||
}
|
||||
}
|
||||
|
||||
constexpr bool PushBack(s32 core, Member* member) {
|
||||
// Get the entry associated with the member.
|
||||
Entry& member_entry = member->GetPriorityQueueEntry(core);
|
||||
|
||||
// Get the entry associated with the end of the queue.
|
||||
Member* tail = this->root[core].GetPrev();
|
||||
Entry& tail_entry =
|
||||
(tail != nullptr) ? tail->GetPriorityQueueEntry(core) : this->root[core];
|
||||
|
||||
// Link the entries.
|
||||
member_entry.SetPrev(tail);
|
||||
member_entry.SetNext(nullptr);
|
||||
tail_entry.SetNext(member);
|
||||
this->root[core].SetPrev(member);
|
||||
|
||||
return tail == nullptr;
|
||||
}
|
||||
|
||||
constexpr bool PushFront(s32 core, Member* member) {
|
||||
// Get the entry associated with the member.
|
||||
Entry& member_entry = member->GetPriorityQueueEntry(core);
|
||||
|
||||
// Get the entry associated with the front of the queue.
|
||||
Member* head = this->root[core].GetNext();
|
||||
Entry& head_entry =
|
||||
(head != nullptr) ? head->GetPriorityQueueEntry(core) : this->root[core];
|
||||
|
||||
// Link the entries.
|
||||
member_entry.SetPrev(nullptr);
|
||||
member_entry.SetNext(head);
|
||||
head_entry.SetPrev(member);
|
||||
this->root[core].SetNext(member);
|
||||
|
||||
return (head == nullptr);
|
||||
}
|
||||
|
||||
constexpr bool Remove(s32 core, Member* member) {
|
||||
// Get the entry associated with the member.
|
||||
Entry& member_entry = member->GetPriorityQueueEntry(core);
|
||||
|
||||
// Get the entries associated with next and prev.
|
||||
Member* prev = member_entry.GetPrev();
|
||||
Member* next = member_entry.GetNext();
|
||||
Entry& prev_entry =
|
||||
(prev != nullptr) ? prev->GetPriorityQueueEntry(core) : this->root[core];
|
||||
Entry& next_entry =
|
||||
(next != nullptr) ? next->GetPriorityQueueEntry(core) : this->root[core];
|
||||
|
||||
// Unlink.
|
||||
prev_entry.SetNext(next);
|
||||
next_entry.SetPrev(prev);
|
||||
|
||||
return (this->GetFront(core) == nullptr);
|
||||
}
|
||||
|
||||
constexpr Member* GetFront(s32 core) const {
|
||||
return this->root[core].GetNext();
|
||||
}
|
||||
};
|
||||
|
||||
class KPriorityQueueImpl {
|
||||
public:
|
||||
constexpr KPriorityQueueImpl() = default;
|
||||
|
||||
constexpr void PushBack(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority > LowestPriority) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (this->queues[priority].PushBack(core, member)) {
|
||||
this->available_priorities[core].SetBit(priority);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void PushFront(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority > LowestPriority) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (this->queues[priority].PushFront(core, member)) {
|
||||
this->available_priorities[core].SetBit(priority);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void Remove(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority > LowestPriority) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (this->queues[priority].Remove(core, member)) {
|
||||
this->available_priorities[core].ClearBit(priority);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr Member* GetFront(s32 core) const {
|
||||
ASSERT(IsValidCore(core));
|
||||
|
||||
const s32 priority =
|
||||
static_cast<s32>(this->available_priorities[core].CountLeadingZero());
|
||||
if (priority <= LowestPriority) {
|
||||
return this->queues[priority].GetFront(core);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr Member* GetFront(s32 priority, s32 core) const {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority <= LowestPriority) {
|
||||
return this->queues[priority].GetFront(core);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr Member* GetNext(s32 core, const Member* member) const {
|
||||
ASSERT(IsValidCore(core));
|
||||
|
||||
Member* next = member->GetPriorityQueueEntry(core).GetNext();
|
||||
if (next == nullptr) {
|
||||
const s32 priority = static_cast<s32>(
|
||||
this->available_priorities[core].GetNextSet(member->GetPriority()));
|
||||
if (priority <= LowestPriority) {
|
||||
next = this->queues[priority].GetFront(core);
|
||||
}
|
||||
}
|
||||
return next;
|
||||
}
|
||||
|
||||
constexpr void MoveToFront(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority <= LowestPriority) {
|
||||
this->queues[priority].Remove(core, member);
|
||||
this->queues[priority].PushFront(core, member);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr Member* MoveToBack(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority <= LowestPriority) {
|
||||
this->queues[priority].Remove(core, member);
|
||||
this->queues[priority].PushBack(core, member);
|
||||
return this->queues[priority].GetFront(core);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<KPerCoreQueue, NumPriority> queues{};
|
||||
std::array<Common::BitSet64<NumPriority>, NumCores> available_priorities{};
|
||||
};
|
||||
|
||||
private:
|
||||
KPriorityQueueImpl scheduled_queue;
|
||||
KPriorityQueueImpl suggested_queue;
|
||||
|
||||
private:
|
||||
constexpr void ClearAffinityBit(u64& affinity, s32 core) {
|
||||
affinity &= ~(UINT64_C(1) << core);
|
||||
}
|
||||
|
||||
constexpr s32 GetNextCore(u64& affinity) {
|
||||
const s32 core = std::countr_zero(affinity);
|
||||
ClearAffinityBit(affinity, core);
|
||||
return core;
|
||||
}
|
||||
|
||||
constexpr void PushBack(s32 priority, Member* member) {
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
// Push onto the scheduled queue for its core, if we can.
|
||||
u64 affinity = member->GetAffinityMask().GetAffinityMask();
|
||||
if (const s32 core = member->GetActiveCore(); core >= 0) {
|
||||
this->scheduled_queue.PushBack(priority, core, member);
|
||||
ClearAffinityBit(affinity, core);
|
||||
}
|
||||
|
||||
// And suggest the thread for all other cores.
|
||||
while (affinity) {
|
||||
this->suggested_queue.PushBack(priority, GetNextCore(affinity), member);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void PushFront(s32 priority, Member* member) {
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
// Push onto the scheduled queue for its core, if we can.
|
||||
u64 affinity = member->GetAffinityMask().GetAffinityMask();
|
||||
if (const s32 core = member->GetActiveCore(); core >= 0) {
|
||||
this->scheduled_queue.PushFront(priority, core, member);
|
||||
ClearAffinityBit(affinity, core);
|
||||
}
|
||||
|
||||
// And suggest the thread for all other cores.
|
||||
// Note: Nintendo pushes onto the back of the suggested queue, not the front.
|
||||
while (affinity) {
|
||||
this->suggested_queue.PushBack(priority, GetNextCore(affinity), member);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void Remove(s32 priority, Member* member) {
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
// Remove from the scheduled queue for its core.
|
||||
u64 affinity = member->GetAffinityMask().GetAffinityMask();
|
||||
if (const s32 core = member->GetActiveCore(); core >= 0) {
|
||||
this->scheduled_queue.Remove(priority, core, member);
|
||||
ClearAffinityBit(affinity, core);
|
||||
}
|
||||
|
||||
// Remove from the suggested queue for all other cores.
|
||||
while (affinity) {
|
||||
this->suggested_queue.Remove(priority, GetNextCore(affinity), member);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
constexpr KPriorityQueue() = default;
|
||||
|
||||
// Getters.
|
||||
constexpr Member* GetScheduledFront(s32 core) const {
|
||||
return this->scheduled_queue.GetFront(core);
|
||||
}
|
||||
|
||||
constexpr Member* GetScheduledFront(s32 core, s32 priority) const {
|
||||
return this->scheduled_queue.GetFront(priority, core);
|
||||
}
|
||||
|
||||
constexpr Member* GetSuggestedFront(s32 core) const {
|
||||
return this->suggested_queue.GetFront(core);
|
||||
}
|
||||
|
||||
constexpr Member* GetSuggestedFront(s32 core, s32 priority) const {
|
||||
return this->suggested_queue.GetFront(priority, core);
|
||||
}
|
||||
|
||||
constexpr Member* GetScheduledNext(s32 core, const Member* member) const {
|
||||
return this->scheduled_queue.GetNext(core, member);
|
||||
}
|
||||
|
||||
constexpr Member* GetSuggestedNext(s32 core, const Member* member) const {
|
||||
return this->suggested_queue.GetNext(core, member);
|
||||
}
|
||||
|
||||
constexpr Member* GetSamePriorityNext(s32 core, const Member* member) const {
|
||||
return member->GetPriorityQueueEntry(core).GetNext();
|
||||
}
|
||||
|
||||
// Mutators.
|
||||
constexpr void PushBack(Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
this->PushBack(member->GetPriority(), member);
|
||||
}
|
||||
|
||||
constexpr void Remove(Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
this->Remove(member->GetPriority(), member);
|
||||
}
|
||||
|
||||
constexpr void MoveToScheduledFront(Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
this->scheduled_queue.MoveToFront(member->GetPriority(), member->GetActiveCore(), member);
|
||||
}
|
||||
|
||||
constexpr KThread* MoveToScheduledBack(Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return {};
|
||||
}
|
||||
|
||||
return this->scheduled_queue.MoveToBack(member->GetPriority(), member->GetActiveCore(),
|
||||
member);
|
||||
}
|
||||
|
||||
// First class fancy operations.
|
||||
constexpr void ChangePriority(s32 prev_priority, bool is_running, Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT(IsValidPriority(prev_priority));
|
||||
|
||||
// Remove the member from the queues.
|
||||
const s32 new_priority = member->GetPriority();
|
||||
this->Remove(prev_priority, member);
|
||||
|
||||
// And enqueue. If the member is running, we want to keep it running.
|
||||
if (is_running) {
|
||||
this->PushFront(new_priority, member);
|
||||
} else {
|
||||
this->PushBack(new_priority, member);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void ChangeAffinityMask(s32 prev_core, const AffinityMaskType& prev_affinity,
|
||||
Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Get the new information.
|
||||
const s32 priority = member->GetPriority();
|
||||
const AffinityMaskType& new_affinity = member->GetAffinityMask();
|
||||
const s32 new_core = member->GetActiveCore();
|
||||
|
||||
// Remove the member from all queues it was in before.
|
||||
for (s32 core = 0; core < static_cast<s32>(NumCores); core++) {
|
||||
if (prev_affinity.GetAffinity(core)) {
|
||||
if (core == prev_core) {
|
||||
this->scheduled_queue.Remove(priority, core, member);
|
||||
} else {
|
||||
this->suggested_queue.Remove(priority, core, member);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// And add the member to all queues it should be in now.
|
||||
for (s32 core = 0; core < static_cast<s32>(NumCores); core++) {
|
||||
if (new_affinity.GetAffinity(core)) {
|
||||
if (core == new_core) {
|
||||
this->scheduled_queue.PushBack(priority, core, member);
|
||||
} else {
|
||||
this->suggested_queue.PushBack(priority, core, member);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void ChangeCore(s32 prev_core, Member* member, bool to_front = false) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Get the new information.
|
||||
const s32 new_core = member->GetActiveCore();
|
||||
const s32 priority = member->GetPriority();
|
||||
|
||||
// We don't need to do anything if the core is the same.
|
||||
if (prev_core != new_core) {
|
||||
// Remove from the scheduled queue for the previous core.
|
||||
if (prev_core >= 0) {
|
||||
this->scheduled_queue.Remove(priority, prev_core, member);
|
||||
}
|
||||
|
||||
// Remove from the suggested queue and add to the scheduled queue for the new core.
|
||||
if (new_core >= 0) {
|
||||
this->suggested_queue.Remove(priority, new_core, member);
|
||||
if (to_front) {
|
||||
this->scheduled_queue.PushFront(priority, new_core, member);
|
||||
} else {
|
||||
this->scheduled_queue.PushBack(priority, new_core, member);
|
||||
}
|
||||
}
|
||||
|
||||
// Add to the suggested queue for the previous core.
|
||||
if (prev_core >= 0) {
|
||||
this->suggested_queue.PushBack(priority, prev_core, member);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <bit>
|
||||
#include <concepts>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/bit_set.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/concepts.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KThread;
|
||||
|
||||
template <typename T>
|
||||
concept KPriorityQueueAffinityMask = !std::is_reference_v<T> && requires(T & t) {
|
||||
{ t.GetAffinityMask() } -> Common::ConvertibleTo<u64>;
|
||||
{t.SetAffinityMask(0)};
|
||||
|
||||
{ t.GetAffinity(0) } -> std::same_as<bool>;
|
||||
{t.SetAffinity(0, false)};
|
||||
{t.SetAll()};
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
concept KPriorityQueueMember = !std::is_reference_v<T> && requires(T & t) {
|
||||
{typename T::QueueEntry()};
|
||||
{(typename T::QueueEntry()).Initialize()};
|
||||
{(typename T::QueueEntry()).SetPrev(std::addressof(t))};
|
||||
{(typename T::QueueEntry()).SetNext(std::addressof(t))};
|
||||
{ (typename T::QueueEntry()).GetNext() } -> std::same_as<T*>;
|
||||
{ (typename T::QueueEntry()).GetPrev() } -> std::same_as<T*>;
|
||||
{ t.GetPriorityQueueEntry(0) } -> std::same_as<typename T::QueueEntry&>;
|
||||
|
||||
{t.GetAffinityMask()};
|
||||
{ std::remove_cvref_t<decltype(t.GetAffinityMask())>() } -> KPriorityQueueAffinityMask;
|
||||
|
||||
{ t.GetActiveCore() } -> Common::ConvertibleTo<s32>;
|
||||
{ t.GetPriority() } -> Common::ConvertibleTo<s32>;
|
||||
{ t.IsDummyThread() } -> Common::ConvertibleTo<bool>;
|
||||
};
|
||||
|
||||
template <typename Member, size_t NumCores_, int LowestPriority, int HighestPriority>
|
||||
requires KPriorityQueueMember<Member>
|
||||
class KPriorityQueue {
|
||||
public:
|
||||
using AffinityMaskType = std::remove_cv_t<
|
||||
std::remove_reference_t<decltype(std::declval<Member>().GetAffinityMask())>>;
|
||||
|
||||
static_assert(LowestPriority >= 0);
|
||||
static_assert(HighestPriority >= 0);
|
||||
static_assert(LowestPriority >= HighestPriority);
|
||||
static constexpr size_t NumPriority = LowestPriority - HighestPriority + 1;
|
||||
static constexpr size_t NumCores = NumCores_;
|
||||
|
||||
static constexpr bool IsValidCore(s32 core) {
|
||||
return 0 <= core && core < static_cast<s32>(NumCores);
|
||||
}
|
||||
|
||||
static constexpr bool IsValidPriority(s32 priority) {
|
||||
return HighestPriority <= priority && priority <= LowestPriority + 1;
|
||||
}
|
||||
|
||||
private:
|
||||
using Entry = typename Member::QueueEntry;
|
||||
|
||||
public:
|
||||
class KPerCoreQueue {
|
||||
private:
|
||||
std::array<Entry, NumCores> root{};
|
||||
|
||||
public:
|
||||
constexpr KPerCoreQueue() {
|
||||
for (auto& per_core_root : root) {
|
||||
per_core_root.Initialize();
|
||||
}
|
||||
}
|
||||
|
||||
constexpr bool PushBack(s32 core, Member* member) {
|
||||
// Get the entry associated with the member.
|
||||
Entry& member_entry = member->GetPriorityQueueEntry(core);
|
||||
|
||||
// Get the entry associated with the end of the queue.
|
||||
Member* tail = this->root[core].GetPrev();
|
||||
Entry& tail_entry =
|
||||
(tail != nullptr) ? tail->GetPriorityQueueEntry(core) : this->root[core];
|
||||
|
||||
// Link the entries.
|
||||
member_entry.SetPrev(tail);
|
||||
member_entry.SetNext(nullptr);
|
||||
tail_entry.SetNext(member);
|
||||
this->root[core].SetPrev(member);
|
||||
|
||||
return tail == nullptr;
|
||||
}
|
||||
|
||||
constexpr bool PushFront(s32 core, Member* member) {
|
||||
// Get the entry associated with the member.
|
||||
Entry& member_entry = member->GetPriorityQueueEntry(core);
|
||||
|
||||
// Get the entry associated with the front of the queue.
|
||||
Member* head = this->root[core].GetNext();
|
||||
Entry& head_entry =
|
||||
(head != nullptr) ? head->GetPriorityQueueEntry(core) : this->root[core];
|
||||
|
||||
// Link the entries.
|
||||
member_entry.SetPrev(nullptr);
|
||||
member_entry.SetNext(head);
|
||||
head_entry.SetPrev(member);
|
||||
this->root[core].SetNext(member);
|
||||
|
||||
return (head == nullptr);
|
||||
}
|
||||
|
||||
constexpr bool Remove(s32 core, Member* member) {
|
||||
// Get the entry associated with the member.
|
||||
Entry& member_entry = member->GetPriorityQueueEntry(core);
|
||||
|
||||
// Get the entries associated with next and prev.
|
||||
Member* prev = member_entry.GetPrev();
|
||||
Member* next = member_entry.GetNext();
|
||||
Entry& prev_entry =
|
||||
(prev != nullptr) ? prev->GetPriorityQueueEntry(core) : this->root[core];
|
||||
Entry& next_entry =
|
||||
(next != nullptr) ? next->GetPriorityQueueEntry(core) : this->root[core];
|
||||
|
||||
// Unlink.
|
||||
prev_entry.SetNext(next);
|
||||
next_entry.SetPrev(prev);
|
||||
|
||||
return (this->GetFront(core) == nullptr);
|
||||
}
|
||||
|
||||
constexpr Member* GetFront(s32 core) const {
|
||||
return this->root[core].GetNext();
|
||||
}
|
||||
};
|
||||
|
||||
class KPriorityQueueImpl {
|
||||
public:
|
||||
constexpr KPriorityQueueImpl() = default;
|
||||
|
||||
constexpr void PushBack(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority > LowestPriority) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (this->queues[priority].PushBack(core, member)) {
|
||||
this->available_priorities[core].SetBit(priority);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void PushFront(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority > LowestPriority) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (this->queues[priority].PushFront(core, member)) {
|
||||
this->available_priorities[core].SetBit(priority);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void Remove(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority > LowestPriority) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (this->queues[priority].Remove(core, member)) {
|
||||
this->available_priorities[core].ClearBit(priority);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr Member* GetFront(s32 core) const {
|
||||
ASSERT(IsValidCore(core));
|
||||
|
||||
const s32 priority =
|
||||
static_cast<s32>(this->available_priorities[core].CountLeadingZero());
|
||||
if (priority <= LowestPriority) {
|
||||
return this->queues[priority].GetFront(core);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr Member* GetFront(s32 priority, s32 core) const {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority <= LowestPriority) {
|
||||
return this->queues[priority].GetFront(core);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr Member* GetNext(s32 core, const Member* member) const {
|
||||
ASSERT(IsValidCore(core));
|
||||
|
||||
Member* next = member->GetPriorityQueueEntry(core).GetNext();
|
||||
if (next == nullptr) {
|
||||
const s32 priority = static_cast<s32>(
|
||||
this->available_priorities[core].GetNextSet(member->GetPriority()));
|
||||
if (priority <= LowestPriority) {
|
||||
next = this->queues[priority].GetFront(core);
|
||||
}
|
||||
}
|
||||
return next;
|
||||
}
|
||||
|
||||
constexpr void MoveToFront(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority <= LowestPriority) {
|
||||
this->queues[priority].Remove(core, member);
|
||||
this->queues[priority].PushFront(core, member);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr Member* MoveToBack(s32 priority, s32 core, Member* member) {
|
||||
ASSERT(IsValidCore(core));
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
if (priority <= LowestPriority) {
|
||||
this->queues[priority].Remove(core, member);
|
||||
this->queues[priority].PushBack(core, member);
|
||||
return this->queues[priority].GetFront(core);
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<KPerCoreQueue, NumPriority> queues{};
|
||||
std::array<Common::BitSet64<NumPriority>, NumCores> available_priorities{};
|
||||
};
|
||||
|
||||
private:
|
||||
KPriorityQueueImpl scheduled_queue;
|
||||
KPriorityQueueImpl suggested_queue;
|
||||
|
||||
private:
|
||||
constexpr void ClearAffinityBit(u64& affinity, s32 core) {
|
||||
affinity &= ~(UINT64_C(1) << core);
|
||||
}
|
||||
|
||||
constexpr s32 GetNextCore(u64& affinity) {
|
||||
const s32 core = std::countr_zero(affinity);
|
||||
ClearAffinityBit(affinity, core);
|
||||
return core;
|
||||
}
|
||||
|
||||
constexpr void PushBack(s32 priority, Member* member) {
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
// Push onto the scheduled queue for its core, if we can.
|
||||
u64 affinity = member->GetAffinityMask().GetAffinityMask();
|
||||
if (const s32 core = member->GetActiveCore(); core >= 0) {
|
||||
this->scheduled_queue.PushBack(priority, core, member);
|
||||
ClearAffinityBit(affinity, core);
|
||||
}
|
||||
|
||||
// And suggest the thread for all other cores.
|
||||
while (affinity) {
|
||||
this->suggested_queue.PushBack(priority, GetNextCore(affinity), member);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void PushFront(s32 priority, Member* member) {
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
// Push onto the scheduled queue for its core, if we can.
|
||||
u64 affinity = member->GetAffinityMask().GetAffinityMask();
|
||||
if (const s32 core = member->GetActiveCore(); core >= 0) {
|
||||
this->scheduled_queue.PushFront(priority, core, member);
|
||||
ClearAffinityBit(affinity, core);
|
||||
}
|
||||
|
||||
// And suggest the thread for all other cores.
|
||||
// Note: Nintendo pushes onto the back of the suggested queue, not the front.
|
||||
while (affinity) {
|
||||
this->suggested_queue.PushBack(priority, GetNextCore(affinity), member);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void Remove(s32 priority, Member* member) {
|
||||
ASSERT(IsValidPriority(priority));
|
||||
|
||||
// Remove from the scheduled queue for its core.
|
||||
u64 affinity = member->GetAffinityMask().GetAffinityMask();
|
||||
if (const s32 core = member->GetActiveCore(); core >= 0) {
|
||||
this->scheduled_queue.Remove(priority, core, member);
|
||||
ClearAffinityBit(affinity, core);
|
||||
}
|
||||
|
||||
// Remove from the suggested queue for all other cores.
|
||||
while (affinity) {
|
||||
this->suggested_queue.Remove(priority, GetNextCore(affinity), member);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
constexpr KPriorityQueue() = default;
|
||||
|
||||
// Getters.
|
||||
constexpr Member* GetScheduledFront(s32 core) const {
|
||||
return this->scheduled_queue.GetFront(core);
|
||||
}
|
||||
|
||||
constexpr Member* GetScheduledFront(s32 core, s32 priority) const {
|
||||
return this->scheduled_queue.GetFront(priority, core);
|
||||
}
|
||||
|
||||
constexpr Member* GetSuggestedFront(s32 core) const {
|
||||
return this->suggested_queue.GetFront(core);
|
||||
}
|
||||
|
||||
constexpr Member* GetSuggestedFront(s32 core, s32 priority) const {
|
||||
return this->suggested_queue.GetFront(priority, core);
|
||||
}
|
||||
|
||||
constexpr Member* GetScheduledNext(s32 core, const Member* member) const {
|
||||
return this->scheduled_queue.GetNext(core, member);
|
||||
}
|
||||
|
||||
constexpr Member* GetSuggestedNext(s32 core, const Member* member) const {
|
||||
return this->suggested_queue.GetNext(core, member);
|
||||
}
|
||||
|
||||
constexpr Member* GetSamePriorityNext(s32 core, const Member* member) const {
|
||||
return member->GetPriorityQueueEntry(core).GetNext();
|
||||
}
|
||||
|
||||
// Mutators.
|
||||
constexpr void PushBack(Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
this->PushBack(member->GetPriority(), member);
|
||||
}
|
||||
|
||||
constexpr void Remove(Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
this->Remove(member->GetPriority(), member);
|
||||
}
|
||||
|
||||
constexpr void MoveToScheduledFront(Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
this->scheduled_queue.MoveToFront(member->GetPriority(), member->GetActiveCore(), member);
|
||||
}
|
||||
|
||||
constexpr KThread* MoveToScheduledBack(Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return {};
|
||||
}
|
||||
|
||||
return this->scheduled_queue.MoveToBack(member->GetPriority(), member->GetActiveCore(),
|
||||
member);
|
||||
}
|
||||
|
||||
// First class fancy operations.
|
||||
constexpr void ChangePriority(s32 prev_priority, bool is_running, Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT(IsValidPriority(prev_priority));
|
||||
|
||||
// Remove the member from the queues.
|
||||
const s32 new_priority = member->GetPriority();
|
||||
this->Remove(prev_priority, member);
|
||||
|
||||
// And enqueue. If the member is running, we want to keep it running.
|
||||
if (is_running) {
|
||||
this->PushFront(new_priority, member);
|
||||
} else {
|
||||
this->PushBack(new_priority, member);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void ChangeAffinityMask(s32 prev_core, const AffinityMaskType& prev_affinity,
|
||||
Member* member) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Get the new information.
|
||||
const s32 priority = member->GetPriority();
|
||||
const AffinityMaskType& new_affinity = member->GetAffinityMask();
|
||||
const s32 new_core = member->GetActiveCore();
|
||||
|
||||
// Remove the member from all queues it was in before.
|
||||
for (s32 core = 0; core < static_cast<s32>(NumCores); core++) {
|
||||
if (prev_affinity.GetAffinity(core)) {
|
||||
if (core == prev_core) {
|
||||
this->scheduled_queue.Remove(priority, core, member);
|
||||
} else {
|
||||
this->suggested_queue.Remove(priority, core, member);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// And add the member to all queues it should be in now.
|
||||
for (s32 core = 0; core < static_cast<s32>(NumCores); core++) {
|
||||
if (new_affinity.GetAffinity(core)) {
|
||||
if (core == new_core) {
|
||||
this->scheduled_queue.PushBack(priority, core, member);
|
||||
} else {
|
||||
this->suggested_queue.PushBack(priority, core, member);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void ChangeCore(s32 prev_core, Member* member, bool to_front = false) {
|
||||
// This is for host (dummy) threads that we do not want to enter the priority queue.
|
||||
if (member->IsDummyThread()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Get the new information.
|
||||
const s32 new_core = member->GetActiveCore();
|
||||
const s32 priority = member->GetPriority();
|
||||
|
||||
// We don't need to do anything if the core is the same.
|
||||
if (prev_core != new_core) {
|
||||
// Remove from the scheduled queue for the previous core.
|
||||
if (prev_core >= 0) {
|
||||
this->scheduled_queue.Remove(priority, prev_core, member);
|
||||
}
|
||||
|
||||
// Remove from the suggested queue and add to the scheduled queue for the new core.
|
||||
if (new_core >= 0) {
|
||||
this->suggested_queue.Remove(priority, new_core, member);
|
||||
if (to_front) {
|
||||
this->scheduled_queue.PushFront(priority, new_core, member);
|
||||
} else {
|
||||
this->scheduled_queue.PushBack(priority, new_core, member);
|
||||
}
|
||||
}
|
||||
|
||||
// Add to the suggested queue for the previous core.
|
||||
if (prev_core >= 0) {
|
||||
this->suggested_queue.PushBack(priority, prev_core, member);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,71 +1,71 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_readable_event.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KReadableEvent::KReadableEvent(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
|
||||
|
||||
KReadableEvent::~KReadableEvent() = default;
|
||||
|
||||
void KReadableEvent::Initialize(KEvent* parent) {
|
||||
m_is_signaled = false;
|
||||
m_parent = parent;
|
||||
|
||||
if (m_parent != nullptr) {
|
||||
m_parent->Open();
|
||||
}
|
||||
}
|
||||
|
||||
bool KReadableEvent::IsSignaled() const {
|
||||
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
|
||||
|
||||
return m_is_signaled;
|
||||
}
|
||||
|
||||
void KReadableEvent::Destroy() {
|
||||
if (m_parent) {
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
m_parent->OnReadableEventDestroyed();
|
||||
}
|
||||
m_parent->Close();
|
||||
}
|
||||
}
|
||||
|
||||
Result KReadableEvent::Signal() {
|
||||
KScopedSchedulerLock lk{kernel};
|
||||
|
||||
if (!m_is_signaled) {
|
||||
m_is_signaled = true;
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KReadableEvent::Clear() {
|
||||
this->Reset();
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KReadableEvent::Reset() {
|
||||
KScopedSchedulerLock lk{kernel};
|
||||
|
||||
if (!m_is_signaled) {
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
m_is_signaled = false;
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_readable_event.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KReadableEvent::KReadableEvent(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
|
||||
|
||||
KReadableEvent::~KReadableEvent() = default;
|
||||
|
||||
void KReadableEvent::Initialize(KEvent* parent) {
|
||||
m_is_signaled = false;
|
||||
m_parent = parent;
|
||||
|
||||
if (m_parent != nullptr) {
|
||||
m_parent->Open();
|
||||
}
|
||||
}
|
||||
|
||||
bool KReadableEvent::IsSignaled() const {
|
||||
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
|
||||
|
||||
return m_is_signaled;
|
||||
}
|
||||
|
||||
void KReadableEvent::Destroy() {
|
||||
if (m_parent) {
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
m_parent->OnReadableEventDestroyed();
|
||||
}
|
||||
m_parent->Close();
|
||||
}
|
||||
}
|
||||
|
||||
Result KReadableEvent::Signal() {
|
||||
KScopedSchedulerLock lk{kernel};
|
||||
|
||||
if (!m_is_signaled) {
|
||||
m_is_signaled = true;
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KReadableEvent::Clear() {
|
||||
this->Reset();
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KReadableEvent::Reset() {
|
||||
KScopedSchedulerLock lk{kernel};
|
||||
|
||||
if (!m_is_signaled) {
|
||||
return ResultInvalidState;
|
||||
}
|
||||
|
||||
m_is_signaled = false;
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,42 +1,42 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KEvent;
|
||||
|
||||
class KReadableEvent : public KSynchronizationObject {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KReadableEvent, KSynchronizationObject);
|
||||
|
||||
public:
|
||||
explicit KReadableEvent(KernelCore& kernel_);
|
||||
~KReadableEvent() override;
|
||||
|
||||
void Initialize(KEvent* parent);
|
||||
|
||||
KEvent* GetParent() const {
|
||||
return m_parent;
|
||||
}
|
||||
|
||||
Result Signal();
|
||||
Result Clear();
|
||||
|
||||
bool IsSignaled() const override;
|
||||
void Destroy() override;
|
||||
|
||||
Result Reset();
|
||||
|
||||
private:
|
||||
bool m_is_signaled{};
|
||||
KEvent* m_parent{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KEvent;
|
||||
|
||||
class KReadableEvent : public KSynchronizationObject {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KReadableEvent, KSynchronizationObject);
|
||||
|
||||
public:
|
||||
explicit KReadableEvent(KernelCore& kernel_);
|
||||
~KReadableEvent() override;
|
||||
|
||||
void Initialize(KEvent* parent);
|
||||
|
||||
KEvent* GetParent() const {
|
||||
return m_parent;
|
||||
}
|
||||
|
||||
Result Signal();
|
||||
Result Clear();
|
||||
|
||||
bool IsSignaled() const override;
|
||||
void Destroy() override;
|
||||
|
||||
Result Reset();
|
||||
|
||||
private:
|
||||
bool m_is_signaled{};
|
||||
KEvent* m_parent{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,172 +1,172 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/core.h"
|
||||
#include "core/core_timing.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
constexpr s64 DefaultTimeout = 10000000000; // 10 seconds
|
||||
|
||||
KResourceLimit::KResourceLimit(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, lock{kernel_}, cond_var{kernel_} {}
|
||||
KResourceLimit::~KResourceLimit() = default;
|
||||
|
||||
void KResourceLimit::Initialize(const Core::Timing::CoreTiming* core_timing_) {
|
||||
core_timing = core_timing_;
|
||||
}
|
||||
|
||||
void KResourceLimit::Finalize() {}
|
||||
|
||||
s64 KResourceLimit::GetLimitValue(LimitableResource which) const {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
s64 value{};
|
||||
{
|
||||
KScopedLightLock lk{lock};
|
||||
value = limit_values[index];
|
||||
ASSERT(value >= 0);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
s64 KResourceLimit::GetCurrentValue(LimitableResource which) const {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
s64 value{};
|
||||
{
|
||||
KScopedLightLock lk{lock};
|
||||
value = current_values[index];
|
||||
ASSERT(value >= 0);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
s64 KResourceLimit::GetPeakValue(LimitableResource which) const {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
s64 value{};
|
||||
{
|
||||
KScopedLightLock lk{lock};
|
||||
value = peak_values[index];
|
||||
ASSERT(value >= 0);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
s64 KResourceLimit::GetFreeValue(LimitableResource which) const {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
s64 value{};
|
||||
{
|
||||
KScopedLightLock lk(lock);
|
||||
ASSERT(current_values[index] >= 0);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
value = limit_values[index] - current_values[index];
|
||||
}
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
Result KResourceLimit::SetLimitValue(LimitableResource which, s64 value) {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
KScopedLightLock lk(lock);
|
||||
R_UNLESS(current_values[index] <= value, ResultInvalidState);
|
||||
|
||||
limit_values[index] = value;
|
||||
peak_values[index] = current_values[index];
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
bool KResourceLimit::Reserve(LimitableResource which, s64 value) {
|
||||
return Reserve(which, value, core_timing->GetGlobalTimeNs().count() + DefaultTimeout);
|
||||
}
|
||||
|
||||
bool KResourceLimit::Reserve(LimitableResource which, s64 value, s64 timeout) {
|
||||
ASSERT(value >= 0);
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
KScopedLightLock lk(lock);
|
||||
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
if (current_hints[index] >= limit_values[index]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Loop until we reserve or run out of time.
|
||||
while (true) {
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
|
||||
// If we would overflow, don't allow to succeed.
|
||||
if (current_values[index] + value <= current_values[index]) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (current_values[index] + value <= limit_values[index]) {
|
||||
current_values[index] += value;
|
||||
current_hints[index] += value;
|
||||
peak_values[index] = std::max(peak_values[index], current_values[index]);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (current_hints[index] + value <= limit_values[index] &&
|
||||
(timeout < 0 || core_timing->GetGlobalTimeNs().count() < timeout)) {
|
||||
waiter_count++;
|
||||
cond_var.Wait(&lock, timeout, false);
|
||||
waiter_count--;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void KResourceLimit::Release(LimitableResource which, s64 value) {
|
||||
Release(which, value, value);
|
||||
}
|
||||
|
||||
void KResourceLimit::Release(LimitableResource which, s64 value, s64 hint) {
|
||||
ASSERT(value >= 0);
|
||||
ASSERT(hint >= 0);
|
||||
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
KScopedLightLock lk(lock);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
ASSERT(value <= current_values[index]);
|
||||
ASSERT(hint <= current_hints[index]);
|
||||
|
||||
current_values[index] -= value;
|
||||
current_hints[index] -= hint;
|
||||
|
||||
if (waiter_count != 0) {
|
||||
cond_var.Broadcast();
|
||||
}
|
||||
}
|
||||
|
||||
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size) {
|
||||
auto* resource_limit = KResourceLimit::Create(system.Kernel());
|
||||
resource_limit->Initialize(&system.CoreTiming());
|
||||
|
||||
// Initialize default resource limit values.
|
||||
// TODO(bunnei): These values are the system defaults, the limits for service processes are
|
||||
// lower. These should use the correct limit values.
|
||||
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::PhysicalMemory, physical_memory_size)
|
||||
.IsSuccess());
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::Threads, 800).IsSuccess());
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::Events, 900).IsSuccess());
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::TransferMemory, 200).IsSuccess());
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::Sessions, 1133).IsSuccess());
|
||||
|
||||
return resource_limit;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/core.h"
|
||||
#include "core/core_timing.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
constexpr s64 DefaultTimeout = 10000000000; // 10 seconds
|
||||
|
||||
KResourceLimit::KResourceLimit(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, lock{kernel_}, cond_var{kernel_} {}
|
||||
KResourceLimit::~KResourceLimit() = default;
|
||||
|
||||
void KResourceLimit::Initialize(const Core::Timing::CoreTiming* core_timing_) {
|
||||
core_timing = core_timing_;
|
||||
}
|
||||
|
||||
void KResourceLimit::Finalize() {}
|
||||
|
||||
s64 KResourceLimit::GetLimitValue(LimitableResource which) const {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
s64 value{};
|
||||
{
|
||||
KScopedLightLock lk{lock};
|
||||
value = limit_values[index];
|
||||
ASSERT(value >= 0);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
s64 KResourceLimit::GetCurrentValue(LimitableResource which) const {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
s64 value{};
|
||||
{
|
||||
KScopedLightLock lk{lock};
|
||||
value = current_values[index];
|
||||
ASSERT(value >= 0);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
s64 KResourceLimit::GetPeakValue(LimitableResource which) const {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
s64 value{};
|
||||
{
|
||||
KScopedLightLock lk{lock};
|
||||
value = peak_values[index];
|
||||
ASSERT(value >= 0);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
s64 KResourceLimit::GetFreeValue(LimitableResource which) const {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
s64 value{};
|
||||
{
|
||||
KScopedLightLock lk(lock);
|
||||
ASSERT(current_values[index] >= 0);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
value = limit_values[index] - current_values[index];
|
||||
}
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
Result KResourceLimit::SetLimitValue(LimitableResource which, s64 value) {
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
KScopedLightLock lk(lock);
|
||||
R_UNLESS(current_values[index] <= value, ResultInvalidState);
|
||||
|
||||
limit_values[index] = value;
|
||||
peak_values[index] = current_values[index];
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
bool KResourceLimit::Reserve(LimitableResource which, s64 value) {
|
||||
return Reserve(which, value, core_timing->GetGlobalTimeNs().count() + DefaultTimeout);
|
||||
}
|
||||
|
||||
bool KResourceLimit::Reserve(LimitableResource which, s64 value, s64 timeout) {
|
||||
ASSERT(value >= 0);
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
KScopedLightLock lk(lock);
|
||||
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
if (current_hints[index] >= limit_values[index]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Loop until we reserve or run out of time.
|
||||
while (true) {
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
|
||||
// If we would overflow, don't allow to succeed.
|
||||
if (current_values[index] + value <= current_values[index]) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (current_values[index] + value <= limit_values[index]) {
|
||||
current_values[index] += value;
|
||||
current_hints[index] += value;
|
||||
peak_values[index] = std::max(peak_values[index], current_values[index]);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (current_hints[index] + value <= limit_values[index] &&
|
||||
(timeout < 0 || core_timing->GetGlobalTimeNs().count() < timeout)) {
|
||||
waiter_count++;
|
||||
cond_var.Wait(&lock, timeout, false);
|
||||
waiter_count--;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void KResourceLimit::Release(LimitableResource which, s64 value) {
|
||||
Release(which, value, value);
|
||||
}
|
||||
|
||||
void KResourceLimit::Release(LimitableResource which, s64 value, s64 hint) {
|
||||
ASSERT(value >= 0);
|
||||
ASSERT(hint >= 0);
|
||||
|
||||
const auto index = static_cast<std::size_t>(which);
|
||||
KScopedLightLock lk(lock);
|
||||
ASSERT(current_values[index] <= limit_values[index]);
|
||||
ASSERT(current_hints[index] <= current_values[index]);
|
||||
ASSERT(value <= current_values[index]);
|
||||
ASSERT(hint <= current_hints[index]);
|
||||
|
||||
current_values[index] -= value;
|
||||
current_hints[index] -= hint;
|
||||
|
||||
if (waiter_count != 0) {
|
||||
cond_var.Broadcast();
|
||||
}
|
||||
}
|
||||
|
||||
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size) {
|
||||
auto* resource_limit = KResourceLimit::Create(system.Kernel());
|
||||
resource_limit->Initialize(&system.CoreTiming());
|
||||
|
||||
// Initialize default resource limit values.
|
||||
// TODO(bunnei): These values are the system defaults, the limits for service processes are
|
||||
// lower. These should use the correct limit values.
|
||||
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::PhysicalMemory, physical_memory_size)
|
||||
.IsSuccess());
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::Threads, 800).IsSuccess());
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::Events, 900).IsSuccess());
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::TransferMemory, 200).IsSuccess());
|
||||
ASSERT(resource_limit->SetLimitValue(LimitableResource::Sessions, 1133).IsSuccess());
|
||||
|
||||
return resource_limit;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,72 +1,72 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_light_condition_variable.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
|
||||
union Result;
|
||||
|
||||
namespace Core::Timing {
|
||||
class CoreTiming;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
class KernelCore;
|
||||
enum class LimitableResource : u32 {
|
||||
PhysicalMemory = 0,
|
||||
Threads = 1,
|
||||
Events = 2,
|
||||
TransferMemory = 3,
|
||||
Sessions = 4,
|
||||
|
||||
Count,
|
||||
};
|
||||
|
||||
constexpr bool IsValidResourceType(LimitableResource type) {
|
||||
return type < LimitableResource::Count;
|
||||
}
|
||||
|
||||
class KResourceLimit final
|
||||
: public KAutoObjectWithSlabHeapAndContainer<KResourceLimit, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KResourceLimit, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KResourceLimit(KernelCore& kernel_);
|
||||
~KResourceLimit() override;
|
||||
|
||||
void Initialize(const Core::Timing::CoreTiming* core_timing_);
|
||||
void Finalize() override;
|
||||
|
||||
s64 GetLimitValue(LimitableResource which) const;
|
||||
s64 GetCurrentValue(LimitableResource which) const;
|
||||
s64 GetPeakValue(LimitableResource which) const;
|
||||
s64 GetFreeValue(LimitableResource which) const;
|
||||
|
||||
Result SetLimitValue(LimitableResource which, s64 value);
|
||||
|
||||
bool Reserve(LimitableResource which, s64 value);
|
||||
bool Reserve(LimitableResource which, s64 value, s64 timeout);
|
||||
void Release(LimitableResource which, s64 value);
|
||||
void Release(LimitableResource which, s64 value, s64 hint);
|
||||
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
private:
|
||||
using ResourceArray = std::array<s64, static_cast<std::size_t>(LimitableResource::Count)>;
|
||||
ResourceArray limit_values{};
|
||||
ResourceArray current_values{};
|
||||
ResourceArray current_hints{};
|
||||
ResourceArray peak_values{};
|
||||
mutable KLightLock lock;
|
||||
s32 waiter_count{};
|
||||
KLightConditionVariable cond_var;
|
||||
const Core::Timing::CoreTiming* core_timing{};
|
||||
};
|
||||
|
||||
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size);
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_light_condition_variable.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
|
||||
union Result;
|
||||
|
||||
namespace Core::Timing {
|
||||
class CoreTiming;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
class KernelCore;
|
||||
enum class LimitableResource : u32 {
|
||||
PhysicalMemory = 0,
|
||||
Threads = 1,
|
||||
Events = 2,
|
||||
TransferMemory = 3,
|
||||
Sessions = 4,
|
||||
|
||||
Count,
|
||||
};
|
||||
|
||||
constexpr bool IsValidResourceType(LimitableResource type) {
|
||||
return type < LimitableResource::Count;
|
||||
}
|
||||
|
||||
class KResourceLimit final
|
||||
: public KAutoObjectWithSlabHeapAndContainer<KResourceLimit, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KResourceLimit, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KResourceLimit(KernelCore& kernel_);
|
||||
~KResourceLimit() override;
|
||||
|
||||
void Initialize(const Core::Timing::CoreTiming* core_timing_);
|
||||
void Finalize() override;
|
||||
|
||||
s64 GetLimitValue(LimitableResource which) const;
|
||||
s64 GetCurrentValue(LimitableResource which) const;
|
||||
s64 GetPeakValue(LimitableResource which) const;
|
||||
s64 GetFreeValue(LimitableResource which) const;
|
||||
|
||||
Result SetLimitValue(LimitableResource which, s64 value);
|
||||
|
||||
bool Reserve(LimitableResource which, s64 value);
|
||||
bool Reserve(LimitableResource which, s64 value, s64 timeout);
|
||||
void Release(LimitableResource which, s64 value);
|
||||
void Release(LimitableResource which, s64 value, s64 hint);
|
||||
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
private:
|
||||
using ResourceArray = std::array<s64, static_cast<std::size_t>(LimitableResource::Count)>;
|
||||
ResourceArray limit_values{};
|
||||
ResourceArray current_values{};
|
||||
ResourceArray current_hints{};
|
||||
ResourceArray peak_values{};
|
||||
mutable KLightLock lock;
|
||||
s32 waiter_count{};
|
||||
KLightConditionVariable cond_var;
|
||||
const Core::Timing::CoreTiming* core_timing{};
|
||||
};
|
||||
|
||||
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size);
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,173 +1,173 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/global_scheduler_context.h"
|
||||
#include "core/hle/kernel/k_priority_queue.h"
|
||||
#include "core/hle/kernel/k_scheduler_lock.h"
|
||||
#include "core/hle/kernel/k_scoped_lock.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
|
||||
namespace Common {
|
||||
class Fiber;
|
||||
}
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KInterruptTaskManager;
|
||||
class KProcess;
|
||||
class KThread;
|
||||
class KScopedDisableDispatch;
|
||||
class KScopedSchedulerLock;
|
||||
class KScopedSchedulerLockAndSleep;
|
||||
|
||||
class KScheduler final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KScheduler);
|
||||
YUZU_NON_MOVEABLE(KScheduler);
|
||||
|
||||
using LockType = KAbstractSchedulerLock<KScheduler>;
|
||||
|
||||
explicit KScheduler(KernelCore& kernel);
|
||||
~KScheduler();
|
||||
|
||||
void Initialize(KThread* main_thread, KThread* idle_thread, s32 core_id);
|
||||
void Activate();
|
||||
void OnThreadStart();
|
||||
void Unload(KThread* thread);
|
||||
void Reload(KThread* thread);
|
||||
|
||||
void SetInterruptTaskRunnable();
|
||||
void RequestScheduleOnInterrupt();
|
||||
void PreemptSingleCore();
|
||||
|
||||
u64 GetIdleCount() {
|
||||
return m_state.idle_count;
|
||||
}
|
||||
|
||||
KThread* GetIdleThread() const {
|
||||
return m_idle_thread;
|
||||
}
|
||||
|
||||
bool IsIdle() const {
|
||||
return m_current_thread.load() == m_idle_thread;
|
||||
}
|
||||
|
||||
KThread* GetPreviousThread() const {
|
||||
return m_state.prev_thread;
|
||||
}
|
||||
|
||||
KThread* GetSchedulerCurrentThread() const {
|
||||
return m_current_thread.load();
|
||||
}
|
||||
|
||||
s64 GetLastContextSwitchTime() const {
|
||||
return m_last_context_switch_time;
|
||||
}
|
||||
|
||||
// Static public API.
|
||||
static bool CanSchedule(KernelCore& kernel) {
|
||||
return GetCurrentThread(kernel).GetDisableDispatchCount() == 0;
|
||||
}
|
||||
static bool IsSchedulerLockedByCurrentThread(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().scheduler_lock.IsLockedByCurrentThread();
|
||||
}
|
||||
|
||||
static bool IsSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().scheduler_update_needed;
|
||||
}
|
||||
static void SetSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
kernel.GlobalSchedulerContext().scheduler_update_needed = true;
|
||||
}
|
||||
static void ClearSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
kernel.GlobalSchedulerContext().scheduler_update_needed = false;
|
||||
}
|
||||
|
||||
static void DisableScheduling(KernelCore& kernel);
|
||||
static void EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling);
|
||||
|
||||
static u64 UpdateHighestPriorityThreads(KernelCore& kernel);
|
||||
|
||||
static void ClearPreviousThread(KernelCore& kernel, KThread* thread);
|
||||
|
||||
static void OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state);
|
||||
static void OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority);
|
||||
static void OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
|
||||
const KAffinityMask& old_affinity, s32 old_core);
|
||||
|
||||
static void RotateScheduledQueue(KernelCore& kernel, s32 core_id, s32 priority);
|
||||
static void RescheduleCores(KernelCore& kernel, u64 cores_needing_scheduling);
|
||||
|
||||
static void YieldWithoutCoreMigration(KernelCore& kernel);
|
||||
static void YieldWithCoreMigration(KernelCore& kernel);
|
||||
static void YieldToAnyThread(KernelCore& kernel);
|
||||
|
||||
private:
|
||||
// Static private API.
|
||||
static KSchedulerPriorityQueue& GetPriorityQueue(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().priority_queue;
|
||||
}
|
||||
static u64 UpdateHighestPriorityThreadsImpl(KernelCore& kernel);
|
||||
|
||||
static void RescheduleCurrentHLEThread(KernelCore& kernel);
|
||||
|
||||
// Instanced private API.
|
||||
void ScheduleImpl();
|
||||
void ScheduleImplFiber();
|
||||
void SwitchThread(KThread* next_thread);
|
||||
|
||||
void Schedule();
|
||||
void ScheduleOnInterrupt();
|
||||
|
||||
void RescheduleOtherCores(u64 cores_needing_scheduling);
|
||||
void RescheduleCurrentCore();
|
||||
void RescheduleCurrentCoreImpl();
|
||||
|
||||
u64 UpdateHighestPriorityThread(KThread* thread);
|
||||
|
||||
private:
|
||||
friend class KScopedDisableDispatch;
|
||||
|
||||
struct SchedulingState {
|
||||
std::atomic<bool> needs_scheduling{false};
|
||||
bool interrupt_task_runnable{false};
|
||||
bool should_count_idle{false};
|
||||
u64 idle_count{0};
|
||||
KThread* highest_priority_thread{nullptr};
|
||||
void* idle_thread_stack{nullptr};
|
||||
std::atomic<KThread*> prev_thread{nullptr};
|
||||
KInterruptTaskManager* interrupt_task_manager{nullptr};
|
||||
};
|
||||
|
||||
KernelCore& kernel;
|
||||
SchedulingState m_state;
|
||||
bool m_is_active{false};
|
||||
s32 m_core_id{0};
|
||||
s64 m_last_context_switch_time{0};
|
||||
KThread* m_idle_thread{nullptr};
|
||||
std::atomic<KThread*> m_current_thread{nullptr};
|
||||
|
||||
std::shared_ptr<Common::Fiber> m_switch_fiber{};
|
||||
KThread* m_switch_cur_thread{};
|
||||
KThread* m_switch_highest_priority_thread{};
|
||||
bool m_switch_from_schedule{};
|
||||
};
|
||||
|
||||
class KScopedSchedulerLock : public KScopedLock<KScheduler::LockType> {
|
||||
public:
|
||||
explicit KScopedSchedulerLock(KernelCore& kernel)
|
||||
: KScopedLock(kernel.GlobalSchedulerContext().scheduler_lock) {}
|
||||
~KScopedSchedulerLock() = default;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/global_scheduler_context.h"
|
||||
#include "core/hle/kernel/k_priority_queue.h"
|
||||
#include "core/hle/kernel/k_scheduler_lock.h"
|
||||
#include "core/hle/kernel/k_scoped_lock.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
|
||||
namespace Common {
|
||||
class Fiber;
|
||||
}
|
||||
|
||||
namespace Core {
|
||||
class System;
|
||||
}
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KInterruptTaskManager;
|
||||
class KProcess;
|
||||
class KThread;
|
||||
class KScopedDisableDispatch;
|
||||
class KScopedSchedulerLock;
|
||||
class KScopedSchedulerLockAndSleep;
|
||||
|
||||
class KScheduler final {
|
||||
public:
|
||||
YUZU_NON_COPYABLE(KScheduler);
|
||||
YUZU_NON_MOVEABLE(KScheduler);
|
||||
|
||||
using LockType = KAbstractSchedulerLock<KScheduler>;
|
||||
|
||||
explicit KScheduler(KernelCore& kernel);
|
||||
~KScheduler();
|
||||
|
||||
void Initialize(KThread* main_thread, KThread* idle_thread, s32 core_id);
|
||||
void Activate();
|
||||
void OnThreadStart();
|
||||
void Unload(KThread* thread);
|
||||
void Reload(KThread* thread);
|
||||
|
||||
void SetInterruptTaskRunnable();
|
||||
void RequestScheduleOnInterrupt();
|
||||
void PreemptSingleCore();
|
||||
|
||||
u64 GetIdleCount() {
|
||||
return m_state.idle_count;
|
||||
}
|
||||
|
||||
KThread* GetIdleThread() const {
|
||||
return m_idle_thread;
|
||||
}
|
||||
|
||||
bool IsIdle() const {
|
||||
return m_current_thread.load() == m_idle_thread;
|
||||
}
|
||||
|
||||
KThread* GetPreviousThread() const {
|
||||
return m_state.prev_thread;
|
||||
}
|
||||
|
||||
KThread* GetSchedulerCurrentThread() const {
|
||||
return m_current_thread.load();
|
||||
}
|
||||
|
||||
s64 GetLastContextSwitchTime() const {
|
||||
return m_last_context_switch_time;
|
||||
}
|
||||
|
||||
// Static public API.
|
||||
static bool CanSchedule(KernelCore& kernel) {
|
||||
return GetCurrentThread(kernel).GetDisableDispatchCount() == 0;
|
||||
}
|
||||
static bool IsSchedulerLockedByCurrentThread(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().scheduler_lock.IsLockedByCurrentThread();
|
||||
}
|
||||
|
||||
static bool IsSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().scheduler_update_needed;
|
||||
}
|
||||
static void SetSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
kernel.GlobalSchedulerContext().scheduler_update_needed = true;
|
||||
}
|
||||
static void ClearSchedulerUpdateNeeded(KernelCore& kernel) {
|
||||
kernel.GlobalSchedulerContext().scheduler_update_needed = false;
|
||||
}
|
||||
|
||||
static void DisableScheduling(KernelCore& kernel);
|
||||
static void EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling);
|
||||
|
||||
static u64 UpdateHighestPriorityThreads(KernelCore& kernel);
|
||||
|
||||
static void ClearPreviousThread(KernelCore& kernel, KThread* thread);
|
||||
|
||||
static void OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state);
|
||||
static void OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority);
|
||||
static void OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
|
||||
const KAffinityMask& old_affinity, s32 old_core);
|
||||
|
||||
static void RotateScheduledQueue(KernelCore& kernel, s32 core_id, s32 priority);
|
||||
static void RescheduleCores(KernelCore& kernel, u64 cores_needing_scheduling);
|
||||
|
||||
static void YieldWithoutCoreMigration(KernelCore& kernel);
|
||||
static void YieldWithCoreMigration(KernelCore& kernel);
|
||||
static void YieldToAnyThread(KernelCore& kernel);
|
||||
|
||||
private:
|
||||
// Static private API.
|
||||
static KSchedulerPriorityQueue& GetPriorityQueue(KernelCore& kernel) {
|
||||
return kernel.GlobalSchedulerContext().priority_queue;
|
||||
}
|
||||
static u64 UpdateHighestPriorityThreadsImpl(KernelCore& kernel);
|
||||
|
||||
static void RescheduleCurrentHLEThread(KernelCore& kernel);
|
||||
|
||||
// Instanced private API.
|
||||
void ScheduleImpl();
|
||||
void ScheduleImplFiber();
|
||||
void SwitchThread(KThread* next_thread);
|
||||
|
||||
void Schedule();
|
||||
void ScheduleOnInterrupt();
|
||||
|
||||
void RescheduleOtherCores(u64 cores_needing_scheduling);
|
||||
void RescheduleCurrentCore();
|
||||
void RescheduleCurrentCoreImpl();
|
||||
|
||||
u64 UpdateHighestPriorityThread(KThread* thread);
|
||||
|
||||
private:
|
||||
friend class KScopedDisableDispatch;
|
||||
|
||||
struct SchedulingState {
|
||||
std::atomic<bool> needs_scheduling{false};
|
||||
bool interrupt_task_runnable{false};
|
||||
bool should_count_idle{false};
|
||||
u64 idle_count{0};
|
||||
KThread* highest_priority_thread{nullptr};
|
||||
void* idle_thread_stack{nullptr};
|
||||
std::atomic<KThread*> prev_thread{nullptr};
|
||||
KInterruptTaskManager* interrupt_task_manager{nullptr};
|
||||
};
|
||||
|
||||
KernelCore& kernel;
|
||||
SchedulingState m_state;
|
||||
bool m_is_active{false};
|
||||
s32 m_core_id{0};
|
||||
s64 m_last_context_switch_time{0};
|
||||
KThread* m_idle_thread{nullptr};
|
||||
std::atomic<KThread*> m_current_thread{nullptr};
|
||||
|
||||
std::shared_ptr<Common::Fiber> m_switch_fiber{};
|
||||
KThread* m_switch_cur_thread{};
|
||||
KThread* m_switch_highest_priority_thread{};
|
||||
bool m_switch_from_schedule{};
|
||||
};
|
||||
|
||||
class KScopedSchedulerLock : public KScopedLock<KScheduler::LockType> {
|
||||
public:
|
||||
explicit KScopedSchedulerLock(KernelCore& kernel)
|
||||
: KScopedLock(kernel.GlobalSchedulerContext().scheduler_lock) {}
|
||||
~KScopedSchedulerLock() = default;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,83 +1,83 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include "common/assert.h"
|
||||
#include "core/hle/kernel/k_interrupt_manager.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/physical_core.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
template <typename SchedulerType>
|
||||
class KAbstractSchedulerLock {
|
||||
public:
|
||||
explicit KAbstractSchedulerLock(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
|
||||
bool IsLockedByCurrentThread() const {
|
||||
return owner_thread == GetCurrentThreadPointer(kernel);
|
||||
}
|
||||
|
||||
void Lock() {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (IsLockedByCurrentThread()) {
|
||||
// If we already own the lock, we can just increment the count.
|
||||
ASSERT(lock_count > 0);
|
||||
lock_count++;
|
||||
} else {
|
||||
// Otherwise, we want to disable scheduling and acquire the spinlock.
|
||||
SchedulerType::DisableScheduling(kernel);
|
||||
spin_lock.Lock();
|
||||
|
||||
// For debug, ensure that our state is valid.
|
||||
ASSERT(lock_count == 0);
|
||||
ASSERT(owner_thread == nullptr);
|
||||
|
||||
// Increment count, take ownership.
|
||||
lock_count = 1;
|
||||
owner_thread = GetCurrentThreadPointer(kernel);
|
||||
}
|
||||
}
|
||||
|
||||
void Unlock() {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT(IsLockedByCurrentThread());
|
||||
ASSERT(lock_count > 0);
|
||||
|
||||
// Release an instance of the lock.
|
||||
if ((--lock_count) == 0) {
|
||||
// We're no longer going to hold the lock. Take note of what cores need scheduling.
|
||||
const u64 cores_needing_scheduling =
|
||||
SchedulerType::UpdateHighestPriorityThreads(kernel);
|
||||
|
||||
// Note that we no longer hold the lock, and unlock the spinlock.
|
||||
owner_thread = nullptr;
|
||||
spin_lock.Unlock();
|
||||
|
||||
// Enable scheduling, and perform a rescheduling operation.
|
||||
SchedulerType::EnableScheduling(kernel, cores_needing_scheduling);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
KAlignedSpinLock spin_lock{};
|
||||
s32 lock_count{};
|
||||
std::atomic<KThread*> owner_thread{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include "common/assert.h"
|
||||
#include "core/hle/kernel/k_interrupt_manager.h"
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/physical_core.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
template <typename SchedulerType>
|
||||
class KAbstractSchedulerLock {
|
||||
public:
|
||||
explicit KAbstractSchedulerLock(KernelCore& kernel_) : kernel{kernel_} {}
|
||||
|
||||
bool IsLockedByCurrentThread() const {
|
||||
return owner_thread == GetCurrentThreadPointer(kernel);
|
||||
}
|
||||
|
||||
void Lock() {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (IsLockedByCurrentThread()) {
|
||||
// If we already own the lock, we can just increment the count.
|
||||
ASSERT(lock_count > 0);
|
||||
lock_count++;
|
||||
} else {
|
||||
// Otherwise, we want to disable scheduling and acquire the spinlock.
|
||||
SchedulerType::DisableScheduling(kernel);
|
||||
spin_lock.Lock();
|
||||
|
||||
// For debug, ensure that our state is valid.
|
||||
ASSERT(lock_count == 0);
|
||||
ASSERT(owner_thread == nullptr);
|
||||
|
||||
// Increment count, take ownership.
|
||||
lock_count = 1;
|
||||
owner_thread = GetCurrentThreadPointer(kernel);
|
||||
}
|
||||
}
|
||||
|
||||
void Unlock() {
|
||||
// If we are shutting down the kernel, none of this is relevant anymore.
|
||||
if (kernel.IsShuttingDown()) {
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT(IsLockedByCurrentThread());
|
||||
ASSERT(lock_count > 0);
|
||||
|
||||
// Release an instance of the lock.
|
||||
if ((--lock_count) == 0) {
|
||||
// We're no longer going to hold the lock. Take note of what cores need scheduling.
|
||||
const u64 cores_needing_scheduling =
|
||||
SchedulerType::UpdateHighestPriorityThreads(kernel);
|
||||
|
||||
// Note that we no longer hold the lock, and unlock the spinlock.
|
||||
owner_thread = nullptr;
|
||||
spin_lock.Unlock();
|
||||
|
||||
// Enable scheduling, and perform a rescheduling operation.
|
||||
SchedulerType::EnableScheduling(kernel, cores_needing_scheduling);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
KAlignedSpinLock spin_lock{};
|
||||
s32 lock_count{};
|
||||
std::atomic<KThread*> owner_thread{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,40 +1,40 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <concepts>
|
||||
#include <type_traits>
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
template <typename T>
|
||||
concept KLockable = !std::is_reference_v<T> && requires(T & t) {
|
||||
{ t.Lock() } -> std::same_as<void>;
|
||||
{ t.Unlock() } -> std::same_as<void>;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
requires KLockable<T>
|
||||
class [[nodiscard]] KScopedLock {
|
||||
public:
|
||||
explicit KScopedLock(T* l) : lock_ptr(l) {
|
||||
this->lock_ptr->Lock();
|
||||
}
|
||||
explicit KScopedLock(T& l) : KScopedLock(std::addressof(l)) {}
|
||||
|
||||
~KScopedLock() {
|
||||
this->lock_ptr->Unlock();
|
||||
}
|
||||
|
||||
KScopedLock(const KScopedLock&) = delete;
|
||||
KScopedLock& operator=(const KScopedLock&) = delete;
|
||||
|
||||
KScopedLock(KScopedLock&&) = delete;
|
||||
KScopedLock& operator=(KScopedLock&&) = delete;
|
||||
|
||||
private:
|
||||
T* lock_ptr;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <concepts>
|
||||
#include <type_traits>
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
template <typename T>
|
||||
concept KLockable = !std::is_reference_v<T> && requires(T & t) {
|
||||
{ t.Lock() } -> std::same_as<void>;
|
||||
{ t.Unlock() } -> std::same_as<void>;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
requires KLockable<T>
|
||||
class [[nodiscard]] KScopedLock {
|
||||
public:
|
||||
explicit KScopedLock(T* l) : lock_ptr(l) {
|
||||
this->lock_ptr->Lock();
|
||||
}
|
||||
explicit KScopedLock(T& l) : KScopedLock(std::addressof(l)) {}
|
||||
|
||||
~KScopedLock() {
|
||||
this->lock_ptr->Unlock();
|
||||
}
|
||||
|
||||
KScopedLock(const KScopedLock&) = delete;
|
||||
KScopedLock& operator=(const KScopedLock&) = delete;
|
||||
|
||||
KScopedLock(KScopedLock&&) = delete;
|
||||
KScopedLock& operator=(KScopedLock&&) = delete;
|
||||
|
||||
private:
|
||||
T* lock_ptr;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,61 +1,61 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KScopedResourceReservation {
|
||||
public:
|
||||
explicit KScopedResourceReservation(KResourceLimit* l, LimitableResource r, s64 v, s64 timeout)
|
||||
: resource_limit(std::move(l)), value(v), resource(r) {
|
||||
if (resource_limit && value) {
|
||||
success = resource_limit->Reserve(resource, value, timeout);
|
||||
} else {
|
||||
success = true;
|
||||
}
|
||||
}
|
||||
|
||||
explicit KScopedResourceReservation(KResourceLimit* l, LimitableResource r, s64 v = 1)
|
||||
: resource_limit(std::move(l)), value(v), resource(r) {
|
||||
if (resource_limit && value) {
|
||||
success = resource_limit->Reserve(resource, value);
|
||||
} else {
|
||||
success = true;
|
||||
}
|
||||
}
|
||||
|
||||
explicit KScopedResourceReservation(const KProcess* p, LimitableResource r, s64 v, s64 t)
|
||||
: KScopedResourceReservation(p->GetResourceLimit(), r, v, t) {}
|
||||
|
||||
explicit KScopedResourceReservation(const KProcess* p, LimitableResource r, s64 v = 1)
|
||||
: KScopedResourceReservation(p->GetResourceLimit(), r, v) {}
|
||||
|
||||
~KScopedResourceReservation() noexcept {
|
||||
if (resource_limit && value && success) {
|
||||
// resource was not committed, release the reservation.
|
||||
resource_limit->Release(resource, value);
|
||||
}
|
||||
}
|
||||
|
||||
/// Commit the resource reservation, destruction of this object does not release the resource
|
||||
void Commit() {
|
||||
resource_limit = nullptr;
|
||||
}
|
||||
|
||||
[[nodiscard]] bool Succeeded() const {
|
||||
return success;
|
||||
}
|
||||
|
||||
private:
|
||||
KResourceLimit* resource_limit{};
|
||||
s64 value;
|
||||
LimitableResource resource;
|
||||
bool success;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_resource_limit.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KScopedResourceReservation {
|
||||
public:
|
||||
explicit KScopedResourceReservation(KResourceLimit* l, LimitableResource r, s64 v, s64 timeout)
|
||||
: resource_limit(std::move(l)), value(v), resource(r) {
|
||||
if (resource_limit && value) {
|
||||
success = resource_limit->Reserve(resource, value, timeout);
|
||||
} else {
|
||||
success = true;
|
||||
}
|
||||
}
|
||||
|
||||
explicit KScopedResourceReservation(KResourceLimit* l, LimitableResource r, s64 v = 1)
|
||||
: resource_limit(std::move(l)), value(v), resource(r) {
|
||||
if (resource_limit && value) {
|
||||
success = resource_limit->Reserve(resource, value);
|
||||
} else {
|
||||
success = true;
|
||||
}
|
||||
}
|
||||
|
||||
explicit KScopedResourceReservation(const KProcess* p, LimitableResource r, s64 v, s64 t)
|
||||
: KScopedResourceReservation(p->GetResourceLimit(), r, v, t) {}
|
||||
|
||||
explicit KScopedResourceReservation(const KProcess* p, LimitableResource r, s64 v = 1)
|
||||
: KScopedResourceReservation(p->GetResourceLimit(), r, v) {}
|
||||
|
||||
~KScopedResourceReservation() noexcept {
|
||||
if (resource_limit && value && success) {
|
||||
// resource was not committed, release the reservation.
|
||||
resource_limit->Release(resource, value);
|
||||
}
|
||||
}
|
||||
|
||||
/// Commit the resource reservation, destruction of this object does not release the resource
|
||||
void Commit() {
|
||||
resource_limit = nullptr;
|
||||
}
|
||||
|
||||
[[nodiscard]] bool Succeeded() const {
|
||||
return success;
|
||||
}
|
||||
|
||||
private:
|
||||
KResourceLimit* resource_limit{};
|
||||
s64 value;
|
||||
LimitableResource resource;
|
||||
bool success;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,42 +1,42 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/global_scheduler_context.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/time_manager.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class [[nodiscard]] KScopedSchedulerLockAndSleep {
|
||||
public:
|
||||
explicit KScopedSchedulerLockAndSleep(KernelCore& kernel_, KThread* t, s64 timeout)
|
||||
: kernel(kernel_), thread(t), timeout_tick(timeout) {
|
||||
// Lock the scheduler.
|
||||
kernel.GlobalSchedulerContext().scheduler_lock.Lock();
|
||||
}
|
||||
|
||||
~KScopedSchedulerLockAndSleep() {
|
||||
// Register the sleep.
|
||||
if (timeout_tick > 0) {
|
||||
kernel.TimeManager().ScheduleTimeEvent(thread, timeout_tick);
|
||||
}
|
||||
|
||||
// Unlock the scheduler.
|
||||
kernel.GlobalSchedulerContext().scheduler_lock.Unlock();
|
||||
}
|
||||
|
||||
void CancelSleep() {
|
||||
timeout_tick = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
KThread* thread{};
|
||||
s64 timeout_tick{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/global_scheduler_context.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/time_manager.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class [[nodiscard]] KScopedSchedulerLockAndSleep {
|
||||
public:
|
||||
explicit KScopedSchedulerLockAndSleep(KernelCore& kernel_, KThread* t, s64 timeout)
|
||||
: kernel(kernel_), thread(t), timeout_tick(timeout) {
|
||||
// Lock the scheduler.
|
||||
kernel.GlobalSchedulerContext().scheduler_lock.Lock();
|
||||
}
|
||||
|
||||
~KScopedSchedulerLockAndSleep() {
|
||||
// Register the sleep.
|
||||
if (timeout_tick > 0) {
|
||||
kernel.TimeManager().ScheduleTimeEvent(thread, timeout_tick);
|
||||
}
|
||||
|
||||
// Unlock the scheduler.
|
||||
kernel.GlobalSchedulerContext().scheduler_lock.Unlock();
|
||||
}
|
||||
|
||||
void CancelSleep() {
|
||||
timeout_tick = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
KThread* thread{};
|
||||
s64 timeout_tick{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,102 +1,102 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <tuple>
|
||||
#include "common/assert.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_server_port.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KServerPort::KServerPort(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
|
||||
KServerPort::~KServerPort() = default;
|
||||
|
||||
void KServerPort::Initialize(KPort* parent_port_, std::string&& name_) {
|
||||
// Set member variables.
|
||||
parent = parent_port_;
|
||||
name = std::move(name_);
|
||||
}
|
||||
|
||||
bool KServerPort::IsLight() const {
|
||||
return this->GetParent()->IsLight();
|
||||
}
|
||||
|
||||
void KServerPort::CleanupSessions() {
|
||||
// Ensure our preconditions are met.
|
||||
if (this->IsLight()) {
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
// Cleanup the session list.
|
||||
while (true) {
|
||||
// Get the last session in the list
|
||||
KServerSession* session = nullptr;
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
if (!session_list.empty()) {
|
||||
session = std::addressof(session_list.front());
|
||||
session_list.pop_front();
|
||||
}
|
||||
}
|
||||
|
||||
// Close the session.
|
||||
if (session != nullptr) {
|
||||
session->Close();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void KServerPort::Destroy() {
|
||||
// Note with our parent that we're closed.
|
||||
parent->OnServerClosed();
|
||||
|
||||
// Perform necessary cleanup of our session lists.
|
||||
this->CleanupSessions();
|
||||
|
||||
// Close our reference to our parent.
|
||||
parent->Close();
|
||||
}
|
||||
|
||||
bool KServerPort::IsSignaled() const {
|
||||
if (this->IsLight()) {
|
||||
UNIMPLEMENTED();
|
||||
return false;
|
||||
} else {
|
||||
return !session_list.empty();
|
||||
}
|
||||
}
|
||||
|
||||
void KServerPort::EnqueueSession(KServerSession* session) {
|
||||
ASSERT(!this->IsLight());
|
||||
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Add the session to our queue.
|
||||
session_list.push_back(*session);
|
||||
if (session_list.size() == 1) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
}
|
||||
|
||||
KServerSession* KServerPort::AcceptSession() {
|
||||
ASSERT(!this->IsLight());
|
||||
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Return the first session in the list.
|
||||
if (session_list.empty()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
KServerSession* session = std::addressof(session_list.front());
|
||||
session_list.pop_front();
|
||||
return session;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <tuple>
|
||||
#include "common/assert.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_port.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_server_port.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KServerPort::KServerPort(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
|
||||
KServerPort::~KServerPort() = default;
|
||||
|
||||
void KServerPort::Initialize(KPort* parent_port_, std::string&& name_) {
|
||||
// Set member variables.
|
||||
parent = parent_port_;
|
||||
name = std::move(name_);
|
||||
}
|
||||
|
||||
bool KServerPort::IsLight() const {
|
||||
return this->GetParent()->IsLight();
|
||||
}
|
||||
|
||||
void KServerPort::CleanupSessions() {
|
||||
// Ensure our preconditions are met.
|
||||
if (this->IsLight()) {
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
// Cleanup the session list.
|
||||
while (true) {
|
||||
// Get the last session in the list
|
||||
KServerSession* session = nullptr;
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
if (!session_list.empty()) {
|
||||
session = std::addressof(session_list.front());
|
||||
session_list.pop_front();
|
||||
}
|
||||
}
|
||||
|
||||
// Close the session.
|
||||
if (session != nullptr) {
|
||||
session->Close();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void KServerPort::Destroy() {
|
||||
// Note with our parent that we're closed.
|
||||
parent->OnServerClosed();
|
||||
|
||||
// Perform necessary cleanup of our session lists.
|
||||
this->CleanupSessions();
|
||||
|
||||
// Close our reference to our parent.
|
||||
parent->Close();
|
||||
}
|
||||
|
||||
bool KServerPort::IsSignaled() const {
|
||||
if (this->IsLight()) {
|
||||
UNIMPLEMENTED();
|
||||
return false;
|
||||
} else {
|
||||
return !session_list.empty();
|
||||
}
|
||||
}
|
||||
|
||||
void KServerPort::EnqueueSession(KServerSession* session) {
|
||||
ASSERT(!this->IsLight());
|
||||
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Add the session to our queue.
|
||||
session_list.push_back(*session);
|
||||
if (session_list.size() == 1) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
}
|
||||
|
||||
KServerSession* KServerPort::AcceptSession() {
|
||||
ASSERT(!this->IsLight());
|
||||
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Return the first session in the list.
|
||||
if (session_list.empty()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
KServerSession* session = std::addressof(session_list.front());
|
||||
session_list.pop_front();
|
||||
return session;
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,53 +1,53 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include <boost/intrusive/list.hpp>
|
||||
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KPort;
|
||||
class SessionRequestHandler;
|
||||
|
||||
class KServerPort final : public KSynchronizationObject {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KServerPort, KSynchronizationObject);
|
||||
|
||||
public:
|
||||
explicit KServerPort(KernelCore& kernel_);
|
||||
~KServerPort() override;
|
||||
|
||||
void Initialize(KPort* parent_port_, std::string&& name_);
|
||||
|
||||
void EnqueueSession(KServerSession* pending_session);
|
||||
|
||||
KServerSession* AcceptSession();
|
||||
|
||||
const KPort* GetParent() const {
|
||||
return parent;
|
||||
}
|
||||
|
||||
bool IsLight() const;
|
||||
|
||||
// Overridden virtual functions.
|
||||
void Destroy() override;
|
||||
bool IsSignaled() const override;
|
||||
|
||||
private:
|
||||
using SessionList = boost::intrusive::list<KServerSession>;
|
||||
|
||||
void CleanupSessions();
|
||||
|
||||
SessionList session_list;
|
||||
KPort* parent{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include <boost/intrusive/list.hpp>
|
||||
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class KPort;
|
||||
class SessionRequestHandler;
|
||||
|
||||
class KServerPort final : public KSynchronizationObject {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KServerPort, KSynchronizationObject);
|
||||
|
||||
public:
|
||||
explicit KServerPort(KernelCore& kernel_);
|
||||
~KServerPort() override;
|
||||
|
||||
void Initialize(KPort* parent_port_, std::string&& name_);
|
||||
|
||||
void EnqueueSession(KServerSession* pending_session);
|
||||
|
||||
KServerSession* AcceptSession();
|
||||
|
||||
const KPort* GetParent() const {
|
||||
return parent;
|
||||
}
|
||||
|
||||
bool IsLight() const;
|
||||
|
||||
// Overridden virtual functions.
|
||||
void Destroy() override;
|
||||
bool IsSignaled() const override;
|
||||
|
||||
private:
|
||||
using SessionList = boost::intrusive::list<KServerSession>;
|
||||
|
||||
void CleanupSessions();
|
||||
|
||||
SessionList session_list;
|
||||
KPort* parent{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,419 +1,419 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/scope_exit.h"
|
||||
#include "core/core.h"
|
||||
#include "core/core_timing.h"
|
||||
#include "core/hle/ipc_helpers.h"
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_handle_table.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_server_port.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
using ThreadQueueImplForKServerSessionRequest = KThreadQueue;
|
||||
|
||||
KServerSession::KServerSession(KernelCore& kernel_)
|
||||
: KSynchronizationObject{kernel_}, m_lock{kernel_} {}
|
||||
|
||||
KServerSession::~KServerSession() = default;
|
||||
|
||||
void KServerSession::Initialize(KSession* parent_session_, std::string&& name_) {
|
||||
// Set member variables.
|
||||
parent = parent_session_;
|
||||
name = std::move(name_);
|
||||
}
|
||||
|
||||
void KServerSession::Destroy() {
|
||||
parent->OnServerClosed();
|
||||
|
||||
this->CleanupRequests();
|
||||
|
||||
parent->Close();
|
||||
}
|
||||
|
||||
void KServerSession::OnClientClosed() {
|
||||
KScopedLightLock lk{m_lock};
|
||||
|
||||
// Handle any pending requests.
|
||||
KSessionRequest* prev_request = nullptr;
|
||||
while (true) {
|
||||
// Declare variables for processing the request.
|
||||
KSessionRequest* request = nullptr;
|
||||
KEvent* event = nullptr;
|
||||
KThread* thread = nullptr;
|
||||
bool cur_request = false;
|
||||
bool terminate = false;
|
||||
|
||||
// Get the next request.
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (m_current_request != nullptr && m_current_request != prev_request) {
|
||||
// Set the request, open a reference as we process it.
|
||||
request = m_current_request;
|
||||
request->Open();
|
||||
cur_request = true;
|
||||
|
||||
// Get thread and event for the request.
|
||||
thread = request->GetThread();
|
||||
event = request->GetEvent();
|
||||
|
||||
// If the thread is terminating, handle that.
|
||||
if (thread->IsTerminationRequested()) {
|
||||
request->ClearThread();
|
||||
request->ClearEvent();
|
||||
terminate = true;
|
||||
}
|
||||
|
||||
prev_request = request;
|
||||
} else if (!m_request_list.empty()) {
|
||||
// Pop the request from the front of the list.
|
||||
request = std::addressof(m_request_list.front());
|
||||
m_request_list.pop_front();
|
||||
|
||||
// Get thread and event for the request.
|
||||
thread = request->GetThread();
|
||||
event = request->GetEvent();
|
||||
}
|
||||
}
|
||||
|
||||
// If there are no requests, we're done.
|
||||
if (request == nullptr) {
|
||||
break;
|
||||
}
|
||||
|
||||
// All requests must have threads.
|
||||
ASSERT(thread != nullptr);
|
||||
|
||||
// Ensure that we close the request when done.
|
||||
SCOPE_EXIT({ request->Close(); });
|
||||
|
||||
// If we're terminating, close a reference to the thread and event.
|
||||
if (terminate) {
|
||||
thread->Close();
|
||||
if (event != nullptr) {
|
||||
event->Close();
|
||||
}
|
||||
}
|
||||
|
||||
// If we need to, reply.
|
||||
if (event != nullptr && !cur_request) {
|
||||
// There must be no mappings.
|
||||
ASSERT(request->GetSendCount() == 0);
|
||||
ASSERT(request->GetReceiveCount() == 0);
|
||||
ASSERT(request->GetExchangeCount() == 0);
|
||||
|
||||
// // Get the process and page table.
|
||||
// KProcess *client_process = thread->GetOwnerProcess();
|
||||
// auto &client_pt = client_process->GetPageTable();
|
||||
|
||||
// // Reply to the request.
|
||||
// ReplyAsyncError(client_process, request->GetAddress(), request->GetSize(),
|
||||
// ResultSessionClosed);
|
||||
|
||||
// // Unlock the buffer.
|
||||
// // NOTE: Nintendo does not check the result of this.
|
||||
// client_pt.UnlockForIpcUserBuffer(request->GetAddress(), request->GetSize());
|
||||
|
||||
// Signal the event.
|
||||
event->Signal();
|
||||
}
|
||||
}
|
||||
|
||||
// Notify.
|
||||
this->NotifyAvailable(ResultSessionClosed);
|
||||
}
|
||||
|
||||
bool KServerSession::IsSignaled() const {
|
||||
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
|
||||
|
||||
// If the client is closed, we're always signaled.
|
||||
if (parent->IsClientClosed()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Otherwise, we're signaled if we have a request and aren't handling one.
|
||||
return !m_request_list.empty() && m_current_request == nullptr;
|
||||
}
|
||||
|
||||
Result KServerSession::OnRequest(KSessionRequest* request) {
|
||||
// Create the wait queue.
|
||||
ThreadQueueImplForKServerSessionRequest wait_queue{kernel};
|
||||
|
||||
{
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Ensure that we can handle new requests.
|
||||
R_UNLESS(!parent->IsServerClosed(), ResultSessionClosed);
|
||||
|
||||
// Check that we're not terminating.
|
||||
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(), ResultTerminationRequested);
|
||||
|
||||
// Get whether we're empty.
|
||||
const bool was_empty = m_request_list.empty();
|
||||
|
||||
// Add the request to the list.
|
||||
request->Open();
|
||||
m_request_list.push_back(*request);
|
||||
|
||||
// If we were empty, signal.
|
||||
if (was_empty) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
|
||||
// If we have a request event, this is asynchronous, and we don't need to wait.
|
||||
R_SUCCEED_IF(request->GetEvent() != nullptr);
|
||||
|
||||
// This is a synchronous request, so we should wait for our request to complete.
|
||||
GetCurrentThread(kernel).SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
|
||||
GetCurrentThread(kernel).BeginWait(&wait_queue);
|
||||
}
|
||||
|
||||
return GetCurrentThread(kernel).GetWaitResult();
|
||||
}
|
||||
|
||||
Result KServerSession::SendReply(bool is_hle) {
|
||||
// Lock the session.
|
||||
KScopedLightLock lk{m_lock};
|
||||
|
||||
// Get the request.
|
||||
KSessionRequest* request;
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Get the current request.
|
||||
request = m_current_request;
|
||||
R_UNLESS(request != nullptr, ResultInvalidState);
|
||||
|
||||
// Clear the current request, since we're processing it.
|
||||
m_current_request = nullptr;
|
||||
if (!m_request_list.empty()) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
}
|
||||
|
||||
// Close reference to the request once we're done processing it.
|
||||
SCOPE_EXIT({ request->Close(); });
|
||||
|
||||
// Extract relevant information from the request.
|
||||
const uintptr_t client_message = request->GetAddress();
|
||||
const size_t client_buffer_size = request->GetSize();
|
||||
KThread* client_thread = request->GetThread();
|
||||
KEvent* event = request->GetEvent();
|
||||
|
||||
// Check whether we're closed.
|
||||
const bool closed = (client_thread == nullptr || parent->IsClientClosed());
|
||||
|
||||
Result result = ResultSuccess;
|
||||
if (!closed) {
|
||||
// If we're not closed, send the reply.
|
||||
if (is_hle) {
|
||||
// HLE servers write directly to a pointer to the thread command buffer. Therefore
|
||||
// the reply has already been written in this case.
|
||||
} else {
|
||||
Core::Memory::Memory& memory{kernel.System().Memory()};
|
||||
KThread* server_thread{GetCurrentThreadPointer(kernel)};
|
||||
UNIMPLEMENTED_IF(server_thread->GetOwnerProcess() != client_thread->GetOwnerProcess());
|
||||
|
||||
auto* src_msg_buffer = memory.GetPointer(server_thread->GetTLSAddress());
|
||||
auto* dst_msg_buffer = memory.GetPointer(client_message);
|
||||
std::memcpy(dst_msg_buffer, src_msg_buffer, client_buffer_size);
|
||||
}
|
||||
} else {
|
||||
result = ResultSessionClosed;
|
||||
}
|
||||
|
||||
// Select a result for the client.
|
||||
Result client_result = result;
|
||||
if (closed && R_SUCCEEDED(result)) {
|
||||
result = ResultSessionClosed;
|
||||
client_result = ResultSessionClosed;
|
||||
} else {
|
||||
result = ResultSuccess;
|
||||
}
|
||||
|
||||
// If there's a client thread, update it.
|
||||
if (client_thread != nullptr) {
|
||||
if (event != nullptr) {
|
||||
// // Get the client process/page table.
|
||||
// KProcess *client_process = client_thread->GetOwnerProcess();
|
||||
// KPageTable *client_page_table = &client_process->PageTable();
|
||||
|
||||
// // If we need to, reply with an async error.
|
||||
// if (R_FAILED(client_result)) {
|
||||
// ReplyAsyncError(client_process, client_message, client_buffer_size,
|
||||
// client_result);
|
||||
// }
|
||||
|
||||
// // Unlock the client buffer.
|
||||
// // NOTE: Nintendo does not check the result of this.
|
||||
// client_page_table->UnlockForIpcUserBuffer(client_message, client_buffer_size);
|
||||
|
||||
// Signal the event.
|
||||
event->Signal();
|
||||
} else {
|
||||
// End the client thread's wait.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (!client_thread->IsTerminationRequested()) {
|
||||
client_thread->EndWait(client_result);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
Result KServerSession::ReceiveRequest(std::shared_ptr<HLERequestContext>* out_context,
|
||||
std::weak_ptr<SessionRequestManager> manager) {
|
||||
// Lock the session.
|
||||
KScopedLightLock lk{m_lock};
|
||||
|
||||
// Get the request and client thread.
|
||||
KSessionRequest* request;
|
||||
KThread* client_thread;
|
||||
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Ensure that we can service the request.
|
||||
R_UNLESS(!parent->IsClientClosed(), ResultSessionClosed);
|
||||
|
||||
// Ensure we aren't already servicing a request.
|
||||
R_UNLESS(m_current_request == nullptr, ResultNotFound);
|
||||
|
||||
// Ensure we have a request to service.
|
||||
R_UNLESS(!m_request_list.empty(), ResultNotFound);
|
||||
|
||||
// Pop the first request from the list.
|
||||
request = &m_request_list.front();
|
||||
m_request_list.pop_front();
|
||||
|
||||
// Get the thread for the request.
|
||||
client_thread = request->GetThread();
|
||||
R_UNLESS(client_thread != nullptr, ResultSessionClosed);
|
||||
|
||||
// Open the client thread.
|
||||
client_thread->Open();
|
||||
}
|
||||
|
||||
SCOPE_EXIT({ client_thread->Close(); });
|
||||
|
||||
// Set the request as our current.
|
||||
m_current_request = request;
|
||||
|
||||
// Get the client address.
|
||||
uintptr_t client_message = request->GetAddress();
|
||||
size_t client_buffer_size = request->GetSize();
|
||||
// bool recv_list_broken = false;
|
||||
|
||||
// Receive the message.
|
||||
Core::Memory::Memory& memory{kernel.System().Memory()};
|
||||
if (out_context != nullptr) {
|
||||
// HLE request.
|
||||
u32* cmd_buf{reinterpret_cast<u32*>(memory.GetPointer(client_message))};
|
||||
*out_context = std::make_shared<HLERequestContext>(kernel, memory, this, client_thread);
|
||||
(*out_context)->SetSessionRequestManager(manager);
|
||||
(*out_context)
|
||||
->PopulateFromIncomingCommandBuffer(client_thread->GetOwnerProcess()->GetHandleTable(),
|
||||
cmd_buf);
|
||||
} else {
|
||||
KThread* server_thread{GetCurrentThreadPointer(kernel)};
|
||||
UNIMPLEMENTED_IF(server_thread->GetOwnerProcess() != client_thread->GetOwnerProcess());
|
||||
|
||||
auto* src_msg_buffer = memory.GetPointer(client_message);
|
||||
auto* dst_msg_buffer = memory.GetPointer(server_thread->GetTLSAddress());
|
||||
std::memcpy(dst_msg_buffer, src_msg_buffer, client_buffer_size);
|
||||
}
|
||||
|
||||
// We succeeded.
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KServerSession::CleanupRequests() {
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Clean up any pending requests.
|
||||
while (true) {
|
||||
// Get the next request.
|
||||
KSessionRequest* request = nullptr;
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (m_current_request) {
|
||||
// Choose the current request if we have one.
|
||||
request = m_current_request;
|
||||
m_current_request = nullptr;
|
||||
} else if (!m_request_list.empty()) {
|
||||
// Pop the request from the front of the list.
|
||||
request = &m_request_list.front();
|
||||
m_request_list.pop_front();
|
||||
}
|
||||
}
|
||||
|
||||
// If there's no request, we're done.
|
||||
if (request == nullptr) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Close a reference to the request once it's cleaned up.
|
||||
SCOPE_EXIT({ request->Close(); });
|
||||
|
||||
// Extract relevant information from the request.
|
||||
// const uintptr_t client_message = request->GetAddress();
|
||||
// const size_t client_buffer_size = request->GetSize();
|
||||
KThread* client_thread = request->GetThread();
|
||||
KEvent* event = request->GetEvent();
|
||||
|
||||
// KProcess *server_process = request->GetServerProcess();
|
||||
// KProcess *client_process = (client_thread != nullptr) ?
|
||||
// client_thread->GetOwnerProcess() : nullptr;
|
||||
// KProcessPageTable *client_page_table = (client_process != nullptr) ?
|
||||
// &client_process->GetPageTable() : nullptr;
|
||||
|
||||
// Cleanup the mappings.
|
||||
// Result result = CleanupMap(request, server_process, client_page_table);
|
||||
|
||||
// If there's a client thread, update it.
|
||||
if (client_thread != nullptr) {
|
||||
if (event != nullptr) {
|
||||
// // We need to reply async.
|
||||
// ReplyAsyncError(client_process, client_message, client_buffer_size,
|
||||
// (R_SUCCEEDED(result) ? ResultSessionClosed : result));
|
||||
|
||||
// // Unlock the client buffer.
|
||||
// NOTE: Nintendo does not check the result of this.
|
||||
// client_page_table->UnlockForIpcUserBuffer(client_message, client_buffer_size);
|
||||
|
||||
// Signal the event.
|
||||
event->Signal();
|
||||
} else {
|
||||
// End the client thread's wait.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (!client_thread->IsTerminationRequested()) {
|
||||
client_thread->EndWait(ResultSessionClosed);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/scope_exit.h"
|
||||
#include "core/core.h"
|
||||
#include "core/core_timing.h"
|
||||
#include "core/hle/ipc_helpers.h"
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_handle_table.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_server_port.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/memory.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
using ThreadQueueImplForKServerSessionRequest = KThreadQueue;
|
||||
|
||||
KServerSession::KServerSession(KernelCore& kernel_)
|
||||
: KSynchronizationObject{kernel_}, m_lock{kernel_} {}
|
||||
|
||||
KServerSession::~KServerSession() = default;
|
||||
|
||||
void KServerSession::Initialize(KSession* parent_session_, std::string&& name_) {
|
||||
// Set member variables.
|
||||
parent = parent_session_;
|
||||
name = std::move(name_);
|
||||
}
|
||||
|
||||
void KServerSession::Destroy() {
|
||||
parent->OnServerClosed();
|
||||
|
||||
this->CleanupRequests();
|
||||
|
||||
parent->Close();
|
||||
}
|
||||
|
||||
void KServerSession::OnClientClosed() {
|
||||
KScopedLightLock lk{m_lock};
|
||||
|
||||
// Handle any pending requests.
|
||||
KSessionRequest* prev_request = nullptr;
|
||||
while (true) {
|
||||
// Declare variables for processing the request.
|
||||
KSessionRequest* request = nullptr;
|
||||
KEvent* event = nullptr;
|
||||
KThread* thread = nullptr;
|
||||
bool cur_request = false;
|
||||
bool terminate = false;
|
||||
|
||||
// Get the next request.
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (m_current_request != nullptr && m_current_request != prev_request) {
|
||||
// Set the request, open a reference as we process it.
|
||||
request = m_current_request;
|
||||
request->Open();
|
||||
cur_request = true;
|
||||
|
||||
// Get thread and event for the request.
|
||||
thread = request->GetThread();
|
||||
event = request->GetEvent();
|
||||
|
||||
// If the thread is terminating, handle that.
|
||||
if (thread->IsTerminationRequested()) {
|
||||
request->ClearThread();
|
||||
request->ClearEvent();
|
||||
terminate = true;
|
||||
}
|
||||
|
||||
prev_request = request;
|
||||
} else if (!m_request_list.empty()) {
|
||||
// Pop the request from the front of the list.
|
||||
request = std::addressof(m_request_list.front());
|
||||
m_request_list.pop_front();
|
||||
|
||||
// Get thread and event for the request.
|
||||
thread = request->GetThread();
|
||||
event = request->GetEvent();
|
||||
}
|
||||
}
|
||||
|
||||
// If there are no requests, we're done.
|
||||
if (request == nullptr) {
|
||||
break;
|
||||
}
|
||||
|
||||
// All requests must have threads.
|
||||
ASSERT(thread != nullptr);
|
||||
|
||||
// Ensure that we close the request when done.
|
||||
SCOPE_EXIT({ request->Close(); });
|
||||
|
||||
// If we're terminating, close a reference to the thread and event.
|
||||
if (terminate) {
|
||||
thread->Close();
|
||||
if (event != nullptr) {
|
||||
event->Close();
|
||||
}
|
||||
}
|
||||
|
||||
// If we need to, reply.
|
||||
if (event != nullptr && !cur_request) {
|
||||
// There must be no mappings.
|
||||
ASSERT(request->GetSendCount() == 0);
|
||||
ASSERT(request->GetReceiveCount() == 0);
|
||||
ASSERT(request->GetExchangeCount() == 0);
|
||||
|
||||
// // Get the process and page table.
|
||||
// KProcess *client_process = thread->GetOwnerProcess();
|
||||
// auto &client_pt = client_process->GetPageTable();
|
||||
|
||||
// // Reply to the request.
|
||||
// ReplyAsyncError(client_process, request->GetAddress(), request->GetSize(),
|
||||
// ResultSessionClosed);
|
||||
|
||||
// // Unlock the buffer.
|
||||
// // NOTE: Nintendo does not check the result of this.
|
||||
// client_pt.UnlockForIpcUserBuffer(request->GetAddress(), request->GetSize());
|
||||
|
||||
// Signal the event.
|
||||
event->Signal();
|
||||
}
|
||||
}
|
||||
|
||||
// Notify.
|
||||
this->NotifyAvailable(ResultSessionClosed);
|
||||
}
|
||||
|
||||
bool KServerSession::IsSignaled() const {
|
||||
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
|
||||
|
||||
// If the client is closed, we're always signaled.
|
||||
if (parent->IsClientClosed()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Otherwise, we're signaled if we have a request and aren't handling one.
|
||||
return !m_request_list.empty() && m_current_request == nullptr;
|
||||
}
|
||||
|
||||
Result KServerSession::OnRequest(KSessionRequest* request) {
|
||||
// Create the wait queue.
|
||||
ThreadQueueImplForKServerSessionRequest wait_queue{kernel};
|
||||
|
||||
{
|
||||
// Lock the scheduler.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Ensure that we can handle new requests.
|
||||
R_UNLESS(!parent->IsServerClosed(), ResultSessionClosed);
|
||||
|
||||
// Check that we're not terminating.
|
||||
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(), ResultTerminationRequested);
|
||||
|
||||
// Get whether we're empty.
|
||||
const bool was_empty = m_request_list.empty();
|
||||
|
||||
// Add the request to the list.
|
||||
request->Open();
|
||||
m_request_list.push_back(*request);
|
||||
|
||||
// If we were empty, signal.
|
||||
if (was_empty) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
|
||||
// If we have a request event, this is asynchronous, and we don't need to wait.
|
||||
R_SUCCEED_IF(request->GetEvent() != nullptr);
|
||||
|
||||
// This is a synchronous request, so we should wait for our request to complete.
|
||||
GetCurrentThread(kernel).SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
|
||||
GetCurrentThread(kernel).BeginWait(&wait_queue);
|
||||
}
|
||||
|
||||
return GetCurrentThread(kernel).GetWaitResult();
|
||||
}
|
||||
|
||||
Result KServerSession::SendReply(bool is_hle) {
|
||||
// Lock the session.
|
||||
KScopedLightLock lk{m_lock};
|
||||
|
||||
// Get the request.
|
||||
KSessionRequest* request;
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Get the current request.
|
||||
request = m_current_request;
|
||||
R_UNLESS(request != nullptr, ResultInvalidState);
|
||||
|
||||
// Clear the current request, since we're processing it.
|
||||
m_current_request = nullptr;
|
||||
if (!m_request_list.empty()) {
|
||||
this->NotifyAvailable();
|
||||
}
|
||||
}
|
||||
|
||||
// Close reference to the request once we're done processing it.
|
||||
SCOPE_EXIT({ request->Close(); });
|
||||
|
||||
// Extract relevant information from the request.
|
||||
const uintptr_t client_message = request->GetAddress();
|
||||
const size_t client_buffer_size = request->GetSize();
|
||||
KThread* client_thread = request->GetThread();
|
||||
KEvent* event = request->GetEvent();
|
||||
|
||||
// Check whether we're closed.
|
||||
const bool closed = (client_thread == nullptr || parent->IsClientClosed());
|
||||
|
||||
Result result = ResultSuccess;
|
||||
if (!closed) {
|
||||
// If we're not closed, send the reply.
|
||||
if (is_hle) {
|
||||
// HLE servers write directly to a pointer to the thread command buffer. Therefore
|
||||
// the reply has already been written in this case.
|
||||
} else {
|
||||
Core::Memory::Memory& memory{kernel.System().Memory()};
|
||||
KThread* server_thread{GetCurrentThreadPointer(kernel)};
|
||||
UNIMPLEMENTED_IF(server_thread->GetOwnerProcess() != client_thread->GetOwnerProcess());
|
||||
|
||||
auto* src_msg_buffer = memory.GetPointer(server_thread->GetTLSAddress());
|
||||
auto* dst_msg_buffer = memory.GetPointer(client_message);
|
||||
std::memcpy(dst_msg_buffer, src_msg_buffer, client_buffer_size);
|
||||
}
|
||||
} else {
|
||||
result = ResultSessionClosed;
|
||||
}
|
||||
|
||||
// Select a result for the client.
|
||||
Result client_result = result;
|
||||
if (closed && R_SUCCEEDED(result)) {
|
||||
result = ResultSessionClosed;
|
||||
client_result = ResultSessionClosed;
|
||||
} else {
|
||||
result = ResultSuccess;
|
||||
}
|
||||
|
||||
// If there's a client thread, update it.
|
||||
if (client_thread != nullptr) {
|
||||
if (event != nullptr) {
|
||||
// // Get the client process/page table.
|
||||
// KProcess *client_process = client_thread->GetOwnerProcess();
|
||||
// KPageTable *client_page_table = &client_process->PageTable();
|
||||
|
||||
// // If we need to, reply with an async error.
|
||||
// if (R_FAILED(client_result)) {
|
||||
// ReplyAsyncError(client_process, client_message, client_buffer_size,
|
||||
// client_result);
|
||||
// }
|
||||
|
||||
// // Unlock the client buffer.
|
||||
// // NOTE: Nintendo does not check the result of this.
|
||||
// client_page_table->UnlockForIpcUserBuffer(client_message, client_buffer_size);
|
||||
|
||||
// Signal the event.
|
||||
event->Signal();
|
||||
} else {
|
||||
// End the client thread's wait.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (!client_thread->IsTerminationRequested()) {
|
||||
client_thread->EndWait(client_result);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
Result KServerSession::ReceiveRequest(std::shared_ptr<HLERequestContext>* out_context,
|
||||
std::weak_ptr<SessionRequestManager> manager) {
|
||||
// Lock the session.
|
||||
KScopedLightLock lk{m_lock};
|
||||
|
||||
// Get the request and client thread.
|
||||
KSessionRequest* request;
|
||||
KThread* client_thread;
|
||||
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
// Ensure that we can service the request.
|
||||
R_UNLESS(!parent->IsClientClosed(), ResultSessionClosed);
|
||||
|
||||
// Ensure we aren't already servicing a request.
|
||||
R_UNLESS(m_current_request == nullptr, ResultNotFound);
|
||||
|
||||
// Ensure we have a request to service.
|
||||
R_UNLESS(!m_request_list.empty(), ResultNotFound);
|
||||
|
||||
// Pop the first request from the list.
|
||||
request = &m_request_list.front();
|
||||
m_request_list.pop_front();
|
||||
|
||||
// Get the thread for the request.
|
||||
client_thread = request->GetThread();
|
||||
R_UNLESS(client_thread != nullptr, ResultSessionClosed);
|
||||
|
||||
// Open the client thread.
|
||||
client_thread->Open();
|
||||
}
|
||||
|
||||
SCOPE_EXIT({ client_thread->Close(); });
|
||||
|
||||
// Set the request as our current.
|
||||
m_current_request = request;
|
||||
|
||||
// Get the client address.
|
||||
uintptr_t client_message = request->GetAddress();
|
||||
size_t client_buffer_size = request->GetSize();
|
||||
// bool recv_list_broken = false;
|
||||
|
||||
// Receive the message.
|
||||
Core::Memory::Memory& memory{kernel.System().Memory()};
|
||||
if (out_context != nullptr) {
|
||||
// HLE request.
|
||||
u32* cmd_buf{reinterpret_cast<u32*>(memory.GetPointer(client_message))};
|
||||
*out_context = std::make_shared<HLERequestContext>(kernel, memory, this, client_thread);
|
||||
(*out_context)->SetSessionRequestManager(manager);
|
||||
(*out_context)
|
||||
->PopulateFromIncomingCommandBuffer(client_thread->GetOwnerProcess()->GetHandleTable(),
|
||||
cmd_buf);
|
||||
} else {
|
||||
KThread* server_thread{GetCurrentThreadPointer(kernel)};
|
||||
UNIMPLEMENTED_IF(server_thread->GetOwnerProcess() != client_thread->GetOwnerProcess());
|
||||
|
||||
auto* src_msg_buffer = memory.GetPointer(client_message);
|
||||
auto* dst_msg_buffer = memory.GetPointer(server_thread->GetTLSAddress());
|
||||
std::memcpy(dst_msg_buffer, src_msg_buffer, client_buffer_size);
|
||||
}
|
||||
|
||||
// We succeeded.
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KServerSession::CleanupRequests() {
|
||||
KScopedLightLock lk(m_lock);
|
||||
|
||||
// Clean up any pending requests.
|
||||
while (true) {
|
||||
// Get the next request.
|
||||
KSessionRequest* request = nullptr;
|
||||
{
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (m_current_request) {
|
||||
// Choose the current request if we have one.
|
||||
request = m_current_request;
|
||||
m_current_request = nullptr;
|
||||
} else if (!m_request_list.empty()) {
|
||||
// Pop the request from the front of the list.
|
||||
request = &m_request_list.front();
|
||||
m_request_list.pop_front();
|
||||
}
|
||||
}
|
||||
|
||||
// If there's no request, we're done.
|
||||
if (request == nullptr) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Close a reference to the request once it's cleaned up.
|
||||
SCOPE_EXIT({ request->Close(); });
|
||||
|
||||
// Extract relevant information from the request.
|
||||
// const uintptr_t client_message = request->GetAddress();
|
||||
// const size_t client_buffer_size = request->GetSize();
|
||||
KThread* client_thread = request->GetThread();
|
||||
KEvent* event = request->GetEvent();
|
||||
|
||||
// KProcess *server_process = request->GetServerProcess();
|
||||
// KProcess *client_process = (client_thread != nullptr) ?
|
||||
// client_thread->GetOwnerProcess() : nullptr;
|
||||
// KProcessPageTable *client_page_table = (client_process != nullptr) ?
|
||||
// &client_process->GetPageTable() : nullptr;
|
||||
|
||||
// Cleanup the mappings.
|
||||
// Result result = CleanupMap(request, server_process, client_page_table);
|
||||
|
||||
// If there's a client thread, update it.
|
||||
if (client_thread != nullptr) {
|
||||
if (event != nullptr) {
|
||||
// // We need to reply async.
|
||||
// ReplyAsyncError(client_process, client_message, client_buffer_size,
|
||||
// (R_SUCCEEDED(result) ? ResultSessionClosed : result));
|
||||
|
||||
// // Unlock the client buffer.
|
||||
// NOTE: Nintendo does not check the result of this.
|
||||
// client_page_table->UnlockForIpcUserBuffer(client_message, client_buffer_size);
|
||||
|
||||
// Signal the event.
|
||||
event->Signal();
|
||||
} else {
|
||||
// End the client thread's wait.
|
||||
KScopedSchedulerLock sl{kernel};
|
||||
|
||||
if (!client_thread->IsTerminationRequested()) {
|
||||
client_thread->EndWait(ResultSessionClosed);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,76 +1,76 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <list>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include <boost/intrusive/list.hpp>
|
||||
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_session_request.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class HLERequestContext;
|
||||
class KernelCore;
|
||||
class KSession;
|
||||
class SessionRequestManager;
|
||||
class KThread;
|
||||
|
||||
class KServerSession final : public KSynchronizationObject,
|
||||
public boost::intrusive::list_base_hook<> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KServerSession, KSynchronizationObject);
|
||||
|
||||
friend class ServiceThread;
|
||||
|
||||
public:
|
||||
explicit KServerSession(KernelCore& kernel_);
|
||||
~KServerSession() override;
|
||||
|
||||
void Destroy() override;
|
||||
|
||||
void Initialize(KSession* parent_session_, std::string&& name_);
|
||||
|
||||
KSession* GetParent() {
|
||||
return parent;
|
||||
}
|
||||
|
||||
const KSession* GetParent() const {
|
||||
return parent;
|
||||
}
|
||||
|
||||
bool IsSignaled() const override;
|
||||
void OnClientClosed();
|
||||
|
||||
/// TODO: flesh these out to match the real kernel
|
||||
Result OnRequest(KSessionRequest* request);
|
||||
Result SendReply(bool is_hle = false);
|
||||
Result ReceiveRequest(std::shared_ptr<HLERequestContext>* out_context = nullptr,
|
||||
std::weak_ptr<SessionRequestManager> manager = {});
|
||||
|
||||
Result SendReplyHLE() {
|
||||
return SendReply(true);
|
||||
}
|
||||
|
||||
private:
|
||||
/// Frees up waiting client sessions when this server session is about to die
|
||||
void CleanupRequests();
|
||||
|
||||
/// KSession that owns this KServerSession
|
||||
KSession* parent{};
|
||||
|
||||
/// List of threads which are pending a reply.
|
||||
boost::intrusive::list<KSessionRequest> m_request_list;
|
||||
KSessionRequest* m_current_request{};
|
||||
|
||||
KLightLock m_lock;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <list>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include <boost/intrusive/list.hpp>
|
||||
|
||||
#include "core/hle/kernel/hle_ipc.h"
|
||||
#include "core/hle/kernel/k_light_lock.h"
|
||||
#include "core/hle/kernel/k_session_request.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class HLERequestContext;
|
||||
class KernelCore;
|
||||
class KSession;
|
||||
class SessionRequestManager;
|
||||
class KThread;
|
||||
|
||||
class KServerSession final : public KSynchronizationObject,
|
||||
public boost::intrusive::list_base_hook<> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KServerSession, KSynchronizationObject);
|
||||
|
||||
friend class ServiceThread;
|
||||
|
||||
public:
|
||||
explicit KServerSession(KernelCore& kernel_);
|
||||
~KServerSession() override;
|
||||
|
||||
void Destroy() override;
|
||||
|
||||
void Initialize(KSession* parent_session_, std::string&& name_);
|
||||
|
||||
KSession* GetParent() {
|
||||
return parent;
|
||||
}
|
||||
|
||||
const KSession* GetParent() const {
|
||||
return parent;
|
||||
}
|
||||
|
||||
bool IsSignaled() const override;
|
||||
void OnClientClosed();
|
||||
|
||||
/// TODO: flesh these out to match the real kernel
|
||||
Result OnRequest(KSessionRequest* request);
|
||||
Result SendReply(bool is_hle = false);
|
||||
Result ReceiveRequest(std::shared_ptr<HLERequestContext>* out_context = nullptr,
|
||||
std::weak_ptr<SessionRequestManager> manager = {});
|
||||
|
||||
Result SendReplyHLE() {
|
||||
return SendReply(true);
|
||||
}
|
||||
|
||||
private:
|
||||
/// Frees up waiting client sessions when this server session is about to die
|
||||
void CleanupRequests();
|
||||
|
||||
/// KSession that owns this KServerSession
|
||||
KSession* parent{};
|
||||
|
||||
/// List of threads which are pending a reply.
|
||||
boost::intrusive::list<KSessionRequest> m_request_list;
|
||||
KSessionRequest* m_current_request{};
|
||||
|
||||
KLightLock m_lock;
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,83 +1,83 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_client_session.h"
|
||||
#include "core/hle/kernel/k_scoped_resource_reservation.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KSession::KSession(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, server{kernel_}, client{kernel_} {}
|
||||
KSession::~KSession() = default;
|
||||
|
||||
void KSession::Initialize(KClientPort* port_, const std::string& name_) {
|
||||
// Increment reference count.
|
||||
// Because reference count is one on creation, this will result
|
||||
// in a reference count of two. Thus, when both server and client are closed
|
||||
// this object will be destroyed.
|
||||
Open();
|
||||
|
||||
// Create our sub sessions.
|
||||
KAutoObject::Create(std::addressof(server));
|
||||
KAutoObject::Create(std::addressof(client));
|
||||
|
||||
// Initialize our sub sessions.
|
||||
server.Initialize(this, name_ + ":Server");
|
||||
client.Initialize(this, name_ + ":Client");
|
||||
|
||||
// Set state and name.
|
||||
SetState(State::Normal);
|
||||
name = name_;
|
||||
|
||||
// Set our owner process.
|
||||
process = kernel.CurrentProcess();
|
||||
process->Open();
|
||||
|
||||
// Set our port.
|
||||
port = port_;
|
||||
if (port != nullptr) {
|
||||
port->Open();
|
||||
}
|
||||
|
||||
// Mark initialized.
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
void KSession::Finalize() {
|
||||
if (port == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
port->OnSessionFinalized();
|
||||
port->Close();
|
||||
}
|
||||
|
||||
void KSession::OnServerClosed() {
|
||||
if (GetState() != State::Normal) {
|
||||
return;
|
||||
}
|
||||
|
||||
SetState(State::ServerClosed);
|
||||
client.OnServerClosed();
|
||||
}
|
||||
|
||||
void KSession::OnClientClosed() {
|
||||
if (GetState() != State::Normal) {
|
||||
return;
|
||||
}
|
||||
|
||||
SetState(State::ClientClosed);
|
||||
server.OnClientClosed();
|
||||
}
|
||||
|
||||
void KSession::PostDestroy(uintptr_t arg) {
|
||||
// Release the session count resource the owner process holds.
|
||||
KProcess* owner = reinterpret_cast<KProcess*>(arg);
|
||||
owner->GetResourceLimit()->Release(LimitableResource::Sessions, 1);
|
||||
owner->Close();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_client_port.h"
|
||||
#include "core/hle/kernel/k_client_session.h"
|
||||
#include "core/hle/kernel/k_scoped_resource_reservation.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/k_session.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KSession::KSession(KernelCore& kernel_)
|
||||
: KAutoObjectWithSlabHeapAndContainer{kernel_}, server{kernel_}, client{kernel_} {}
|
||||
KSession::~KSession() = default;
|
||||
|
||||
void KSession::Initialize(KClientPort* port_, const std::string& name_) {
|
||||
// Increment reference count.
|
||||
// Because reference count is one on creation, this will result
|
||||
// in a reference count of two. Thus, when both server and client are closed
|
||||
// this object will be destroyed.
|
||||
Open();
|
||||
|
||||
// Create our sub sessions.
|
||||
KAutoObject::Create(std::addressof(server));
|
||||
KAutoObject::Create(std::addressof(client));
|
||||
|
||||
// Initialize our sub sessions.
|
||||
server.Initialize(this, name_ + ":Server");
|
||||
client.Initialize(this, name_ + ":Client");
|
||||
|
||||
// Set state and name.
|
||||
SetState(State::Normal);
|
||||
name = name_;
|
||||
|
||||
// Set our owner process.
|
||||
process = kernel.CurrentProcess();
|
||||
process->Open();
|
||||
|
||||
// Set our port.
|
||||
port = port_;
|
||||
if (port != nullptr) {
|
||||
port->Open();
|
||||
}
|
||||
|
||||
// Mark initialized.
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
void KSession::Finalize() {
|
||||
if (port == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
port->OnSessionFinalized();
|
||||
port->Close();
|
||||
}
|
||||
|
||||
void KSession::OnServerClosed() {
|
||||
if (GetState() != State::Normal) {
|
||||
return;
|
||||
}
|
||||
|
||||
SetState(State::ServerClosed);
|
||||
client.OnServerClosed();
|
||||
}
|
||||
|
||||
void KSession::OnClientClosed() {
|
||||
if (GetState() != State::Normal) {
|
||||
return;
|
||||
}
|
||||
|
||||
SetState(State::ClientClosed);
|
||||
server.OnClientClosed();
|
||||
}
|
||||
|
||||
void KSession::PostDestroy(uintptr_t arg) {
|
||||
// Release the session count resource the owner process holds.
|
||||
KProcess* owner = reinterpret_cast<KProcess*>(arg);
|
||||
owner->GetResourceLimit()->Release(LimitableResource::Sessions, 1);
|
||||
owner->Close();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,99 +1,99 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <string>
|
||||
|
||||
#include "core/hle/kernel/k_client_session.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class SessionRequestManager;
|
||||
|
||||
class KSession final : public KAutoObjectWithSlabHeapAndContainer<KSession, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KSession, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KSession(KernelCore& kernel_);
|
||||
~KSession() override;
|
||||
|
||||
void Initialize(KClientPort* port_, const std::string& name_);
|
||||
|
||||
void Finalize() override;
|
||||
|
||||
bool IsInitialized() const override {
|
||||
return initialized;
|
||||
}
|
||||
|
||||
uintptr_t GetPostDestroyArgument() const override {
|
||||
return reinterpret_cast<uintptr_t>(process);
|
||||
}
|
||||
|
||||
static void PostDestroy(uintptr_t arg);
|
||||
|
||||
void OnServerClosed();
|
||||
|
||||
void OnClientClosed();
|
||||
|
||||
bool IsServerClosed() const {
|
||||
return this->GetState() != State::Normal;
|
||||
}
|
||||
|
||||
bool IsClientClosed() const {
|
||||
return this->GetState() != State::Normal;
|
||||
}
|
||||
|
||||
KClientSession& GetClientSession() {
|
||||
return client;
|
||||
}
|
||||
|
||||
KServerSession& GetServerSession() {
|
||||
return server;
|
||||
}
|
||||
|
||||
const KClientSession& GetClientSession() const {
|
||||
return client;
|
||||
}
|
||||
|
||||
const KServerSession& GetServerSession() const {
|
||||
return server;
|
||||
}
|
||||
|
||||
const KClientPort* GetParent() const {
|
||||
return port;
|
||||
}
|
||||
|
||||
KClientPort* GetParent() {
|
||||
return port;
|
||||
}
|
||||
|
||||
private:
|
||||
enum class State : u8 {
|
||||
Invalid = 0,
|
||||
Normal = 1,
|
||||
ClientClosed = 2,
|
||||
ServerClosed = 3,
|
||||
};
|
||||
|
||||
void SetState(State state) {
|
||||
atomic_state = static_cast<u8>(state);
|
||||
}
|
||||
|
||||
State GetState() const {
|
||||
return static_cast<State>(atomic_state.load(std::memory_order_relaxed));
|
||||
}
|
||||
|
||||
KServerSession server;
|
||||
KClientSession client;
|
||||
std::atomic<std::underlying_type_t<State>> atomic_state{
|
||||
static_cast<std::underlying_type_t<State>>(State::Invalid)};
|
||||
KClientPort* port{};
|
||||
KProcess* process{};
|
||||
bool initialized{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <string>
|
||||
|
||||
#include "core/hle/kernel/k_client_session.h"
|
||||
#include "core/hle/kernel/k_server_session.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class SessionRequestManager;
|
||||
|
||||
class KSession final : public KAutoObjectWithSlabHeapAndContainer<KSession, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KSession, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KSession(KernelCore& kernel_);
|
||||
~KSession() override;
|
||||
|
||||
void Initialize(KClientPort* port_, const std::string& name_);
|
||||
|
||||
void Finalize() override;
|
||||
|
||||
bool IsInitialized() const override {
|
||||
return initialized;
|
||||
}
|
||||
|
||||
uintptr_t GetPostDestroyArgument() const override {
|
||||
return reinterpret_cast<uintptr_t>(process);
|
||||
}
|
||||
|
||||
static void PostDestroy(uintptr_t arg);
|
||||
|
||||
void OnServerClosed();
|
||||
|
||||
void OnClientClosed();
|
||||
|
||||
bool IsServerClosed() const {
|
||||
return this->GetState() != State::Normal;
|
||||
}
|
||||
|
||||
bool IsClientClosed() const {
|
||||
return this->GetState() != State::Normal;
|
||||
}
|
||||
|
||||
KClientSession& GetClientSession() {
|
||||
return client;
|
||||
}
|
||||
|
||||
KServerSession& GetServerSession() {
|
||||
return server;
|
||||
}
|
||||
|
||||
const KClientSession& GetClientSession() const {
|
||||
return client;
|
||||
}
|
||||
|
||||
const KServerSession& GetServerSession() const {
|
||||
return server;
|
||||
}
|
||||
|
||||
const KClientPort* GetParent() const {
|
||||
return port;
|
||||
}
|
||||
|
||||
KClientPort* GetParent() {
|
||||
return port;
|
||||
}
|
||||
|
||||
private:
|
||||
enum class State : u8 {
|
||||
Invalid = 0,
|
||||
Normal = 1,
|
||||
ClientClosed = 2,
|
||||
ServerClosed = 3,
|
||||
};
|
||||
|
||||
void SetState(State state) {
|
||||
atomic_state = static_cast<u8>(state);
|
||||
}
|
||||
|
||||
State GetState() const {
|
||||
return static_cast<State>(atomic_state.load(std::memory_order_relaxed));
|
||||
}
|
||||
|
||||
KServerSession server;
|
||||
KClientSession client;
|
||||
std::atomic<std::underlying_type_t<State>> atomic_state{
|
||||
static_cast<std::underlying_type_t<State>>(State::Invalid)};
|
||||
KClientPort* port{};
|
||||
KProcess* process{};
|
||||
bool initialized{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,61 +1,61 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_page_buffer.h"
|
||||
#include "core/hle/kernel/k_session_request.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
Result KSessionRequest::SessionMappings::PushMap(VAddr client, VAddr server, size_t size,
|
||||
KMemoryState state, size_t index) {
|
||||
// At most 15 buffers of each type (4-bit descriptor counts).
|
||||
ASSERT(index < ((1ul << 4) - 1) * 3);
|
||||
|
||||
// Get the mapping.
|
||||
Mapping* mapping;
|
||||
if (index < NumStaticMappings) {
|
||||
mapping = &m_static_mappings[index];
|
||||
} else {
|
||||
// Allocate a page for the extra mappings.
|
||||
if (m_mappings == nullptr) {
|
||||
KPageBuffer* page_buffer = KPageBuffer::Allocate(kernel);
|
||||
R_UNLESS(page_buffer != nullptr, ResultOutOfMemory);
|
||||
|
||||
m_mappings = reinterpret_cast<Mapping*>(page_buffer);
|
||||
}
|
||||
|
||||
mapping = &m_mappings[index - NumStaticMappings];
|
||||
}
|
||||
|
||||
// Set the mapping.
|
||||
mapping->Set(client, server, size, state);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KSessionRequest::SessionMappings::PushSend(VAddr client, VAddr server, size_t size,
|
||||
KMemoryState state) {
|
||||
ASSERT(m_num_recv == 0);
|
||||
ASSERT(m_num_exch == 0);
|
||||
return this->PushMap(client, server, size, state, m_num_send++);
|
||||
}
|
||||
|
||||
Result KSessionRequest::SessionMappings::PushReceive(VAddr client, VAddr server, size_t size,
|
||||
KMemoryState state) {
|
||||
ASSERT(m_num_exch == 0);
|
||||
return this->PushMap(client, server, size, state, m_num_send + m_num_recv++);
|
||||
}
|
||||
|
||||
Result KSessionRequest::SessionMappings::PushExchange(VAddr client, VAddr server, size_t size,
|
||||
KMemoryState state) {
|
||||
return this->PushMap(client, server, size, state, m_num_send + m_num_recv + m_num_exch++);
|
||||
}
|
||||
|
||||
void KSessionRequest::SessionMappings::Finalize() {
|
||||
if (m_mappings) {
|
||||
KPageBuffer::Free(kernel, reinterpret_cast<KPageBuffer*>(m_mappings));
|
||||
m_mappings = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_page_buffer.h"
|
||||
#include "core/hle/kernel/k_session_request.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
Result KSessionRequest::SessionMappings::PushMap(VAddr client, VAddr server, size_t size,
|
||||
KMemoryState state, size_t index) {
|
||||
// At most 15 buffers of each type (4-bit descriptor counts).
|
||||
ASSERT(index < ((1ul << 4) - 1) * 3);
|
||||
|
||||
// Get the mapping.
|
||||
Mapping* mapping;
|
||||
if (index < NumStaticMappings) {
|
||||
mapping = &m_static_mappings[index];
|
||||
} else {
|
||||
// Allocate a page for the extra mappings.
|
||||
if (m_mappings == nullptr) {
|
||||
KPageBuffer* page_buffer = KPageBuffer::Allocate(kernel);
|
||||
R_UNLESS(page_buffer != nullptr, ResultOutOfMemory);
|
||||
|
||||
m_mappings = reinterpret_cast<Mapping*>(page_buffer);
|
||||
}
|
||||
|
||||
mapping = &m_mappings[index - NumStaticMappings];
|
||||
}
|
||||
|
||||
// Set the mapping.
|
||||
mapping->Set(client, server, size, state);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
Result KSessionRequest::SessionMappings::PushSend(VAddr client, VAddr server, size_t size,
|
||||
KMemoryState state) {
|
||||
ASSERT(m_num_recv == 0);
|
||||
ASSERT(m_num_exch == 0);
|
||||
return this->PushMap(client, server, size, state, m_num_send++);
|
||||
}
|
||||
|
||||
Result KSessionRequest::SessionMappings::PushReceive(VAddr client, VAddr server, size_t size,
|
||||
KMemoryState state) {
|
||||
ASSERT(m_num_exch == 0);
|
||||
return this->PushMap(client, server, size, state, m_num_send + m_num_recv++);
|
||||
}
|
||||
|
||||
Result KSessionRequest::SessionMappings::PushExchange(VAddr client, VAddr server, size_t size,
|
||||
KMemoryState state) {
|
||||
return this->PushMap(client, server, size, state, m_num_send + m_num_recv + m_num_exch++);
|
||||
}
|
||||
|
||||
void KSessionRequest::SessionMappings::Finalize() {
|
||||
if (m_mappings) {
|
||||
KPageBuffer::Free(kernel, reinterpret_cast<KPageBuffer*>(m_mappings));
|
||||
m_mappings = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,306 +1,306 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KSessionRequest final : public KSlabAllocated<KSessionRequest>,
|
||||
public KAutoObject,
|
||||
public boost::intrusive::list_base_hook<> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KSessionRequest, KAutoObject);
|
||||
|
||||
public:
|
||||
class SessionMappings {
|
||||
private:
|
||||
static constexpr size_t NumStaticMappings = 8;
|
||||
|
||||
class Mapping {
|
||||
public:
|
||||
constexpr void Set(VAddr c, VAddr s, size_t sz, KMemoryState st) {
|
||||
m_client_address = c;
|
||||
m_server_address = s;
|
||||
m_size = sz;
|
||||
m_state = st;
|
||||
}
|
||||
|
||||
constexpr VAddr GetClientAddress() const {
|
||||
return m_client_address;
|
||||
}
|
||||
constexpr VAddr GetServerAddress() const {
|
||||
return m_server_address;
|
||||
}
|
||||
constexpr size_t GetSize() const {
|
||||
return m_size;
|
||||
}
|
||||
constexpr KMemoryState GetMemoryState() const {
|
||||
return m_state;
|
||||
}
|
||||
|
||||
private:
|
||||
VAddr m_client_address;
|
||||
VAddr m_server_address;
|
||||
size_t m_size;
|
||||
KMemoryState m_state;
|
||||
};
|
||||
|
||||
public:
|
||||
explicit SessionMappings(KernelCore& kernel_) : kernel(kernel_) {}
|
||||
|
||||
void Initialize() {}
|
||||
void Finalize();
|
||||
|
||||
size_t GetSendCount() const {
|
||||
return m_num_send;
|
||||
}
|
||||
size_t GetReceiveCount() const {
|
||||
return m_num_recv;
|
||||
}
|
||||
size_t GetExchangeCount() const {
|
||||
return m_num_exch;
|
||||
}
|
||||
|
||||
Result PushSend(VAddr client, VAddr server, size_t size, KMemoryState state);
|
||||
Result PushReceive(VAddr client, VAddr server, size_t size, KMemoryState state);
|
||||
Result PushExchange(VAddr client, VAddr server, size_t size, KMemoryState state);
|
||||
|
||||
VAddr GetSendClientAddress(size_t i) const {
|
||||
return GetSendMapping(i).GetClientAddress();
|
||||
}
|
||||
VAddr GetSendServerAddress(size_t i) const {
|
||||
return GetSendMapping(i).GetServerAddress();
|
||||
}
|
||||
size_t GetSendSize(size_t i) const {
|
||||
return GetSendMapping(i).GetSize();
|
||||
}
|
||||
KMemoryState GetSendMemoryState(size_t i) const {
|
||||
return GetSendMapping(i).GetMemoryState();
|
||||
}
|
||||
|
||||
VAddr GetReceiveClientAddress(size_t i) const {
|
||||
return GetReceiveMapping(i).GetClientAddress();
|
||||
}
|
||||
VAddr GetReceiveServerAddress(size_t i) const {
|
||||
return GetReceiveMapping(i).GetServerAddress();
|
||||
}
|
||||
size_t GetReceiveSize(size_t i) const {
|
||||
return GetReceiveMapping(i).GetSize();
|
||||
}
|
||||
KMemoryState GetReceiveMemoryState(size_t i) const {
|
||||
return GetReceiveMapping(i).GetMemoryState();
|
||||
}
|
||||
|
||||
VAddr GetExchangeClientAddress(size_t i) const {
|
||||
return GetExchangeMapping(i).GetClientAddress();
|
||||
}
|
||||
VAddr GetExchangeServerAddress(size_t i) const {
|
||||
return GetExchangeMapping(i).GetServerAddress();
|
||||
}
|
||||
size_t GetExchangeSize(size_t i) const {
|
||||
return GetExchangeMapping(i).GetSize();
|
||||
}
|
||||
KMemoryState GetExchangeMemoryState(size_t i) const {
|
||||
return GetExchangeMapping(i).GetMemoryState();
|
||||
}
|
||||
|
||||
private:
|
||||
Result PushMap(VAddr client, VAddr server, size_t size, KMemoryState state, size_t index);
|
||||
|
||||
const Mapping& GetSendMapping(size_t i) const {
|
||||
ASSERT(i < m_num_send);
|
||||
|
||||
const size_t index = i;
|
||||
if (index < NumStaticMappings) {
|
||||
return m_static_mappings[index];
|
||||
} else {
|
||||
return m_mappings[index - NumStaticMappings];
|
||||
}
|
||||
}
|
||||
|
||||
const Mapping& GetReceiveMapping(size_t i) const {
|
||||
ASSERT(i < m_num_recv);
|
||||
|
||||
const size_t index = m_num_send + i;
|
||||
if (index < NumStaticMappings) {
|
||||
return m_static_mappings[index];
|
||||
} else {
|
||||
return m_mappings[index - NumStaticMappings];
|
||||
}
|
||||
}
|
||||
|
||||
const Mapping& GetExchangeMapping(size_t i) const {
|
||||
ASSERT(i < m_num_exch);
|
||||
|
||||
const size_t index = m_num_send + m_num_recv + i;
|
||||
if (index < NumStaticMappings) {
|
||||
return m_static_mappings[index];
|
||||
} else {
|
||||
return m_mappings[index - NumStaticMappings];
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
std::array<Mapping, NumStaticMappings> m_static_mappings;
|
||||
Mapping* m_mappings{};
|
||||
u8 m_num_send{};
|
||||
u8 m_num_recv{};
|
||||
u8 m_num_exch{};
|
||||
};
|
||||
|
||||
public:
|
||||
explicit KSessionRequest(KernelCore& kernel_) : KAutoObject(kernel_), m_mappings(kernel_) {}
|
||||
|
||||
static KSessionRequest* Create(KernelCore& kernel) {
|
||||
KSessionRequest* req = KSessionRequest::Allocate(kernel);
|
||||
if (req != nullptr) [[likely]] {
|
||||
KAutoObject::Create(req);
|
||||
}
|
||||
return req;
|
||||
}
|
||||
|
||||
void Destroy() override {
|
||||
this->Finalize();
|
||||
KSessionRequest::Free(kernel, this);
|
||||
}
|
||||
|
||||
void Initialize(KEvent* event, uintptr_t address, size_t size) {
|
||||
m_mappings.Initialize();
|
||||
|
||||
m_thread = GetCurrentThreadPointer(kernel);
|
||||
m_event = event;
|
||||
m_address = address;
|
||||
m_size = size;
|
||||
|
||||
m_thread->Open();
|
||||
if (m_event != nullptr) {
|
||||
m_event->Open();
|
||||
}
|
||||
}
|
||||
|
||||
static void PostDestroy(uintptr_t arg) {}
|
||||
|
||||
KThread* GetThread() const {
|
||||
return m_thread;
|
||||
}
|
||||
KEvent* GetEvent() const {
|
||||
return m_event;
|
||||
}
|
||||
uintptr_t GetAddress() const {
|
||||
return m_address;
|
||||
}
|
||||
size_t GetSize() const {
|
||||
return m_size;
|
||||
}
|
||||
KProcess* GetServerProcess() const {
|
||||
return m_server;
|
||||
}
|
||||
|
||||
void SetServerProcess(KProcess* process) {
|
||||
m_server = process;
|
||||
m_server->Open();
|
||||
}
|
||||
|
||||
void ClearThread() {
|
||||
m_thread = nullptr;
|
||||
}
|
||||
void ClearEvent() {
|
||||
m_event = nullptr;
|
||||
}
|
||||
|
||||
size_t GetSendCount() const {
|
||||
return m_mappings.GetSendCount();
|
||||
}
|
||||
size_t GetReceiveCount() const {
|
||||
return m_mappings.GetReceiveCount();
|
||||
}
|
||||
size_t GetExchangeCount() const {
|
||||
return m_mappings.GetExchangeCount();
|
||||
}
|
||||
|
||||
Result PushSend(VAddr client, VAddr server, size_t size, KMemoryState state) {
|
||||
return m_mappings.PushSend(client, server, size, state);
|
||||
}
|
||||
|
||||
Result PushReceive(VAddr client, VAddr server, size_t size, KMemoryState state) {
|
||||
return m_mappings.PushReceive(client, server, size, state);
|
||||
}
|
||||
|
||||
Result PushExchange(VAddr client, VAddr server, size_t size, KMemoryState state) {
|
||||
return m_mappings.PushExchange(client, server, size, state);
|
||||
}
|
||||
|
||||
VAddr GetSendClientAddress(size_t i) const {
|
||||
return m_mappings.GetSendClientAddress(i);
|
||||
}
|
||||
VAddr GetSendServerAddress(size_t i) const {
|
||||
return m_mappings.GetSendServerAddress(i);
|
||||
}
|
||||
size_t GetSendSize(size_t i) const {
|
||||
return m_mappings.GetSendSize(i);
|
||||
}
|
||||
KMemoryState GetSendMemoryState(size_t i) const {
|
||||
return m_mappings.GetSendMemoryState(i);
|
||||
}
|
||||
|
||||
VAddr GetReceiveClientAddress(size_t i) const {
|
||||
return m_mappings.GetReceiveClientAddress(i);
|
||||
}
|
||||
VAddr GetReceiveServerAddress(size_t i) const {
|
||||
return m_mappings.GetReceiveServerAddress(i);
|
||||
}
|
||||
size_t GetReceiveSize(size_t i) const {
|
||||
return m_mappings.GetReceiveSize(i);
|
||||
}
|
||||
KMemoryState GetReceiveMemoryState(size_t i) const {
|
||||
return m_mappings.GetReceiveMemoryState(i);
|
||||
}
|
||||
|
||||
VAddr GetExchangeClientAddress(size_t i) const {
|
||||
return m_mappings.GetExchangeClientAddress(i);
|
||||
}
|
||||
VAddr GetExchangeServerAddress(size_t i) const {
|
||||
return m_mappings.GetExchangeServerAddress(i);
|
||||
}
|
||||
size_t GetExchangeSize(size_t i) const {
|
||||
return m_mappings.GetExchangeSize(i);
|
||||
}
|
||||
KMemoryState GetExchangeMemoryState(size_t i) const {
|
||||
return m_mappings.GetExchangeMemoryState(i);
|
||||
}
|
||||
|
||||
private:
|
||||
// NOTE: This is public and virtual in Nintendo's kernel.
|
||||
void Finalize() override {
|
||||
m_mappings.Finalize();
|
||||
|
||||
if (m_thread) {
|
||||
m_thread->Close();
|
||||
}
|
||||
if (m_event) {
|
||||
m_event->Close();
|
||||
}
|
||||
if (m_server) {
|
||||
m_server->Close();
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
SessionMappings m_mappings;
|
||||
KThread* m_thread{};
|
||||
KProcess* m_server{};
|
||||
KEvent* m_event{};
|
||||
uintptr_t m_address{};
|
||||
size_t m_size{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/kernel/k_event.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KSessionRequest final : public KSlabAllocated<KSessionRequest>,
|
||||
public KAutoObject,
|
||||
public boost::intrusive::list_base_hook<> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KSessionRequest, KAutoObject);
|
||||
|
||||
public:
|
||||
class SessionMappings {
|
||||
private:
|
||||
static constexpr size_t NumStaticMappings = 8;
|
||||
|
||||
class Mapping {
|
||||
public:
|
||||
constexpr void Set(VAddr c, VAddr s, size_t sz, KMemoryState st) {
|
||||
m_client_address = c;
|
||||
m_server_address = s;
|
||||
m_size = sz;
|
||||
m_state = st;
|
||||
}
|
||||
|
||||
constexpr VAddr GetClientAddress() const {
|
||||
return m_client_address;
|
||||
}
|
||||
constexpr VAddr GetServerAddress() const {
|
||||
return m_server_address;
|
||||
}
|
||||
constexpr size_t GetSize() const {
|
||||
return m_size;
|
||||
}
|
||||
constexpr KMemoryState GetMemoryState() const {
|
||||
return m_state;
|
||||
}
|
||||
|
||||
private:
|
||||
VAddr m_client_address;
|
||||
VAddr m_server_address;
|
||||
size_t m_size;
|
||||
KMemoryState m_state;
|
||||
};
|
||||
|
||||
public:
|
||||
explicit SessionMappings(KernelCore& kernel_) : kernel(kernel_) {}
|
||||
|
||||
void Initialize() {}
|
||||
void Finalize();
|
||||
|
||||
size_t GetSendCount() const {
|
||||
return m_num_send;
|
||||
}
|
||||
size_t GetReceiveCount() const {
|
||||
return m_num_recv;
|
||||
}
|
||||
size_t GetExchangeCount() const {
|
||||
return m_num_exch;
|
||||
}
|
||||
|
||||
Result PushSend(VAddr client, VAddr server, size_t size, KMemoryState state);
|
||||
Result PushReceive(VAddr client, VAddr server, size_t size, KMemoryState state);
|
||||
Result PushExchange(VAddr client, VAddr server, size_t size, KMemoryState state);
|
||||
|
||||
VAddr GetSendClientAddress(size_t i) const {
|
||||
return GetSendMapping(i).GetClientAddress();
|
||||
}
|
||||
VAddr GetSendServerAddress(size_t i) const {
|
||||
return GetSendMapping(i).GetServerAddress();
|
||||
}
|
||||
size_t GetSendSize(size_t i) const {
|
||||
return GetSendMapping(i).GetSize();
|
||||
}
|
||||
KMemoryState GetSendMemoryState(size_t i) const {
|
||||
return GetSendMapping(i).GetMemoryState();
|
||||
}
|
||||
|
||||
VAddr GetReceiveClientAddress(size_t i) const {
|
||||
return GetReceiveMapping(i).GetClientAddress();
|
||||
}
|
||||
VAddr GetReceiveServerAddress(size_t i) const {
|
||||
return GetReceiveMapping(i).GetServerAddress();
|
||||
}
|
||||
size_t GetReceiveSize(size_t i) const {
|
||||
return GetReceiveMapping(i).GetSize();
|
||||
}
|
||||
KMemoryState GetReceiveMemoryState(size_t i) const {
|
||||
return GetReceiveMapping(i).GetMemoryState();
|
||||
}
|
||||
|
||||
VAddr GetExchangeClientAddress(size_t i) const {
|
||||
return GetExchangeMapping(i).GetClientAddress();
|
||||
}
|
||||
VAddr GetExchangeServerAddress(size_t i) const {
|
||||
return GetExchangeMapping(i).GetServerAddress();
|
||||
}
|
||||
size_t GetExchangeSize(size_t i) const {
|
||||
return GetExchangeMapping(i).GetSize();
|
||||
}
|
||||
KMemoryState GetExchangeMemoryState(size_t i) const {
|
||||
return GetExchangeMapping(i).GetMemoryState();
|
||||
}
|
||||
|
||||
private:
|
||||
Result PushMap(VAddr client, VAddr server, size_t size, KMemoryState state, size_t index);
|
||||
|
||||
const Mapping& GetSendMapping(size_t i) const {
|
||||
ASSERT(i < m_num_send);
|
||||
|
||||
const size_t index = i;
|
||||
if (index < NumStaticMappings) {
|
||||
return m_static_mappings[index];
|
||||
} else {
|
||||
return m_mappings[index - NumStaticMappings];
|
||||
}
|
||||
}
|
||||
|
||||
const Mapping& GetReceiveMapping(size_t i) const {
|
||||
ASSERT(i < m_num_recv);
|
||||
|
||||
const size_t index = m_num_send + i;
|
||||
if (index < NumStaticMappings) {
|
||||
return m_static_mappings[index];
|
||||
} else {
|
||||
return m_mappings[index - NumStaticMappings];
|
||||
}
|
||||
}
|
||||
|
||||
const Mapping& GetExchangeMapping(size_t i) const {
|
||||
ASSERT(i < m_num_exch);
|
||||
|
||||
const size_t index = m_num_send + m_num_recv + i;
|
||||
if (index < NumStaticMappings) {
|
||||
return m_static_mappings[index];
|
||||
} else {
|
||||
return m_mappings[index - NumStaticMappings];
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
KernelCore& kernel;
|
||||
std::array<Mapping, NumStaticMappings> m_static_mappings;
|
||||
Mapping* m_mappings{};
|
||||
u8 m_num_send{};
|
||||
u8 m_num_recv{};
|
||||
u8 m_num_exch{};
|
||||
};
|
||||
|
||||
public:
|
||||
explicit KSessionRequest(KernelCore& kernel_) : KAutoObject(kernel_), m_mappings(kernel_) {}
|
||||
|
||||
static KSessionRequest* Create(KernelCore& kernel) {
|
||||
KSessionRequest* req = KSessionRequest::Allocate(kernel);
|
||||
if (req != nullptr) [[likely]] {
|
||||
KAutoObject::Create(req);
|
||||
}
|
||||
return req;
|
||||
}
|
||||
|
||||
void Destroy() override {
|
||||
this->Finalize();
|
||||
KSessionRequest::Free(kernel, this);
|
||||
}
|
||||
|
||||
void Initialize(KEvent* event, uintptr_t address, size_t size) {
|
||||
m_mappings.Initialize();
|
||||
|
||||
m_thread = GetCurrentThreadPointer(kernel);
|
||||
m_event = event;
|
||||
m_address = address;
|
||||
m_size = size;
|
||||
|
||||
m_thread->Open();
|
||||
if (m_event != nullptr) {
|
||||
m_event->Open();
|
||||
}
|
||||
}
|
||||
|
||||
static void PostDestroy(uintptr_t arg) {}
|
||||
|
||||
KThread* GetThread() const {
|
||||
return m_thread;
|
||||
}
|
||||
KEvent* GetEvent() const {
|
||||
return m_event;
|
||||
}
|
||||
uintptr_t GetAddress() const {
|
||||
return m_address;
|
||||
}
|
||||
size_t GetSize() const {
|
||||
return m_size;
|
||||
}
|
||||
KProcess* GetServerProcess() const {
|
||||
return m_server;
|
||||
}
|
||||
|
||||
void SetServerProcess(KProcess* process) {
|
||||
m_server = process;
|
||||
m_server->Open();
|
||||
}
|
||||
|
||||
void ClearThread() {
|
||||
m_thread = nullptr;
|
||||
}
|
||||
void ClearEvent() {
|
||||
m_event = nullptr;
|
||||
}
|
||||
|
||||
size_t GetSendCount() const {
|
||||
return m_mappings.GetSendCount();
|
||||
}
|
||||
size_t GetReceiveCount() const {
|
||||
return m_mappings.GetReceiveCount();
|
||||
}
|
||||
size_t GetExchangeCount() const {
|
||||
return m_mappings.GetExchangeCount();
|
||||
}
|
||||
|
||||
Result PushSend(VAddr client, VAddr server, size_t size, KMemoryState state) {
|
||||
return m_mappings.PushSend(client, server, size, state);
|
||||
}
|
||||
|
||||
Result PushReceive(VAddr client, VAddr server, size_t size, KMemoryState state) {
|
||||
return m_mappings.PushReceive(client, server, size, state);
|
||||
}
|
||||
|
||||
Result PushExchange(VAddr client, VAddr server, size_t size, KMemoryState state) {
|
||||
return m_mappings.PushExchange(client, server, size, state);
|
||||
}
|
||||
|
||||
VAddr GetSendClientAddress(size_t i) const {
|
||||
return m_mappings.GetSendClientAddress(i);
|
||||
}
|
||||
VAddr GetSendServerAddress(size_t i) const {
|
||||
return m_mappings.GetSendServerAddress(i);
|
||||
}
|
||||
size_t GetSendSize(size_t i) const {
|
||||
return m_mappings.GetSendSize(i);
|
||||
}
|
||||
KMemoryState GetSendMemoryState(size_t i) const {
|
||||
return m_mappings.GetSendMemoryState(i);
|
||||
}
|
||||
|
||||
VAddr GetReceiveClientAddress(size_t i) const {
|
||||
return m_mappings.GetReceiveClientAddress(i);
|
||||
}
|
||||
VAddr GetReceiveServerAddress(size_t i) const {
|
||||
return m_mappings.GetReceiveServerAddress(i);
|
||||
}
|
||||
size_t GetReceiveSize(size_t i) const {
|
||||
return m_mappings.GetReceiveSize(i);
|
||||
}
|
||||
KMemoryState GetReceiveMemoryState(size_t i) const {
|
||||
return m_mappings.GetReceiveMemoryState(i);
|
||||
}
|
||||
|
||||
VAddr GetExchangeClientAddress(size_t i) const {
|
||||
return m_mappings.GetExchangeClientAddress(i);
|
||||
}
|
||||
VAddr GetExchangeServerAddress(size_t i) const {
|
||||
return m_mappings.GetExchangeServerAddress(i);
|
||||
}
|
||||
size_t GetExchangeSize(size_t i) const {
|
||||
return m_mappings.GetExchangeSize(i);
|
||||
}
|
||||
KMemoryState GetExchangeMemoryState(size_t i) const {
|
||||
return m_mappings.GetExchangeMemoryState(i);
|
||||
}
|
||||
|
||||
private:
|
||||
// NOTE: This is public and virtual in Nintendo's kernel.
|
||||
void Finalize() override {
|
||||
m_mappings.Finalize();
|
||||
|
||||
if (m_thread) {
|
||||
m_thread->Close();
|
||||
}
|
||||
if (m_event) {
|
||||
m_event->Close();
|
||||
}
|
||||
if (m_server) {
|
||||
m_server->Close();
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
SessionMappings m_mappings;
|
||||
KThread* m_thread{};
|
||||
KProcess* m_server{};
|
||||
KEvent* m_event{};
|
||||
uintptr_t m_address{};
|
||||
size_t m_size{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,96 +1,96 @@
|
||||
// SPDX-FileCopyrightText: 2014 Citra Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/k_page_table.h"
|
||||
#include "core/hle/kernel/k_scoped_resource_reservation.h"
|
||||
#include "core/hle/kernel/k_shared_memory.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KSharedMemory::KSharedMemory(KernelCore& kernel_) : KAutoObjectWithSlabHeapAndContainer{kernel_} {}
|
||||
|
||||
KSharedMemory::~KSharedMemory() {
|
||||
kernel.GetSystemResourceLimit()->Release(LimitableResource::PhysicalMemory, size);
|
||||
}
|
||||
|
||||
Result KSharedMemory::Initialize(Core::DeviceMemory& device_memory_, KProcess* owner_process_,
|
||||
KPageGroup&& page_list_, Svc::MemoryPermission owner_permission_,
|
||||
Svc::MemoryPermission user_permission_, PAddr physical_address_,
|
||||
std::size_t size_, std::string name_) {
|
||||
// Set members.
|
||||
owner_process = owner_process_;
|
||||
device_memory = &device_memory_;
|
||||
page_list = std::move(page_list_);
|
||||
owner_permission = owner_permission_;
|
||||
user_permission = user_permission_;
|
||||
physical_address = physical_address_;
|
||||
size = size_;
|
||||
name = std::move(name_);
|
||||
|
||||
// Get the resource limit.
|
||||
KResourceLimit* reslimit = kernel.GetSystemResourceLimit();
|
||||
|
||||
// Reserve memory for ourselves.
|
||||
KScopedResourceReservation memory_reservation(reslimit, LimitableResource::PhysicalMemory,
|
||||
size_);
|
||||
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
|
||||
|
||||
// Commit our reservation.
|
||||
memory_reservation.Commit();
|
||||
|
||||
// Set our resource limit.
|
||||
resource_limit = reslimit;
|
||||
resource_limit->Open();
|
||||
|
||||
// Mark initialized.
|
||||
is_initialized = true;
|
||||
|
||||
// Clear all pages in the memory.
|
||||
std::memset(device_memory_.GetPointer<void>(physical_address_), 0, size_);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KSharedMemory::Finalize() {
|
||||
// Release the memory reservation.
|
||||
resource_limit->Release(LimitableResource::PhysicalMemory, size);
|
||||
resource_limit->Close();
|
||||
|
||||
// Perform inherited finalization.
|
||||
KAutoObjectWithSlabHeapAndContainer<KSharedMemory, KAutoObjectWithList>::Finalize();
|
||||
}
|
||||
|
||||
Result KSharedMemory::Map(KProcess& target_process, VAddr address, std::size_t map_size,
|
||||
Svc::MemoryPermission permissions) {
|
||||
const u64 page_count{(map_size + PageSize - 1) / PageSize};
|
||||
|
||||
if (page_list.GetNumPages() != page_count) {
|
||||
UNIMPLEMENTED_MSG("Page count does not match");
|
||||
}
|
||||
|
||||
const Svc::MemoryPermission expected =
|
||||
&target_process == owner_process ? owner_permission : user_permission;
|
||||
|
||||
if (permissions != expected) {
|
||||
UNIMPLEMENTED_MSG("Permission does not match");
|
||||
}
|
||||
|
||||
return target_process.PageTable().MapPages(address, page_list, KMemoryState::Shared,
|
||||
ConvertToKMemoryPermission(permissions));
|
||||
}
|
||||
|
||||
Result KSharedMemory::Unmap(KProcess& target_process, VAddr address, std::size_t unmap_size) {
|
||||
const u64 page_count{(unmap_size + PageSize - 1) / PageSize};
|
||||
|
||||
if (page_list.GetNumPages() != page_count) {
|
||||
UNIMPLEMENTED_MSG("Page count does not match");
|
||||
}
|
||||
|
||||
return target_process.PageTable().UnmapPages(address, page_list, KMemoryState::Shared);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: 2014 Citra Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "core/core.h"
|
||||
#include "core/hle/kernel/k_page_table.h"
|
||||
#include "core/hle/kernel/k_scoped_resource_reservation.h"
|
||||
#include "core/hle/kernel/k_shared_memory.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
KSharedMemory::KSharedMemory(KernelCore& kernel_) : KAutoObjectWithSlabHeapAndContainer{kernel_} {}
|
||||
|
||||
KSharedMemory::~KSharedMemory() {
|
||||
kernel.GetSystemResourceLimit()->Release(LimitableResource::PhysicalMemory, size);
|
||||
}
|
||||
|
||||
Result KSharedMemory::Initialize(Core::DeviceMemory& device_memory_, KProcess* owner_process_,
|
||||
KPageGroup&& page_list_, Svc::MemoryPermission owner_permission_,
|
||||
Svc::MemoryPermission user_permission_, PAddr physical_address_,
|
||||
std::size_t size_, std::string name_) {
|
||||
// Set members.
|
||||
owner_process = owner_process_;
|
||||
device_memory = &device_memory_;
|
||||
page_list = std::move(page_list_);
|
||||
owner_permission = owner_permission_;
|
||||
user_permission = user_permission_;
|
||||
physical_address = physical_address_;
|
||||
size = size_;
|
||||
name = std::move(name_);
|
||||
|
||||
// Get the resource limit.
|
||||
KResourceLimit* reslimit = kernel.GetSystemResourceLimit();
|
||||
|
||||
// Reserve memory for ourselves.
|
||||
KScopedResourceReservation memory_reservation(reslimit, LimitableResource::PhysicalMemory,
|
||||
size_);
|
||||
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
|
||||
|
||||
// Commit our reservation.
|
||||
memory_reservation.Commit();
|
||||
|
||||
// Set our resource limit.
|
||||
resource_limit = reslimit;
|
||||
resource_limit->Open();
|
||||
|
||||
// Mark initialized.
|
||||
is_initialized = true;
|
||||
|
||||
// Clear all pages in the memory.
|
||||
std::memset(device_memory_.GetPointer<void>(physical_address_), 0, size_);
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
void KSharedMemory::Finalize() {
|
||||
// Release the memory reservation.
|
||||
resource_limit->Release(LimitableResource::PhysicalMemory, size);
|
||||
resource_limit->Close();
|
||||
|
||||
// Perform inherited finalization.
|
||||
KAutoObjectWithSlabHeapAndContainer<KSharedMemory, KAutoObjectWithList>::Finalize();
|
||||
}
|
||||
|
||||
Result KSharedMemory::Map(KProcess& target_process, VAddr address, std::size_t map_size,
|
||||
Svc::MemoryPermission permissions) {
|
||||
const u64 page_count{(map_size + PageSize - 1) / PageSize};
|
||||
|
||||
if (page_list.GetNumPages() != page_count) {
|
||||
UNIMPLEMENTED_MSG("Page count does not match");
|
||||
}
|
||||
|
||||
const Svc::MemoryPermission expected =
|
||||
&target_process == owner_process ? owner_permission : user_permission;
|
||||
|
||||
if (permissions != expected) {
|
||||
UNIMPLEMENTED_MSG("Permission does not match");
|
||||
}
|
||||
|
||||
return target_process.PageTable().MapPages(address, page_list, KMemoryState::Shared,
|
||||
ConvertToKMemoryPermission(permissions));
|
||||
}
|
||||
|
||||
Result KSharedMemory::Unmap(KProcess& target_process, VAddr address, std::size_t unmap_size) {
|
||||
const u64 page_count{(unmap_size + PageSize - 1) / PageSize};
|
||||
|
||||
if (page_list.GetNumPages() != page_count) {
|
||||
UNIMPLEMENTED_MSG("Page count does not match");
|
||||
}
|
||||
|
||||
return target_process.PageTable().UnmapPages(address, page_list, KMemoryState::Shared);
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,88 +1,88 @@
|
||||
// SPDX-FileCopyrightText: 2014 Citra Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
#include "core/hle/kernel/k_page_group.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KSharedMemory final
|
||||
: public KAutoObjectWithSlabHeapAndContainer<KSharedMemory, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KSharedMemory, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KSharedMemory(KernelCore& kernel_);
|
||||
~KSharedMemory() override;
|
||||
|
||||
Result Initialize(Core::DeviceMemory& device_memory_, KProcess* owner_process_,
|
||||
KPageGroup&& page_list_, Svc::MemoryPermission owner_permission_,
|
||||
Svc::MemoryPermission user_permission_, PAddr physical_address_,
|
||||
std::size_t size_, std::string name_);
|
||||
|
||||
/**
|
||||
* Maps a shared memory block to an address in the target process' address space
|
||||
* @param target_process Process on which to map the memory block
|
||||
* @param address Address in system memory to map shared memory block to
|
||||
* @param map_size Size of the shared memory block to map
|
||||
* @param permissions Memory block map permissions (specified by SVC field)
|
||||
*/
|
||||
Result Map(KProcess& target_process, VAddr address, std::size_t map_size,
|
||||
Svc::MemoryPermission permissions);
|
||||
|
||||
/**
|
||||
* Unmaps a shared memory block from an address in the target process' address space
|
||||
* @param target_process Process on which to unmap the memory block
|
||||
* @param address Address in system memory to unmap shared memory block
|
||||
* @param unmap_size Size of the shared memory block to unmap
|
||||
*/
|
||||
Result Unmap(KProcess& target_process, VAddr address, std::size_t unmap_size);
|
||||
|
||||
/**
|
||||
* Gets a pointer to the shared memory block
|
||||
* @param offset Offset from the start of the shared memory block to get pointer
|
||||
* @return A pointer to the shared memory block from the specified offset
|
||||
*/
|
||||
u8* GetPointer(std::size_t offset = 0) {
|
||||
return device_memory->GetPointer<u8>(physical_address + offset);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a pointer to the shared memory block
|
||||
* @param offset Offset from the start of the shared memory block to get pointer
|
||||
* @return A pointer to the shared memory block from the specified offset
|
||||
*/
|
||||
const u8* GetPointer(std::size_t offset = 0) const {
|
||||
return device_memory->GetPointer<u8>(physical_address + offset);
|
||||
}
|
||||
|
||||
void Finalize() override;
|
||||
|
||||
bool IsInitialized() const override {
|
||||
return is_initialized;
|
||||
}
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
private:
|
||||
Core::DeviceMemory* device_memory;
|
||||
KProcess* owner_process{};
|
||||
KPageGroup page_list;
|
||||
Svc::MemoryPermission owner_permission{};
|
||||
Svc::MemoryPermission user_permission{};
|
||||
PAddr physical_address{};
|
||||
std::size_t size{};
|
||||
KResourceLimit* resource_limit{};
|
||||
bool is_initialized{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: 2014 Citra Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "common/common_types.h"
|
||||
#include "core/device_memory.h"
|
||||
#include "core/hle/kernel/k_memory_block.h"
|
||||
#include "core/hle/kernel/k_page_group.h"
|
||||
#include "core/hle/kernel/k_process.h"
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
class KSharedMemory final
|
||||
: public KAutoObjectWithSlabHeapAndContainer<KSharedMemory, KAutoObjectWithList> {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KSharedMemory, KAutoObject);
|
||||
|
||||
public:
|
||||
explicit KSharedMemory(KernelCore& kernel_);
|
||||
~KSharedMemory() override;
|
||||
|
||||
Result Initialize(Core::DeviceMemory& device_memory_, KProcess* owner_process_,
|
||||
KPageGroup&& page_list_, Svc::MemoryPermission owner_permission_,
|
||||
Svc::MemoryPermission user_permission_, PAddr physical_address_,
|
||||
std::size_t size_, std::string name_);
|
||||
|
||||
/**
|
||||
* Maps a shared memory block to an address in the target process' address space
|
||||
* @param target_process Process on which to map the memory block
|
||||
* @param address Address in system memory to map shared memory block to
|
||||
* @param map_size Size of the shared memory block to map
|
||||
* @param permissions Memory block map permissions (specified by SVC field)
|
||||
*/
|
||||
Result Map(KProcess& target_process, VAddr address, std::size_t map_size,
|
||||
Svc::MemoryPermission permissions);
|
||||
|
||||
/**
|
||||
* Unmaps a shared memory block from an address in the target process' address space
|
||||
* @param target_process Process on which to unmap the memory block
|
||||
* @param address Address in system memory to unmap shared memory block
|
||||
* @param unmap_size Size of the shared memory block to unmap
|
||||
*/
|
||||
Result Unmap(KProcess& target_process, VAddr address, std::size_t unmap_size);
|
||||
|
||||
/**
|
||||
* Gets a pointer to the shared memory block
|
||||
* @param offset Offset from the start of the shared memory block to get pointer
|
||||
* @return A pointer to the shared memory block from the specified offset
|
||||
*/
|
||||
u8* GetPointer(std::size_t offset = 0) {
|
||||
return device_memory->GetPointer<u8>(physical_address + offset);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a pointer to the shared memory block
|
||||
* @param offset Offset from the start of the shared memory block to get pointer
|
||||
* @return A pointer to the shared memory block from the specified offset
|
||||
*/
|
||||
const u8* GetPointer(std::size_t offset = 0) const {
|
||||
return device_memory->GetPointer<u8>(physical_address + offset);
|
||||
}
|
||||
|
||||
void Finalize() override;
|
||||
|
||||
bool IsInitialized() const override {
|
||||
return is_initialized;
|
||||
}
|
||||
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
|
||||
|
||||
private:
|
||||
Core::DeviceMemory* device_memory;
|
||||
KProcess* owner_process{};
|
||||
KPageGroup page_list;
|
||||
Svc::MemoryPermission owner_permission{};
|
||||
Svc::MemoryPermission user_permission{};
|
||||
PAddr physical_address{};
|
||||
std::size_t size{};
|
||||
KResourceLimit* resource_limit{};
|
||||
bool is_initialized{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,42 +1,42 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/intrusive/list.hpp>
|
||||
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KSharedMemory;
|
||||
|
||||
class KSharedMemoryInfo final : public KSlabAllocated<KSharedMemoryInfo>,
|
||||
public boost::intrusive::list_base_hook<> {
|
||||
|
||||
public:
|
||||
explicit KSharedMemoryInfo(KernelCore&) {}
|
||||
KSharedMemoryInfo() = default;
|
||||
|
||||
constexpr void Initialize(KSharedMemory* shmem) {
|
||||
shared_memory = shmem;
|
||||
}
|
||||
|
||||
constexpr KSharedMemory* GetSharedMemory() const {
|
||||
return shared_memory;
|
||||
}
|
||||
|
||||
constexpr void Open() {
|
||||
++reference_count;
|
||||
}
|
||||
|
||||
constexpr bool Close() {
|
||||
return (--reference_count) == 0;
|
||||
}
|
||||
|
||||
private:
|
||||
KSharedMemory* shared_memory{};
|
||||
size_t reference_count{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/intrusive/list.hpp>
|
||||
|
||||
#include "core/hle/kernel/slab_helpers.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KSharedMemory;
|
||||
|
||||
class KSharedMemoryInfo final : public KSlabAllocated<KSharedMemoryInfo>,
|
||||
public boost::intrusive::list_base_hook<> {
|
||||
|
||||
public:
|
||||
explicit KSharedMemoryInfo(KernelCore&) {}
|
||||
KSharedMemoryInfo() = default;
|
||||
|
||||
constexpr void Initialize(KSharedMemory* shmem) {
|
||||
shared_memory = shmem;
|
||||
}
|
||||
|
||||
constexpr KSharedMemory* GetSharedMemory() const {
|
||||
return shared_memory;
|
||||
}
|
||||
|
||||
constexpr void Open() {
|
||||
++reference_count;
|
||||
}
|
||||
|
||||
constexpr bool Close() {
|
||||
return (--reference_count) == 0;
|
||||
}
|
||||
|
||||
private:
|
||||
KSharedMemory* shared_memory{};
|
||||
size_t reference_count{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,213 +1,213 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/spin_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
namespace impl {
|
||||
|
||||
class KSlabHeapImpl {
|
||||
YUZU_NON_COPYABLE(KSlabHeapImpl);
|
||||
YUZU_NON_MOVEABLE(KSlabHeapImpl);
|
||||
|
||||
public:
|
||||
struct Node {
|
||||
Node* next{};
|
||||
};
|
||||
|
||||
public:
|
||||
constexpr KSlabHeapImpl() = default;
|
||||
|
||||
void Initialize() {
|
||||
ASSERT(m_head == nullptr);
|
||||
}
|
||||
|
||||
Node* GetHead() const {
|
||||
return m_head;
|
||||
}
|
||||
|
||||
void* Allocate() {
|
||||
// KScopedInterruptDisable di;
|
||||
|
||||
m_lock.lock();
|
||||
|
||||
Node* ret = m_head;
|
||||
if (ret != nullptr) [[likely]] {
|
||||
m_head = ret->next;
|
||||
}
|
||||
|
||||
m_lock.unlock();
|
||||
return ret;
|
||||
}
|
||||
|
||||
void Free(void* obj) {
|
||||
// KScopedInterruptDisable di;
|
||||
|
||||
m_lock.lock();
|
||||
|
||||
Node* node = static_cast<Node*>(obj);
|
||||
node->next = m_head;
|
||||
m_head = node;
|
||||
|
||||
m_lock.unlock();
|
||||
}
|
||||
|
||||
private:
|
||||
std::atomic<Node*> m_head{};
|
||||
Common::SpinLock m_lock;
|
||||
};
|
||||
|
||||
} // namespace impl
|
||||
|
||||
template <bool SupportDynamicExpansion>
|
||||
class KSlabHeapBase : protected impl::KSlabHeapImpl {
|
||||
YUZU_NON_COPYABLE(KSlabHeapBase);
|
||||
YUZU_NON_MOVEABLE(KSlabHeapBase);
|
||||
|
||||
private:
|
||||
size_t m_obj_size{};
|
||||
uintptr_t m_peak{};
|
||||
uintptr_t m_start{};
|
||||
uintptr_t m_end{};
|
||||
|
||||
private:
|
||||
void UpdatePeakImpl(uintptr_t obj) {
|
||||
static_assert(std::atomic_ref<uintptr_t>::is_always_lock_free);
|
||||
std::atomic_ref<uintptr_t> peak_ref(m_peak);
|
||||
|
||||
const uintptr_t alloc_peak = obj + this->GetObjectSize();
|
||||
uintptr_t cur_peak = m_peak;
|
||||
do {
|
||||
if (alloc_peak <= cur_peak) {
|
||||
break;
|
||||
}
|
||||
} while (!peak_ref.compare_exchange_strong(cur_peak, alloc_peak));
|
||||
}
|
||||
|
||||
public:
|
||||
constexpr KSlabHeapBase() = default;
|
||||
|
||||
bool Contains(uintptr_t address) const {
|
||||
return m_start <= address && address < m_end;
|
||||
}
|
||||
|
||||
void Initialize(size_t obj_size, void* memory, size_t memory_size) {
|
||||
// Ensure we don't initialize a slab using null memory.
|
||||
ASSERT(memory != nullptr);
|
||||
|
||||
// Set our object size.
|
||||
m_obj_size = obj_size;
|
||||
|
||||
// Initialize the base allocator.
|
||||
KSlabHeapImpl::Initialize();
|
||||
|
||||
// Set our tracking variables.
|
||||
const size_t num_obj = (memory_size / obj_size);
|
||||
m_start = reinterpret_cast<uintptr_t>(memory);
|
||||
m_end = m_start + num_obj * obj_size;
|
||||
m_peak = m_start;
|
||||
|
||||
// Free the objects.
|
||||
u8* cur = reinterpret_cast<u8*>(m_end);
|
||||
|
||||
for (size_t i = 0; i < num_obj; i++) {
|
||||
cur -= obj_size;
|
||||
KSlabHeapImpl::Free(cur);
|
||||
}
|
||||
}
|
||||
|
||||
size_t GetSlabHeapSize() const {
|
||||
return (m_end - m_start) / this->GetObjectSize();
|
||||
}
|
||||
|
||||
size_t GetObjectSize() const {
|
||||
return m_obj_size;
|
||||
}
|
||||
|
||||
void* Allocate() {
|
||||
void* obj = KSlabHeapImpl::Allocate();
|
||||
|
||||
return obj;
|
||||
}
|
||||
|
||||
void Free(void* obj) {
|
||||
// Don't allow freeing an object that wasn't allocated from this heap.
|
||||
const bool contained = this->Contains(reinterpret_cast<uintptr_t>(obj));
|
||||
ASSERT(contained);
|
||||
KSlabHeapImpl::Free(obj);
|
||||
}
|
||||
|
||||
size_t GetObjectIndex(const void* obj) const {
|
||||
if constexpr (SupportDynamicExpansion) {
|
||||
if (!this->Contains(reinterpret_cast<uintptr_t>(obj))) {
|
||||
return std::numeric_limits<size_t>::max();
|
||||
}
|
||||
}
|
||||
|
||||
return (reinterpret_cast<uintptr_t>(obj) - m_start) / this->GetObjectSize();
|
||||
}
|
||||
|
||||
size_t GetPeakIndex() const {
|
||||
return this->GetObjectIndex(reinterpret_cast<const void*>(m_peak));
|
||||
}
|
||||
|
||||
uintptr_t GetSlabHeapAddress() const {
|
||||
return m_start;
|
||||
}
|
||||
|
||||
size_t GetNumRemaining() const {
|
||||
// Only calculate the number of remaining objects under debug configuration.
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class KSlabHeap final : public KSlabHeapBase<false> {
|
||||
private:
|
||||
using BaseHeap = KSlabHeapBase<false>;
|
||||
|
||||
public:
|
||||
constexpr KSlabHeap() = default;
|
||||
|
||||
void Initialize(void* memory, size_t memory_size) {
|
||||
BaseHeap::Initialize(sizeof(T), memory, memory_size);
|
||||
}
|
||||
|
||||
T* Allocate() {
|
||||
T* obj = static_cast<T*>(BaseHeap::Allocate());
|
||||
|
||||
if (obj != nullptr) [[likely]] {
|
||||
std::construct_at(obj);
|
||||
}
|
||||
return obj;
|
||||
}
|
||||
|
||||
T* Allocate(KernelCore& kernel) {
|
||||
T* obj = static_cast<T*>(BaseHeap::Allocate());
|
||||
|
||||
if (obj != nullptr) [[likely]] {
|
||||
std::construct_at(obj, kernel);
|
||||
}
|
||||
return obj;
|
||||
}
|
||||
|
||||
void Free(T* obj) {
|
||||
BaseHeap::Free(obj);
|
||||
}
|
||||
|
||||
size_t GetObjectIndex(const T* obj) const {
|
||||
return BaseHeap::GetObjectIndex(obj);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_funcs.h"
|
||||
#include "common/common_types.h"
|
||||
#include "common/spin_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
|
||||
namespace impl {
|
||||
|
||||
class KSlabHeapImpl {
|
||||
YUZU_NON_COPYABLE(KSlabHeapImpl);
|
||||
YUZU_NON_MOVEABLE(KSlabHeapImpl);
|
||||
|
||||
public:
|
||||
struct Node {
|
||||
Node* next{};
|
||||
};
|
||||
|
||||
public:
|
||||
constexpr KSlabHeapImpl() = default;
|
||||
|
||||
void Initialize() {
|
||||
ASSERT(m_head == nullptr);
|
||||
}
|
||||
|
||||
Node* GetHead() const {
|
||||
return m_head;
|
||||
}
|
||||
|
||||
void* Allocate() {
|
||||
// KScopedInterruptDisable di;
|
||||
|
||||
m_lock.lock();
|
||||
|
||||
Node* ret = m_head;
|
||||
if (ret != nullptr) [[likely]] {
|
||||
m_head = ret->next;
|
||||
}
|
||||
|
||||
m_lock.unlock();
|
||||
return ret;
|
||||
}
|
||||
|
||||
void Free(void* obj) {
|
||||
// KScopedInterruptDisable di;
|
||||
|
||||
m_lock.lock();
|
||||
|
||||
Node* node = static_cast<Node*>(obj);
|
||||
node->next = m_head;
|
||||
m_head = node;
|
||||
|
||||
m_lock.unlock();
|
||||
}
|
||||
|
||||
private:
|
||||
std::atomic<Node*> m_head{};
|
||||
Common::SpinLock m_lock;
|
||||
};
|
||||
|
||||
} // namespace impl
|
||||
|
||||
template <bool SupportDynamicExpansion>
|
||||
class KSlabHeapBase : protected impl::KSlabHeapImpl {
|
||||
YUZU_NON_COPYABLE(KSlabHeapBase);
|
||||
YUZU_NON_MOVEABLE(KSlabHeapBase);
|
||||
|
||||
private:
|
||||
size_t m_obj_size{};
|
||||
uintptr_t m_peak{};
|
||||
uintptr_t m_start{};
|
||||
uintptr_t m_end{};
|
||||
|
||||
private:
|
||||
void UpdatePeakImpl(uintptr_t obj) {
|
||||
static_assert(std::atomic_ref<uintptr_t>::is_always_lock_free);
|
||||
std::atomic_ref<uintptr_t> peak_ref(m_peak);
|
||||
|
||||
const uintptr_t alloc_peak = obj + this->GetObjectSize();
|
||||
uintptr_t cur_peak = m_peak;
|
||||
do {
|
||||
if (alloc_peak <= cur_peak) {
|
||||
break;
|
||||
}
|
||||
} while (!peak_ref.compare_exchange_strong(cur_peak, alloc_peak));
|
||||
}
|
||||
|
||||
public:
|
||||
constexpr KSlabHeapBase() = default;
|
||||
|
||||
bool Contains(uintptr_t address) const {
|
||||
return m_start <= address && address < m_end;
|
||||
}
|
||||
|
||||
void Initialize(size_t obj_size, void* memory, size_t memory_size) {
|
||||
// Ensure we don't initialize a slab using null memory.
|
||||
ASSERT(memory != nullptr);
|
||||
|
||||
// Set our object size.
|
||||
m_obj_size = obj_size;
|
||||
|
||||
// Initialize the base allocator.
|
||||
KSlabHeapImpl::Initialize();
|
||||
|
||||
// Set our tracking variables.
|
||||
const size_t num_obj = (memory_size / obj_size);
|
||||
m_start = reinterpret_cast<uintptr_t>(memory);
|
||||
m_end = m_start + num_obj * obj_size;
|
||||
m_peak = m_start;
|
||||
|
||||
// Free the objects.
|
||||
u8* cur = reinterpret_cast<u8*>(m_end);
|
||||
|
||||
for (size_t i = 0; i < num_obj; i++) {
|
||||
cur -= obj_size;
|
||||
KSlabHeapImpl::Free(cur);
|
||||
}
|
||||
}
|
||||
|
||||
size_t GetSlabHeapSize() const {
|
||||
return (m_end - m_start) / this->GetObjectSize();
|
||||
}
|
||||
|
||||
size_t GetObjectSize() const {
|
||||
return m_obj_size;
|
||||
}
|
||||
|
||||
void* Allocate() {
|
||||
void* obj = KSlabHeapImpl::Allocate();
|
||||
|
||||
return obj;
|
||||
}
|
||||
|
||||
void Free(void* obj) {
|
||||
// Don't allow freeing an object that wasn't allocated from this heap.
|
||||
const bool contained = this->Contains(reinterpret_cast<uintptr_t>(obj));
|
||||
ASSERT(contained);
|
||||
KSlabHeapImpl::Free(obj);
|
||||
}
|
||||
|
||||
size_t GetObjectIndex(const void* obj) const {
|
||||
if constexpr (SupportDynamicExpansion) {
|
||||
if (!this->Contains(reinterpret_cast<uintptr_t>(obj))) {
|
||||
return std::numeric_limits<size_t>::max();
|
||||
}
|
||||
}
|
||||
|
||||
return (reinterpret_cast<uintptr_t>(obj) - m_start) / this->GetObjectSize();
|
||||
}
|
||||
|
||||
size_t GetPeakIndex() const {
|
||||
return this->GetObjectIndex(reinterpret_cast<const void*>(m_peak));
|
||||
}
|
||||
|
||||
uintptr_t GetSlabHeapAddress() const {
|
||||
return m_start;
|
||||
}
|
||||
|
||||
size_t GetNumRemaining() const {
|
||||
// Only calculate the number of remaining objects under debug configuration.
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class KSlabHeap final : public KSlabHeapBase<false> {
|
||||
private:
|
||||
using BaseHeap = KSlabHeapBase<false>;
|
||||
|
||||
public:
|
||||
constexpr KSlabHeap() = default;
|
||||
|
||||
void Initialize(void* memory, size_t memory_size) {
|
||||
BaseHeap::Initialize(sizeof(T), memory, memory_size);
|
||||
}
|
||||
|
||||
T* Allocate() {
|
||||
T* obj = static_cast<T*>(BaseHeap::Allocate());
|
||||
|
||||
if (obj != nullptr) [[likely]] {
|
||||
std::construct_at(obj);
|
||||
}
|
||||
return obj;
|
||||
}
|
||||
|
||||
T* Allocate(KernelCore& kernel) {
|
||||
T* obj = static_cast<T*>(BaseHeap::Allocate());
|
||||
|
||||
if (obj != nullptr) [[likely]] {
|
||||
std::construct_at(obj, kernel);
|
||||
}
|
||||
return obj;
|
||||
}
|
||||
|
||||
void Free(T* obj) {
|
||||
BaseHeap::Free(obj);
|
||||
}
|
||||
|
||||
size_t GetObjectIndex(const T* obj) const {
|
||||
return BaseHeap::GetObjectIndex(obj);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,20 +1,20 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
void KSpinLock::Lock() {
|
||||
lck.lock();
|
||||
}
|
||||
|
||||
void KSpinLock::Unlock() {
|
||||
lck.unlock();
|
||||
}
|
||||
|
||||
bool KSpinLock::TryLock() {
|
||||
return lck.try_lock();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "core/hle/kernel/k_spin_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
void KSpinLock::Lock() {
|
||||
lck.lock();
|
||||
}
|
||||
|
||||
void KSpinLock::Unlock() {
|
||||
lck.unlock();
|
||||
}
|
||||
|
||||
bool KSpinLock::TryLock() {
|
||||
return lck.try_lock();
|
||||
}
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,38 +1,38 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <mutex>
|
||||
|
||||
#include "core/hle/kernel/k_scoped_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KSpinLock {
|
||||
public:
|
||||
KSpinLock() = default;
|
||||
|
||||
KSpinLock(const KSpinLock&) = delete;
|
||||
KSpinLock& operator=(const KSpinLock&) = delete;
|
||||
|
||||
KSpinLock(KSpinLock&&) = delete;
|
||||
KSpinLock& operator=(KSpinLock&&) = delete;
|
||||
|
||||
void Lock();
|
||||
void Unlock();
|
||||
[[nodiscard]] bool TryLock();
|
||||
|
||||
private:
|
||||
std::mutex lck;
|
||||
};
|
||||
|
||||
// TODO(bunnei): Alias for now, in case we want to implement these accurately in the future.
|
||||
using KAlignedSpinLock = KSpinLock;
|
||||
using KNotAlignedSpinLock = KSpinLock;
|
||||
|
||||
using KScopedSpinLock = KScopedLock<KSpinLock>;
|
||||
using KScopedAlignedSpinLock = KScopedLock<KAlignedSpinLock>;
|
||||
using KScopedNotAlignedSpinLock = KScopedLock<KNotAlignedSpinLock>;
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <mutex>
|
||||
|
||||
#include "core/hle/kernel/k_scoped_lock.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KSpinLock {
|
||||
public:
|
||||
KSpinLock() = default;
|
||||
|
||||
KSpinLock(const KSpinLock&) = delete;
|
||||
KSpinLock& operator=(const KSpinLock&) = delete;
|
||||
|
||||
KSpinLock(KSpinLock&&) = delete;
|
||||
KSpinLock& operator=(KSpinLock&&) = delete;
|
||||
|
||||
void Lock();
|
||||
void Unlock();
|
||||
[[nodiscard]] bool TryLock();
|
||||
|
||||
private:
|
||||
std::mutex lck;
|
||||
};
|
||||
|
||||
// TODO(bunnei): Alias for now, in case we want to implement these accurately in the future.
|
||||
using KAlignedSpinLock = KSpinLock;
|
||||
using KNotAlignedSpinLock = KSpinLock;
|
||||
|
||||
using KScopedSpinLock = KScopedLock<KSpinLock>;
|
||||
using KScopedAlignedSpinLock = KScopedLock<KAlignedSpinLock>;
|
||||
using KScopedNotAlignedSpinLock = KScopedLock<KNotAlignedSpinLock>;
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,177 +1,177 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKSynchronizationObjectWait final : public KThreadQueueWithoutEndWait {
|
||||
public:
|
||||
ThreadQueueImplForKSynchronizationObjectWait(KernelCore& kernel_, KSynchronizationObject** o,
|
||||
KSynchronizationObject::ThreadListNode* n, s32 c)
|
||||
: KThreadQueueWithoutEndWait(kernel_), m_objects(o), m_nodes(n), m_count(c) {}
|
||||
|
||||
void NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
|
||||
Result wait_result) override {
|
||||
// Determine the sync index, and unlink all nodes.
|
||||
s32 sync_index = -1;
|
||||
for (auto i = 0; i < m_count; ++i) {
|
||||
// Check if this is the signaled object.
|
||||
if (m_objects[i] == signaled_object && sync_index == -1) {
|
||||
sync_index = i;
|
||||
}
|
||||
|
||||
// Unlink the current node from the current object.
|
||||
m_objects[i]->UnlinkNode(std::addressof(m_nodes[i]));
|
||||
}
|
||||
|
||||
// Set the waiting thread's sync index.
|
||||
waiting_thread->SetSyncedIndex(sync_index);
|
||||
|
||||
// Set the waiting thread as not cancellable.
|
||||
waiting_thread->ClearCancellable();
|
||||
|
||||
// Invoke the base end wait handler.
|
||||
KThreadQueue::EndWait(waiting_thread, wait_result);
|
||||
}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Remove all nodes from our list.
|
||||
for (auto i = 0; i < m_count; ++i) {
|
||||
m_objects[i]->UnlinkNode(std::addressof(m_nodes[i]));
|
||||
}
|
||||
|
||||
// Set the waiting thread as not cancellable.
|
||||
waiting_thread->ClearCancellable();
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KSynchronizationObject** m_objects;
|
||||
KSynchronizationObject::ThreadListNode* m_nodes;
|
||||
s32 m_count;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void KSynchronizationObject::Finalize() {
|
||||
this->OnFinalizeSynchronizationObject();
|
||||
KAutoObject::Finalize();
|
||||
}
|
||||
|
||||
Result KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
|
||||
KSynchronizationObject** objects, const s32 num_objects,
|
||||
s64 timeout) {
|
||||
// Allocate space on stack for thread nodes.
|
||||
std::vector<ThreadListNode> thread_nodes(num_objects);
|
||||
|
||||
// Prepare for wait.
|
||||
KThread* thread = GetCurrentThreadPointer(kernel_ctx);
|
||||
ThreadQueueImplForKSynchronizationObjectWait wait_queue(kernel_ctx, objects,
|
||||
thread_nodes.data(), num_objects);
|
||||
|
||||
{
|
||||
// Setup the scheduling lock and sleep.
|
||||
KScopedSchedulerLockAndSleep slp(kernel_ctx, thread, timeout);
|
||||
|
||||
// Check if the thread should terminate.
|
||||
if (thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Check if any of the objects are already signaled.
|
||||
for (auto i = 0; i < num_objects; ++i) {
|
||||
ASSERT(objects[i] != nullptr);
|
||||
|
||||
if (objects[i]->IsSignaled()) {
|
||||
*out_index = i;
|
||||
slp.CancelSleep();
|
||||
return ResultSuccess;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if the timeout is zero.
|
||||
if (timeout == 0) {
|
||||
slp.CancelSleep();
|
||||
return ResultTimedOut;
|
||||
}
|
||||
|
||||
// Check if waiting was canceled.
|
||||
if (thread->IsWaitCancelled()) {
|
||||
slp.CancelSleep();
|
||||
thread->ClearWaitCancelled();
|
||||
return ResultCancelled;
|
||||
}
|
||||
|
||||
// Add the waiters.
|
||||
for (auto i = 0; i < num_objects; ++i) {
|
||||
thread_nodes[i].thread = thread;
|
||||
thread_nodes[i].next = nullptr;
|
||||
|
||||
objects[i]->LinkNode(std::addressof(thread_nodes[i]));
|
||||
}
|
||||
|
||||
// Mark the thread as cancellable.
|
||||
thread->SetCancellable();
|
||||
|
||||
// Clear the thread's synced index.
|
||||
thread->SetSyncedIndex(-1);
|
||||
|
||||
// Wait for an object to be signaled.
|
||||
thread->BeginWait(std::addressof(wait_queue));
|
||||
thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Synchronization);
|
||||
}
|
||||
|
||||
// Set the output index.
|
||||
*out_index = thread->GetSyncedIndex();
|
||||
|
||||
// Get the wait result.
|
||||
return thread->GetWaitResult();
|
||||
}
|
||||
|
||||
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel_)
|
||||
: KAutoObjectWithList{kernel_} {}
|
||||
|
||||
KSynchronizationObject::~KSynchronizationObject() = default;
|
||||
|
||||
void KSynchronizationObject::NotifyAvailable(Result result) {
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// If we're not signaled, we've nothing to notify.
|
||||
if (!this->IsSignaled()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Iterate over each thread.
|
||||
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
|
||||
cur_node->thread->NotifyAvailable(this, result);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<KThread*> KSynchronizationObject::GetWaitingThreadsForDebugging() const {
|
||||
std::vector<KThread*> threads;
|
||||
|
||||
// If debugging, dump the list of waiters.
|
||||
{
|
||||
KScopedSchedulerLock lock(kernel);
|
||||
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
|
||||
threads.emplace_back(cur_node->thread);
|
||||
}
|
||||
}
|
||||
|
||||
return threads;
|
||||
}
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
#include "core/hle/kernel/k_scheduler.h"
|
||||
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
|
||||
#include "core/hle/kernel/k_synchronization_object.h"
|
||||
#include "core/hle/kernel/k_thread.h"
|
||||
#include "core/hle/kernel/k_thread_queue.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/svc_results.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace {
|
||||
|
||||
class ThreadQueueImplForKSynchronizationObjectWait final : public KThreadQueueWithoutEndWait {
|
||||
public:
|
||||
ThreadQueueImplForKSynchronizationObjectWait(KernelCore& kernel_, KSynchronizationObject** o,
|
||||
KSynchronizationObject::ThreadListNode* n, s32 c)
|
||||
: KThreadQueueWithoutEndWait(kernel_), m_objects(o), m_nodes(n), m_count(c) {}
|
||||
|
||||
void NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
|
||||
Result wait_result) override {
|
||||
// Determine the sync index, and unlink all nodes.
|
||||
s32 sync_index = -1;
|
||||
for (auto i = 0; i < m_count; ++i) {
|
||||
// Check if this is the signaled object.
|
||||
if (m_objects[i] == signaled_object && sync_index == -1) {
|
||||
sync_index = i;
|
||||
}
|
||||
|
||||
// Unlink the current node from the current object.
|
||||
m_objects[i]->UnlinkNode(std::addressof(m_nodes[i]));
|
||||
}
|
||||
|
||||
// Set the waiting thread's sync index.
|
||||
waiting_thread->SetSyncedIndex(sync_index);
|
||||
|
||||
// Set the waiting thread as not cancellable.
|
||||
waiting_thread->ClearCancellable();
|
||||
|
||||
// Invoke the base end wait handler.
|
||||
KThreadQueue::EndWait(waiting_thread, wait_result);
|
||||
}
|
||||
|
||||
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
|
||||
// Remove all nodes from our list.
|
||||
for (auto i = 0; i < m_count; ++i) {
|
||||
m_objects[i]->UnlinkNode(std::addressof(m_nodes[i]));
|
||||
}
|
||||
|
||||
// Set the waiting thread as not cancellable.
|
||||
waiting_thread->ClearCancellable();
|
||||
|
||||
// Invoke the base cancel wait handler.
|
||||
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
|
||||
}
|
||||
|
||||
private:
|
||||
KSynchronizationObject** m_objects;
|
||||
KSynchronizationObject::ThreadListNode* m_nodes;
|
||||
s32 m_count;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void KSynchronizationObject::Finalize() {
|
||||
this->OnFinalizeSynchronizationObject();
|
||||
KAutoObject::Finalize();
|
||||
}
|
||||
|
||||
Result KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
|
||||
KSynchronizationObject** objects, const s32 num_objects,
|
||||
s64 timeout) {
|
||||
// Allocate space on stack for thread nodes.
|
||||
std::vector<ThreadListNode> thread_nodes(num_objects);
|
||||
|
||||
// Prepare for wait.
|
||||
KThread* thread = GetCurrentThreadPointer(kernel_ctx);
|
||||
ThreadQueueImplForKSynchronizationObjectWait wait_queue(kernel_ctx, objects,
|
||||
thread_nodes.data(), num_objects);
|
||||
|
||||
{
|
||||
// Setup the scheduling lock and sleep.
|
||||
KScopedSchedulerLockAndSleep slp(kernel_ctx, thread, timeout);
|
||||
|
||||
// Check if the thread should terminate.
|
||||
if (thread->IsTerminationRequested()) {
|
||||
slp.CancelSleep();
|
||||
return ResultTerminationRequested;
|
||||
}
|
||||
|
||||
// Check if any of the objects are already signaled.
|
||||
for (auto i = 0; i < num_objects; ++i) {
|
||||
ASSERT(objects[i] != nullptr);
|
||||
|
||||
if (objects[i]->IsSignaled()) {
|
||||
*out_index = i;
|
||||
slp.CancelSleep();
|
||||
return ResultSuccess;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if the timeout is zero.
|
||||
if (timeout == 0) {
|
||||
slp.CancelSleep();
|
||||
return ResultTimedOut;
|
||||
}
|
||||
|
||||
// Check if waiting was canceled.
|
||||
if (thread->IsWaitCancelled()) {
|
||||
slp.CancelSleep();
|
||||
thread->ClearWaitCancelled();
|
||||
return ResultCancelled;
|
||||
}
|
||||
|
||||
// Add the waiters.
|
||||
for (auto i = 0; i < num_objects; ++i) {
|
||||
thread_nodes[i].thread = thread;
|
||||
thread_nodes[i].next = nullptr;
|
||||
|
||||
objects[i]->LinkNode(std::addressof(thread_nodes[i]));
|
||||
}
|
||||
|
||||
// Mark the thread as cancellable.
|
||||
thread->SetCancellable();
|
||||
|
||||
// Clear the thread's synced index.
|
||||
thread->SetSyncedIndex(-1);
|
||||
|
||||
// Wait for an object to be signaled.
|
||||
thread->BeginWait(std::addressof(wait_queue));
|
||||
thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Synchronization);
|
||||
}
|
||||
|
||||
// Set the output index.
|
||||
*out_index = thread->GetSyncedIndex();
|
||||
|
||||
// Get the wait result.
|
||||
return thread->GetWaitResult();
|
||||
}
|
||||
|
||||
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel_)
|
||||
: KAutoObjectWithList{kernel_} {}
|
||||
|
||||
KSynchronizationObject::~KSynchronizationObject() = default;
|
||||
|
||||
void KSynchronizationObject::NotifyAvailable(Result result) {
|
||||
KScopedSchedulerLock sl(kernel);
|
||||
|
||||
// If we're not signaled, we've nothing to notify.
|
||||
if (!this->IsSignaled()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Iterate over each thread.
|
||||
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
|
||||
cur_node->thread->NotifyAvailable(this, result);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<KThread*> KSynchronizationObject::GetWaitingThreadsForDebugging() const {
|
||||
std::vector<KThread*> threads;
|
||||
|
||||
// If debugging, dump the list of waiters.
|
||||
{
|
||||
KScopedSchedulerLock lock(kernel);
|
||||
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
|
||||
threads.emplace_back(cur_node->thread);
|
||||
}
|
||||
}
|
||||
|
||||
return threads;
|
||||
}
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,85 +1,85 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class Synchronization;
|
||||
class KThread;
|
||||
|
||||
/// Class that represents a Kernel object that a thread can be waiting on
|
||||
class KSynchronizationObject : public KAutoObjectWithList {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KSynchronizationObject, KAutoObject);
|
||||
|
||||
public:
|
||||
struct ThreadListNode {
|
||||
ThreadListNode* next{};
|
||||
KThread* thread{};
|
||||
};
|
||||
|
||||
[[nodiscard]] static Result Wait(KernelCore& kernel, s32* out_index,
|
||||
KSynchronizationObject** objects, const s32 num_objects,
|
||||
s64 timeout);
|
||||
|
||||
void Finalize() override;
|
||||
|
||||
[[nodiscard]] virtual bool IsSignaled() const = 0;
|
||||
|
||||
[[nodiscard]] std::vector<KThread*> GetWaitingThreadsForDebugging() const;
|
||||
|
||||
void LinkNode(ThreadListNode* node_) {
|
||||
// Link the node to the list.
|
||||
if (thread_list_tail == nullptr) {
|
||||
thread_list_head = node_;
|
||||
} else {
|
||||
thread_list_tail->next = node_;
|
||||
}
|
||||
|
||||
thread_list_tail = node_;
|
||||
}
|
||||
|
||||
void UnlinkNode(ThreadListNode* node_) {
|
||||
// Unlink the node from the list.
|
||||
ThreadListNode* prev_ptr =
|
||||
reinterpret_cast<ThreadListNode*>(std::addressof(thread_list_head));
|
||||
ThreadListNode* prev_val = nullptr;
|
||||
ThreadListNode *prev, *tail_prev;
|
||||
|
||||
do {
|
||||
prev = prev_ptr;
|
||||
prev_ptr = prev_ptr->next;
|
||||
tail_prev = prev_val;
|
||||
prev_val = prev_ptr;
|
||||
} while (prev_ptr != node_);
|
||||
|
||||
if (thread_list_tail == node_) {
|
||||
thread_list_tail = tail_prev;
|
||||
}
|
||||
|
||||
prev->next = node_->next;
|
||||
}
|
||||
|
||||
protected:
|
||||
explicit KSynchronizationObject(KernelCore& kernel);
|
||||
~KSynchronizationObject() override;
|
||||
|
||||
virtual void OnFinalizeSynchronizationObject() {}
|
||||
|
||||
void NotifyAvailable(Result result);
|
||||
void NotifyAvailable() {
|
||||
return this->NotifyAvailable(ResultSuccess);
|
||||
}
|
||||
|
||||
private:
|
||||
ThreadListNode* thread_list_head{};
|
||||
ThreadListNode* thread_list_tail{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "core/hle/kernel/k_auto_object.h"
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
class KernelCore;
|
||||
class Synchronization;
|
||||
class KThread;
|
||||
|
||||
/// Class that represents a Kernel object that a thread can be waiting on
|
||||
class KSynchronizationObject : public KAutoObjectWithList {
|
||||
KERNEL_AUTOOBJECT_TRAITS(KSynchronizationObject, KAutoObject);
|
||||
|
||||
public:
|
||||
struct ThreadListNode {
|
||||
ThreadListNode* next{};
|
||||
KThread* thread{};
|
||||
};
|
||||
|
||||
[[nodiscard]] static Result Wait(KernelCore& kernel, s32* out_index,
|
||||
KSynchronizationObject** objects, const s32 num_objects,
|
||||
s64 timeout);
|
||||
|
||||
void Finalize() override;
|
||||
|
||||
[[nodiscard]] virtual bool IsSignaled() const = 0;
|
||||
|
||||
[[nodiscard]] std::vector<KThread*> GetWaitingThreadsForDebugging() const;
|
||||
|
||||
void LinkNode(ThreadListNode* node_) {
|
||||
// Link the node to the list.
|
||||
if (thread_list_tail == nullptr) {
|
||||
thread_list_head = node_;
|
||||
} else {
|
||||
thread_list_tail->next = node_;
|
||||
}
|
||||
|
||||
thread_list_tail = node_;
|
||||
}
|
||||
|
||||
void UnlinkNode(ThreadListNode* node_) {
|
||||
// Unlink the node from the list.
|
||||
ThreadListNode* prev_ptr =
|
||||
reinterpret_cast<ThreadListNode*>(std::addressof(thread_list_head));
|
||||
ThreadListNode* prev_val = nullptr;
|
||||
ThreadListNode *prev, *tail_prev;
|
||||
|
||||
do {
|
||||
prev = prev_ptr;
|
||||
prev_ptr = prev_ptr->next;
|
||||
tail_prev = prev_val;
|
||||
prev_val = prev_ptr;
|
||||
} while (prev_ptr != node_);
|
||||
|
||||
if (thread_list_tail == node_) {
|
||||
thread_list_tail = tail_prev;
|
||||
}
|
||||
|
||||
prev->next = node_->next;
|
||||
}
|
||||
|
||||
protected:
|
||||
explicit KSynchronizationObject(KernelCore& kernel);
|
||||
~KSynchronizationObject() override;
|
||||
|
||||
virtual void OnFinalizeSynchronizationObject() {}
|
||||
|
||||
void NotifyAvailable(Result result);
|
||||
void NotifyAvailable() {
|
||||
return this->NotifyAvailable(ResultSuccess);
|
||||
}
|
||||
|
||||
private:
|
||||
ThreadListNode* thread_list_head{};
|
||||
ThreadListNode* thread_list_tail{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
@@ -1,22 +1,22 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
#define BOARD_NINTENDO_NX
|
||||
|
||||
#ifdef BOARD_NINTENDO_NX
|
||||
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_system_control.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
using Kernel::Board::Nintendo::Nx::KSystemControl;
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
#else
|
||||
#error "Unknown board for KSystemControl"
|
||||
#endif
|
||||
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
#define BOARD_NINTENDO_NX
|
||||
|
||||
#ifdef BOARD_NINTENDO_NX
|
||||
|
||||
#include "core/hle/kernel/board/nintendo/nx/k_system_control.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
using Kernel::Board::Nintendo::Nx::KSystemControl;
|
||||
|
||||
} // namespace Kernel
|
||||
|
||||
#else
|
||||
#error "Unknown board for KSystemControl"
|
||||
#endif
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user