early-access version 3088

This commit is contained in:
pineappleEA
2022-11-05 15:35:56 +01:00
parent 4e4fc25ce3
commit b601909c6d
35519 changed files with 5996896 additions and 860 deletions

View File

@@ -0,0 +1,363 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2015-2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_ADAPTIVE_MERGE_HPP
#define BOOST_MOVE_ADAPTIVE_MERGE_HPP
#include <boost/move/detail/config_begin.hpp>
#include <boost/move/algo/detail/adaptive_sort_merge.hpp>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost {
namespace movelib {
///@cond
namespace detail_adaptive {
template<class RandIt, class Compare, class XBuf>
inline void adaptive_merge_combine_blocks( RandIt first
, typename iter_size<RandIt>::type len1
, typename iter_size<RandIt>::type len2
, typename iter_size<RandIt>::type collected
, typename iter_size<RandIt>::type n_keys
, typename iter_size<RandIt>::type l_block
, bool use_internal_buf
, bool xbuf_used
, Compare comp
, XBuf & xbuf
)
{
typedef typename iter_size<RandIt>::type size_type;
size_type const len = size_type(len1+len2);
size_type const l_combine = size_type(len-collected);
size_type const l_combine1 = size_type(len1-collected);
if(n_keys){
RandIt const first_data = first+collected;
RandIt const keys = first;
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A combine: ", len);
if(xbuf_used){
if(xbuf.size() < l_block){
xbuf.initialize_until(l_block, *first);
}
BOOST_ASSERT(xbuf.size() >= l_block);
size_type n_block_a, n_block_b, l_irreg1, l_irreg2;
combine_params( keys, comp, l_combine
, l_combine1, l_block, xbuf
, n_block_a, n_block_b, l_irreg1, l_irreg2); //Outputs
op_merge_blocks_with_buf
(keys, comp, first_data, l_block, l_irreg1, n_block_a, n_block_b, l_irreg2, comp, move_op(), xbuf.data());
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" A mrg xbf: ", len);
}
else{
size_type n_block_a, n_block_b, l_irreg1, l_irreg2;
combine_params( keys, comp, l_combine
, l_combine1, l_block, xbuf
, n_block_a, n_block_b, l_irreg1, l_irreg2); //Outputs
if(use_internal_buf){
op_merge_blocks_with_buf
( keys, comp, first_data, l_block, l_irreg1, n_block_a, n_block_b
, l_irreg2, comp, swap_op(), first_data-l_block);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A mrg buf: ", len);
}
else{
merge_blocks_bufferless
(keys, comp, first_data, l_block, l_irreg1, n_block_a, n_block_b, l_irreg2, comp);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" A mrg nbf: ", len);
}
}
}
else{
xbuf.shrink_to_fit(l_block);
if(xbuf.size() < l_block){
xbuf.initialize_until(l_block, *first);
}
size_type *const uint_keys = xbuf.template aligned_trailing<size_type>(l_block);
size_type n_block_a, n_block_b, l_irreg1, l_irreg2;
combine_params( uint_keys, less(), l_combine
, l_combine1, l_block, xbuf
, n_block_a, n_block_b, l_irreg1, l_irreg2, true); //Outputs
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A combine: ", len);
BOOST_ASSERT(xbuf.size() >= l_block);
op_merge_blocks_with_buf
(uint_keys, less(), first, l_block, l_irreg1, n_block_a, n_block_b, l_irreg2, comp, move_op(), xbuf.data());
xbuf.clear();
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" A mrg buf: ", len);
}
}
template<class RandIt, class Compare, class XBuf>
inline void adaptive_merge_final_merge( RandIt first
, typename iter_size<RandIt>::type len1
, typename iter_size<RandIt>::type len2
, typename iter_size<RandIt>::type collected
, typename iter_size<RandIt>::type l_intbuf
, typename iter_size<RandIt>::type //l_block
, bool //use_internal_buf
, bool xbuf_used
, Compare comp
, XBuf & xbuf
)
{
typedef typename iter_size<RandIt>::type size_type;
size_type n_keys = size_type(collected-l_intbuf);
size_type len = size_type(len1+len2);
if (!xbuf_used || n_keys) {
xbuf.clear();
const size_type middle = xbuf_used && n_keys ? n_keys: collected;
unstable_sort(first, first + middle, comp, xbuf);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A k/b srt: ", len);
stable_merge(first, first + middle, first + len, comp, xbuf);
}
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" A fin mrg: ", len);
}
template<class SizeType>
inline static SizeType adaptive_merge_n_keys_without_external_keys(SizeType l_block, SizeType len1, SizeType len2, SizeType l_intbuf)
{
typedef SizeType size_type;
//This is the minimum number of keys to implement the ideal algorithm
size_type n_keys = size_type(len1/l_block + len2/l_block);
const size_type second_half_blocks = size_type(len2/l_block);
const size_type first_half_aux = size_type(len1 - l_intbuf);
while(n_keys >= ((first_half_aux-n_keys)/l_block + second_half_blocks)){
--n_keys;
}
++n_keys;
return n_keys;
}
template<class SizeType>
inline static SizeType adaptive_merge_n_keys_with_external_keys(SizeType l_block, SizeType len1, SizeType len2, SizeType l_intbuf)
{
typedef SizeType size_type;
//This is the minimum number of keys to implement the ideal algorithm
size_type n_keys = size_type((len1-l_intbuf)/l_block + len2/l_block);
return n_keys;
}
template<class SizeType, class Xbuf>
inline SizeType adaptive_merge_n_keys_intbuf(SizeType &rl_block, SizeType len1, SizeType len2, Xbuf & xbuf, SizeType &l_intbuf_inout)
{
typedef SizeType size_type;
size_type l_block = rl_block;
size_type l_intbuf = xbuf.capacity() >= l_block ? 0u : l_block;
if (xbuf.capacity() > l_block){
l_block = xbuf.capacity();
}
//This is the minimum number of keys to implement the ideal algorithm
size_type n_keys = adaptive_merge_n_keys_without_external_keys(l_block, len1, len2, l_intbuf);
BOOST_ASSERT(n_keys >= ((len1-l_intbuf-n_keys)/l_block + len2/l_block));
if(xbuf.template supports_aligned_trailing<size_type>
( l_block
, adaptive_merge_n_keys_with_external_keys(l_block, len1, len2, l_intbuf)))
{
n_keys = 0u;
}
l_intbuf_inout = l_intbuf;
rl_block = l_block;
return n_keys;
}
// Main explanation of the merge algorithm.
//
// csqrtlen = ceil(sqrt(len));
//
// * First, csqrtlen [to be used as buffer] + (len/csqrtlen - 1) [to be used as keys] => to_collect
// unique elements are extracted from elements to be sorted and placed in the beginning of the range.
//
// * Step "combine_blocks": the leading (len1-to_collect) elements plus trailing len2 elements
// are merged with a non-trivial ("smart") algorithm to form an ordered range trailing "len-to_collect" elements.
//
// Explanation of the "combine_blocks" step:
//
// * Trailing [first+to_collect, first+len1) elements are divided in groups of cqrtlen elements.
// Remaining elements that can't form a group are grouped in front of those elements.
// * Trailing [first+len1, first+len1+len2) elements are divided in groups of cqrtlen elements.
// Remaining elements that can't form a group are grouped in the back of those elements.
// * In parallel the following two steps are performed:
// * Groups are selection-sorted by first or last element (depending whether they are going
// to be merged to left or right) and keys are reordered accordingly as an imitation-buffer.
// * Elements of each block pair are merged using the csqrtlen buffer taking into account
// if they belong to the first half or second half (marked by the key).
//
// * In the final merge step leading "to_collect" elements are merged with rotations
// with the rest of merged elements in the "combine_blocks" step.
//
// Corner cases:
//
// * If no "to_collect" elements can be extracted:
//
// * If more than a minimum number of elements is extracted
// then reduces the number of elements used as buffer and keys in the
// and "combine_blocks" steps. If "combine_blocks" has no enough keys due to this reduction
// then uses a rotation based smart merge.
//
// * If the minimum number of keys can't be extracted, a rotation-based merge is performed.
//
// * If auxiliary memory is more or equal than min(len1, len2), a buffered merge is performed.
//
// * If the len1 or len2 are less than 2*csqrtlen then a rotation-based merge is performed.
//
// * If auxiliary memory is more than csqrtlen+n_keys*sizeof(std::size_t),
// then no csqrtlen need to be extracted and "combine_blocks" will use integral
// keys to combine blocks.
template<class RandIt, class Compare, class XBuf>
void adaptive_merge_impl
( RandIt first
, typename iter_size<RandIt>::type len1
, typename iter_size<RandIt>::type len2
, Compare comp
, XBuf & xbuf
)
{
typedef typename iter_size<RandIt>::type size_type;
if(xbuf.capacity() >= min_value<size_type>(len1, len2)){
buffered_merge( first, first+len1
, first + len1+len2, comp, xbuf);
}
else{
const size_type len = size_type(len1+len2);
//Calculate ideal parameters and try to collect needed unique keys
size_type l_block = size_type(ceil_sqrt(len));
//One range is not big enough to extract keys and the internal buffer so a
//rotation-based based merge will do just fine
if(len1 <= l_block*2 || len2 <= l_block*2){
merge_bufferless(first, first+len1, first+len1+len2, comp);
return;
}
//Detail the number of keys and internal buffer. If xbuf has enough memory, no
//internal buffer is needed so l_intbuf will remain 0.
size_type l_intbuf = 0;
size_type n_keys = adaptive_merge_n_keys_intbuf(l_block, len1, len2, xbuf, l_intbuf);
size_type const to_collect = size_type(l_intbuf+n_keys);
//Try to extract needed unique values from the first range
size_type const collected = collect_unique(first, first+len1, to_collect, comp, xbuf);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1("\n A collect: ", len);
//Not the minimum number of keys is not available on the first range, so fallback to rotations
if(collected != to_collect && collected < 4){
merge_bufferless(first, first+collected, first+len1, comp);
merge_bufferless(first, first + len1, first + len1 + len2, comp);
return;
}
//If not enough keys but more than minimum, adjust the internal buffer and key count
bool use_internal_buf = collected == to_collect;
if (!use_internal_buf){
l_intbuf = 0u;
n_keys = collected;
l_block = lblock_for_combine(l_intbuf, n_keys, len, use_internal_buf);
//If use_internal_buf is false, then then internal buffer will be zero and rotation-based combination will be used
l_intbuf = use_internal_buf ? l_block : 0u;
}
bool const xbuf_used = collected == to_collect && xbuf.capacity() >= l_block;
//Merge trailing elements using smart merges
adaptive_merge_combine_blocks(first, len1, len2, collected, n_keys, l_block, use_internal_buf, xbuf_used, comp, xbuf);
//Merge buffer and keys with the rest of the values
adaptive_merge_final_merge (first, len1, len2, collected, l_intbuf, l_block, use_internal_buf, xbuf_used, comp, xbuf);
}
}
} //namespace detail_adaptive {
///@endcond
//! <b>Effects</b>: Merges two consecutive sorted ranges [first, middle) and [middle, last)
//! into one sorted range [first, last) according to the given comparison function comp.
//! The algorithm is stable (if there are equivalent elements in the original two ranges,
//! the elements from the first range (preserving their original order) precede the elements
//! from the second range (preserving their original order).
//!
//! <b>Requires</b>:
//! - RandIt must meet the requirements of ValueSwappable and RandomAccessIterator.
//! - The type of dereferenced RandIt must meet the requirements of MoveAssignable and MoveConstructible.
//!
//! <b>Parameters</b>:
//! - first: the beginning of the first sorted range.
//! - middle: the end of the first sorted range and the beginning of the second
//! - last: the end of the second sorted range
//! - comp: comparison function object which returns true if the first argument is is ordered before the second.
//! - uninitialized, uninitialized_len: raw storage starting on "uninitialized", able to hold "uninitialized_len"
//! elements of type iterator_traits<RandIt>::value_type. Maximum performance is achieved when uninitialized_len
//! is min(std::distance(first, middle), std::distance(middle, last)).
//!
//! <b>Throws</b>: If comp throws or the move constructor, move assignment or swap of the type
//! of dereferenced RandIt throws.
//!
//! <b>Complexity</b>: Always K x O(N) comparisons and move assignments/constructors/swaps.
//! Constant factor for comparisons and data movement is minimized when uninitialized_len
//! is min(std::distance(first, middle), std::distance(middle, last)).
//! Pretty good enough performance is achieved when uninitialized_len is
//! ceil(sqrt(std::distance(first, last)))*2.
//!
//! <b>Caution</b>: Experimental implementation, not production-ready.
template<class RandIt, class Compare>
void adaptive_merge( RandIt first, RandIt middle, RandIt last, Compare comp
, typename iterator_traits<RandIt>::value_type* uninitialized = 0
, typename iter_size<RandIt>::type uninitialized_len = 0)
{
typedef typename iter_size<RandIt>::type size_type;
typedef typename iterator_traits<RandIt>::value_type value_type;
if (first == middle || middle == last){
return;
}
//Reduce ranges to merge if possible
do {
if (comp(*middle, *first)){
break;
}
++first;
if (first == middle)
return;
} while(1);
RandIt first_high(middle);
--first_high;
do {
--last;
if (comp(*last, *first_high)){
++last;
break;
}
if (last == middle)
return;
} while(1);
::boost::movelib::adaptive_xbuf<value_type, value_type*, size_type> xbuf(uninitialized, size_type(uninitialized_len));
::boost::movelib::detail_adaptive::adaptive_merge_impl(first, size_type(middle - first), size_type(last - middle), comp, xbuf);
}
} //namespace movelib {
} //namespace boost {
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
#include <boost/move/detail/config_end.hpp>
#endif //#define BOOST_MOVE_ADAPTIVE_MERGE_HPP

View File

@@ -0,0 +1,654 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2015-2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_ADAPTIVE_SORT_HPP
#define BOOST_MOVE_ADAPTIVE_SORT_HPP
#include <boost/move/detail/config_begin.hpp>
#include <boost/move/algo/detail/adaptive_sort_merge.hpp>
#include <boost/core/ignore_unused.hpp>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost {
namespace movelib {
///@cond
namespace detail_adaptive {
template<class RandIt>
void move_data_backward( RandIt cur_pos
, typename iter_size<RandIt>::type const l_data
, RandIt new_pos
, bool const xbuf_used)
{
//Move buffer to the total combination right
if(xbuf_used){
boost::move_backward(cur_pos, cur_pos+l_data, new_pos+l_data);
}
else{
boost::adl_move_swap_ranges_backward(cur_pos, cur_pos+l_data, new_pos+l_data);
//Rotate does less moves but it seems slower due to cache issues
//rotate_gcd(first-l_block, first+len-l_block, first+len);
}
}
template<class RandIt>
void move_data_forward( RandIt cur_pos
, typename iter_size<RandIt>::type const l_data
, RandIt new_pos
, bool const xbuf_used)
{
//Move buffer to the total combination right
if(xbuf_used){
boost::move(cur_pos, cur_pos+l_data, new_pos);
}
else{
boost::adl_move_swap_ranges(cur_pos, cur_pos+l_data, new_pos);
//Rotate does less moves but it seems slower due to cache issues
//rotate_gcd(first-l_block, first+len-l_block, first+len);
}
}
// build blocks of length 2*l_build_buf. l_build_buf is power of two
// input: [0, l_build_buf) elements are buffer, rest unsorted elements
// output: [0, l_build_buf) elements are buffer, blocks 2*l_build_buf and last subblock sorted
//
// First elements are merged from right to left until elements start
// at first. All old elements [first, first + l_build_buf) are placed at the end
// [first+len-l_build_buf, first+len). To achieve this:
// - If we have external memory to merge, we save elements from the buffer
// so that a non-swapping merge is used. Buffer elements are restored
// at the end of the buffer from the external memory.
//
// - When the external memory is not available or it is insufficient
// for a merge operation, left swap merging is used.
//
// Once elements are merged left to right in blocks of l_build_buf, then a single left
// to right merge step is performed to achieve merged blocks of size 2K.
// If external memory is available, usual merge is used, swap merging otherwise.
//
// As a last step, if auxiliary memory is available in-place merge is performed.
// until all is merged or auxiliary memory is not large enough.
template<class RandIt, class Compare, class XBuf>
typename iter_size<RandIt>::type
adaptive_sort_build_blocks
( RandIt const first
, typename iter_size<RandIt>::type const len
, typename iter_size<RandIt>::type const l_base
, typename iter_size<RandIt>::type const l_build_buf
, XBuf & xbuf
, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
BOOST_ASSERT(l_build_buf <= len);
BOOST_ASSERT(0 == ((l_build_buf / l_base)&(l_build_buf/l_base-1)));
//Place the start pointer after the buffer
RandIt first_block = first + l_build_buf;
size_type const elements_in_blocks = size_type(len - l_build_buf);
//////////////////////////////////
// Start of merge to left step
//////////////////////////////////
size_type l_merged = 0u;
BOOST_ASSERT(l_build_buf);
//If there is no enough buffer for the insertion sort step, just avoid the external buffer
size_type kbuf = min_value<size_type>(l_build_buf, size_type(xbuf.capacity()));
kbuf = kbuf < l_base ? 0 : kbuf;
if(kbuf){
//Backup internal buffer values in external buffer so they can be overwritten
xbuf.move_assign(first+l_build_buf-kbuf, kbuf);
l_merged = op_insertion_sort_step_left(first_block, elements_in_blocks, l_base, comp, move_op());
//Now combine them using the buffer. Elements from buffer can be
//overwritten since they've been saved to xbuf
l_merged = op_merge_left_step_multiple
( first_block - l_merged, elements_in_blocks, l_merged, l_build_buf, size_type(kbuf - l_merged), comp, move_op());
//Restore internal buffer from external buffer unless kbuf was l_build_buf,
//in that case restoration will happen later
if(kbuf != l_build_buf){
boost::move(xbuf.data()+kbuf-l_merged, xbuf.data() + kbuf, first_block-l_merged+elements_in_blocks);
}
}
else{
l_merged = insertion_sort_step(first_block, elements_in_blocks, l_base, comp);
rotate_gcd(first_block-l_merged, first_block, first_block+elements_in_blocks);
}
//Now combine elements using the buffer. Elements from buffer can't be
//overwritten since xbuf was not big enough, so merge swapping elements.
l_merged = op_merge_left_step_multiple
(first_block-l_merged, elements_in_blocks, l_merged, l_build_buf, size_type(l_build_buf - l_merged), comp, swap_op());
BOOST_ASSERT(l_merged == l_build_buf);
//////////////////////////////////
// Start of merge to right step
//////////////////////////////////
//If kbuf is l_build_buf then we can merge right without swapping
//Saved data is still in xbuf
if(kbuf && kbuf == l_build_buf){
op_merge_right_step_once(first, elements_in_blocks, l_build_buf, comp, move_op());
//Restore internal buffer from external buffer if kbuf was l_build_buf.
//as this operation was previously delayed.
boost::move(xbuf.data(), xbuf.data() + kbuf, first);
}
else{
op_merge_right_step_once(first, elements_in_blocks, l_build_buf, comp, swap_op());
}
xbuf.clear();
//2*l_build_buf or total already merged
return min_value<size_type>(elements_in_blocks, size_type(2u*l_build_buf));
}
template<class RandItKeys, class KeyCompare, class RandIt, class Compare, class XBuf>
void adaptive_sort_combine_blocks
( RandItKeys const keys
, KeyCompare key_comp
, RandIt const first
, typename iter_size<RandIt>::type const len
, typename iter_size<RandIt>::type const l_prev_merged
, typename iter_size<RandIt>::type const l_block
, bool const use_buf
, bool const xbuf_used
, XBuf & xbuf
, Compare comp
, bool merge_left)
{
boost::ignore_unused(xbuf);
typedef typename iter_size<RandIt>::type size_type;
size_type const l_reg_combined = size_type(2u*l_prev_merged);
size_type l_irreg_combined = 0;
size_type const l_total_combined = calculate_total_combined(len, l_prev_merged, &l_irreg_combined);
size_type const n_reg_combined = len/l_reg_combined;
RandIt combined_first = first;
boost::ignore_unused(l_total_combined);
BOOST_ASSERT(l_total_combined <= len);
size_type const max_i = size_type(n_reg_combined + (l_irreg_combined != 0));
if(merge_left || !use_buf) {
for( size_type combined_i = 0; combined_i != max_i; ) {
//Now merge blocks
bool const is_last = combined_i==n_reg_combined;
size_type const l_cur_combined = is_last ? l_irreg_combined : l_reg_combined;
range_xbuf<RandIt, size_type, move_op> rbuf( (use_buf && xbuf_used) ? (combined_first-l_block) : combined_first, combined_first);
size_type n_block_a, n_block_b, l_irreg1, l_irreg2;
combine_params( keys, key_comp, l_cur_combined
, l_prev_merged, l_block, rbuf
, n_block_a, n_block_b, l_irreg1, l_irreg2); //Outputs
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A combpar: ", len + l_block);
BOOST_MOVE_ADAPTIVE_SORT_INVARIANT(boost::movelib::is_sorted(combined_first, combined_first + n_block_a*l_block+l_irreg1, comp));
BOOST_MOVE_ADAPTIVE_SORT_INVARIANT(boost::movelib::is_sorted(combined_first + n_block_a*l_block+l_irreg1, combined_first + n_block_a*l_block+l_irreg1+n_block_b*l_block+l_irreg2, comp));
if(!use_buf){
merge_blocks_bufferless
(keys, key_comp, combined_first, l_block, 0u, n_block_a, n_block_b, l_irreg2, comp);
}
else{
merge_blocks_left
(keys, key_comp, combined_first, l_block, 0u, n_block_a, n_block_b, l_irreg2, comp, xbuf_used);
}
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" After merge_blocks_L: ", len + l_block);
++combined_i;
if(combined_i != max_i)
combined_first += l_reg_combined;
}
}
else{
combined_first += size_type(l_reg_combined*(max_i-1u));
for( size_type combined_i = max_i; combined_i; ) {
--combined_i;
bool const is_last = combined_i==n_reg_combined;
size_type const l_cur_combined = is_last ? l_irreg_combined : l_reg_combined;
RandIt const combined_last(combined_first+l_cur_combined);
range_xbuf<RandIt, size_type, move_op> rbuf(combined_last, xbuf_used ? (combined_last+l_block) : combined_last);
size_type n_block_a, n_block_b, l_irreg1, l_irreg2;
combine_params( keys, key_comp, l_cur_combined
, l_prev_merged, l_block, rbuf
, n_block_a, n_block_b, l_irreg1, l_irreg2); //Outputs
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A combpar: ", len + l_block);
BOOST_MOVE_ADAPTIVE_SORT_INVARIANT(boost::movelib::is_sorted(combined_first, combined_first + n_block_a*l_block+l_irreg1, comp));
BOOST_MOVE_ADAPTIVE_SORT_INVARIANT(boost::movelib::is_sorted(combined_first + n_block_a*l_block+l_irreg1, combined_first + n_block_a*l_block+l_irreg1+n_block_b*l_block+l_irreg2, comp));
merge_blocks_right
(keys, key_comp, combined_first, l_block, n_block_a, n_block_b, l_irreg2, comp, xbuf_used);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" After merge_blocks_R: ", len + l_block);
if(combined_i)
combined_first -= l_reg_combined;
}
}
}
//Returns true if buffer is placed in
//[buffer+len-l_intbuf, buffer+len). Otherwise, buffer is
//[buffer,buffer+l_intbuf)
template<class RandIt, class Compare, class XBuf>
bool adaptive_sort_combine_all_blocks
( RandIt keys
, typename iter_size<RandIt>::type &n_keys
, RandIt const buffer
, typename iter_size<RandIt>::type const l_buf_plus_data
, typename iter_size<RandIt>::type l_merged
, typename iter_size<RandIt>::type &l_intbuf
, XBuf & xbuf
, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
RandIt const first = buffer + l_intbuf;
size_type const l_data = size_type(l_buf_plus_data - l_intbuf);
size_type const l_unique = size_type(l_intbuf + n_keys);
//Backup data to external buffer once if possible
bool const common_xbuf = l_data > l_merged && l_intbuf && l_intbuf <= xbuf.capacity();
if(common_xbuf){
xbuf.move_assign(buffer, l_intbuf);
}
bool prev_merge_left = true;
size_type l_prev_total_combined = l_merged, l_prev_block = 0;
bool prev_use_internal_buf = true;
for( size_type n = 0; l_data > l_merged
; l_merged = size_type(2u*l_merged)
, ++n){
//If l_intbuf is non-zero, use that internal buffer.
// Implies l_block == l_intbuf && use_internal_buf == true
//If l_intbuf is zero, see if half keys can be reused as a reduced emergency buffer,
// Implies l_block == n_keys/2 && use_internal_buf == true
//Otherwise, just give up and and use all keys to merge using rotations (use_internal_buf = false)
bool use_internal_buf = false;
size_type const l_block = lblock_for_combine(l_intbuf, n_keys, size_type(2*l_merged), use_internal_buf);
BOOST_ASSERT(!l_intbuf || (l_block == l_intbuf));
BOOST_ASSERT(n == 0 || (!use_internal_buf || prev_use_internal_buf) );
BOOST_ASSERT(n == 0 || (!use_internal_buf || l_prev_block == l_block) );
bool const is_merge_left = (n&1) == 0;
size_type const l_total_combined = calculate_total_combined(l_data, l_merged);
if(n && prev_use_internal_buf && prev_merge_left){
if(is_merge_left || !use_internal_buf){
move_data_backward(first-l_prev_block, l_prev_total_combined, first, common_xbuf);
}
else{
//Put the buffer just after l_total_combined
RandIt const buf_end = first+l_prev_total_combined;
RandIt const buf_beg = buf_end-l_block;
if(l_prev_total_combined > l_total_combined){
size_type const l_diff = size_type(l_prev_total_combined - l_total_combined);
move_data_backward(buf_beg-l_diff, l_diff, buf_end-l_diff, common_xbuf);
}
else if(l_prev_total_combined < l_total_combined){
size_type const l_diff = size_type(l_total_combined - l_prev_total_combined);
move_data_forward(buf_end, l_diff, buf_beg, common_xbuf);
}
}
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" After move_data : ", l_data + l_intbuf);
}
//Combine to form l_merged*2 segments
if(n_keys){
size_type upper_n_keys_this_iter = size_type(2u*l_merged/l_block);
if(upper_n_keys_this_iter > 256){
adaptive_sort_combine_blocks
( keys, comp, !use_internal_buf || is_merge_left ? first : first-l_block
, l_data, l_merged, l_block, use_internal_buf, common_xbuf, xbuf, comp, is_merge_left);
}
else{
unsigned char uint_keys[256];
adaptive_sort_combine_blocks
( uint_keys, less(), !use_internal_buf || is_merge_left ? first : first-l_block
, l_data, l_merged, l_block, use_internal_buf, common_xbuf, xbuf, comp, is_merge_left);
}
}
else{
size_type *const uint_keys = xbuf.template aligned_trailing<size_type>();
adaptive_sort_combine_blocks
( uint_keys, less(), !use_internal_buf || is_merge_left ? first : first-l_block
, l_data, l_merged, l_block, use_internal_buf, common_xbuf, xbuf, comp, is_merge_left);
}
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(is_merge_left ? " After comb blocks L: " : " After comb blocks R: ", l_data + l_intbuf);
prev_merge_left = is_merge_left;
l_prev_total_combined = l_total_combined;
l_prev_block = l_block;
prev_use_internal_buf = use_internal_buf;
}
BOOST_ASSERT(l_prev_total_combined == l_data);
bool const buffer_right = prev_use_internal_buf && prev_merge_left;
l_intbuf = prev_use_internal_buf ? l_prev_block : 0u;
n_keys = size_type(l_unique - l_intbuf);
//Restore data from to external common buffer if used
if(common_xbuf){
if(buffer_right){
boost::move(xbuf.data(), xbuf.data() + l_intbuf, buffer+l_data);
}
else{
boost::move(xbuf.data(), xbuf.data() + l_intbuf, buffer);
}
}
return buffer_right;
}
template<class RandIt, class Compare, class XBuf>
void adaptive_sort_final_merge( bool buffer_right
, RandIt const first
, typename iter_size<RandIt>::type const l_intbuf
, typename iter_size<RandIt>::type const n_keys
, typename iter_size<RandIt>::type const len
, XBuf & xbuf
, Compare comp)
{
//BOOST_ASSERT(n_keys || xbuf.size() == l_intbuf);
xbuf.clear();
typedef typename iter_size<RandIt>::type size_type;
size_type const n_key_plus_buf = size_type(l_intbuf+n_keys);
if(buffer_right){
//Use stable sort as some buffer elements might not be unique (see non_unique_buf)
stable_sort(first+len-l_intbuf, first+len, comp, xbuf);
stable_merge( first+n_keys, first+len-l_intbuf, first+len, antistable<Compare>(comp), xbuf);
unstable_sort(first, first+n_keys, comp, xbuf);
stable_merge(first, first+n_keys, first+len, comp, xbuf);
}
else{
//Use stable sort as some buffer elements might not be unique (see non_unique_buf)
stable_sort(first, first+n_key_plus_buf, comp, xbuf);
if(xbuf.capacity() >= n_key_plus_buf){
buffered_merge(first, first+n_key_plus_buf, first+len, comp, xbuf);
}
else if(xbuf.capacity() >= min_value<size_type>(l_intbuf, n_keys)){
stable_merge( first+n_keys, first+n_key_plus_buf
, first+len, comp, xbuf);
stable_merge(first, first+n_keys, first+len, comp, xbuf);
}
else{
stable_merge(first, first+n_key_plus_buf, first+len, comp, xbuf);
}
}
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" After final_merge : ", len);
}
template<class RandIt, class Compare, class Unsigned, class XBuf>
bool adaptive_sort_build_params
(RandIt first, Unsigned const len, Compare comp
, Unsigned &n_keys, Unsigned &l_intbuf, Unsigned &l_base, Unsigned &l_build_buf
, XBuf & xbuf
)
{
typedef typename iter_size<RandIt>::type size_type;
//Calculate ideal parameters and try to collect needed unique keys
l_base = 0u;
//Try to find a value near sqrt(len) that is 2^N*l_base where
//l_base <= AdaptiveSortInsertionSortThreshold. This property is important
//as build_blocks merges to the left iteratively duplicating the
//merged size and all the buffer must be used just before the final
//merge to right step. This guarantees "build_blocks" produces
//segments of size l_build_buf*2, maximizing the classic merge phase.
l_intbuf = size_type(ceil_sqrt_multiple(len, &l_base));
//The internal buffer can be expanded if there is enough external memory
while(xbuf.capacity() >= l_intbuf*2){
l_intbuf = size_type(2u*l_intbuf);
}
//This is the minimum number of keys to implement the ideal algorithm
//
//l_intbuf is used as buffer plus the key count
size_type n_min_ideal_keys = size_type(l_intbuf-1u);
while(n_min_ideal_keys >= (len-l_intbuf-n_min_ideal_keys)/l_intbuf){
--n_min_ideal_keys;
}
++n_min_ideal_keys;
BOOST_ASSERT(n_min_ideal_keys <= l_intbuf);
if(xbuf.template supports_aligned_trailing<size_type>
(l_intbuf, size_type((size_type(len-l_intbuf)-1u)/l_intbuf+1u))){
n_keys = 0u;
l_build_buf = l_intbuf;
}
else{
//Try to achieve a l_build_buf of length l_intbuf*2, so that we can merge with that
//l_intbuf*2 buffer in "build_blocks" and use half of them as buffer and the other half
//as keys in combine_all_blocks. In that case n_keys >= n_min_ideal_keys but by a small margin.
//
//If available memory is 2*sqrt(l), then only sqrt(l) unique keys are needed,
//(to be used for keys in combine_all_blocks) as the whole l_build_buf
//will be backuped in the buffer during build_blocks.
bool const non_unique_buf = xbuf.capacity() >= l_intbuf;
size_type const to_collect = non_unique_buf ? n_min_ideal_keys : size_type(l_intbuf*2u);
size_type collected = collect_unique(first, first+len, to_collect, comp, xbuf);
//If available memory is 2*sqrt(l), then for "build_params"
//the situation is the same as if 2*l_intbuf were collected.
if(non_unique_buf && collected == n_min_ideal_keys){
l_build_buf = l_intbuf;
n_keys = n_min_ideal_keys;
}
else if(collected == 2*l_intbuf){
//l_intbuf*2 elements found. Use all of them in the build phase
l_build_buf = size_type(l_intbuf*2);
n_keys = l_intbuf;
}
else if(collected >= (n_min_ideal_keys+l_intbuf)){
l_build_buf = l_intbuf;
n_keys = size_type(collected - l_intbuf);
}
//If collected keys are not enough, try to fix n_keys and l_intbuf. If no fix
//is possible (due to very low unique keys), then go to a slow sort based on rotations.
else{
BOOST_ASSERT(collected < (n_min_ideal_keys+l_intbuf));
if(collected < 4){ //No combination possible with less that 4 keys
return false;
}
n_keys = l_intbuf;
while(n_keys & (n_keys-1u)){
n_keys &= size_type(n_keys-1u); // make it power or 2
}
while(n_keys > collected){
n_keys/=2;
}
//AdaptiveSortInsertionSortThreshold is always power of two so the minimum is power of two
l_base = min_value<Unsigned>(n_keys, AdaptiveSortInsertionSortThreshold);
l_intbuf = 0;
l_build_buf = n_keys;
}
BOOST_ASSERT((n_keys+l_intbuf) >= l_build_buf);
}
return true;
}
// Main explanation of the sort algorithm.
//
// csqrtlen = ceil(sqrt(len));
//
// * First, 2*csqrtlen unique elements elements are extracted from elements to be
// sorted and placed in the beginning of the range.
//
// * Step "build_blocks": In this nearly-classic merge step, 2*csqrtlen unique elements
// will be used as auxiliary memory, so trailing len-2*csqrtlen elements are
// are grouped in blocks of sorted 4*csqrtlen elements. At the end of the step
// 2*csqrtlen unique elements are again the leading elements of the whole range.
//
// * Step "combine_blocks": pairs of previously formed blocks are merged with a different
// ("smart") algorithm to form blocks of 8*csqrtlen elements. This step is slower than the
// "build_blocks" step and repeated iteratively (forming blocks of 16*csqrtlen, 32*csqrtlen
// elements, etc) of until all trailing (len-2*csqrtlen) elements are merged.
//
// In "combine_blocks" len/csqrtlen elements used are as "keys" (markers) to
// know if elements belong to the first or second block to be merged and another
// leading csqrtlen elements are used as buffer. Explanation of the "combine_blocks" step:
//
// Iteratively until all trailing (len-2*csqrtlen) elements are merged:
// Iteratively for each pair of previously merged block:
// * Blocks are divided groups of csqrtlen elements and
// 2*merged_block/csqrtlen keys are sorted to be used as markers
// * Groups are selection-sorted by first or last element (depending whether they are going
// to be merged to left or right) and keys are reordered accordingly as an imitation-buffer.
// * Elements of each block pair are merged using the csqrtlen buffer taking into account
// if they belong to the first half or second half (marked by the key).
//
// * In the final merge step leading elements (2*csqrtlen) are sorted and merged with
// rotations with the rest of sorted elements in the "combine_blocks" step.
//
// Corner cases:
//
// * If no 2*csqrtlen elements can be extracted:
//
// * If csqrtlen+len/csqrtlen are extracted, then only csqrtlen elements are used
// as buffer in the "build_blocks" step forming blocks of 2*csqrtlen elements. This
// means that an additional "combine_blocks" step will be needed to merge all elements.
//
// * If no csqrtlen+len/csqrtlen elements can be extracted, but still more than a minimum,
// then reduces the number of elements used as buffer and keys in the "build_blocks"
// and "combine_blocks" steps. If "combine_blocks" has no enough keys due to this reduction
// then uses a rotation based smart merge.
//
// * If the minimum number of keys can't be extracted, a rotation-based sorting is performed.
//
// * If auxiliary memory is more or equal than ceil(len/2), half-copying mergesort is used.
//
// * If auxiliary memory is more than csqrtlen+n_keys*sizeof(std::size_t),
// then only csqrtlen elements need to be extracted and "combine_blocks" will use integral
// keys to combine blocks.
//
// * If auxiliary memory is available, the "build_blocks" will be extended to build bigger blocks
// using classic merge and "combine_blocks" will use bigger blocks when merging.
template<class RandIt, class Compare, class XBuf>
void adaptive_sort_impl
( RandIt first
, typename iter_size<RandIt>::type const len
, Compare comp
, XBuf & xbuf
)
{
typedef typename iter_size<RandIt>::type size_type;
//Small sorts go directly to insertion sort
if(len <= size_type(AdaptiveSortInsertionSortThreshold)){
insertion_sort(first, first + len, comp);
}
else if((len-len/2) <= xbuf.capacity()){
merge_sort(first, first+len, comp, xbuf.data());
}
else{
//Make sure it is at least four
BOOST_STATIC_ASSERT(AdaptiveSortInsertionSortThreshold >= 4);
size_type l_base = 0;
size_type l_intbuf = 0;
size_type n_keys = 0;
size_type l_build_buf = 0;
//Calculate and extract needed unique elements. If a minimum is not achieved
//fallback to a slow stable sort
if(!adaptive_sort_build_params(first, len, comp, n_keys, l_intbuf, l_base, l_build_buf, xbuf)){
stable_sort(first, first+len, comp, xbuf);
}
else{
BOOST_ASSERT(l_build_buf);
//Otherwise, continue the adaptive_sort
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1("\n After collect_unique: ", len);
size_type const n_key_plus_buf = size_type(l_intbuf+n_keys);
//l_build_buf is always power of two if l_intbuf is zero
BOOST_ASSERT(l_intbuf || (0 == (l_build_buf & (l_build_buf-1))));
//Classic merge sort until internal buffer and xbuf are exhausted
size_type const l_merged = adaptive_sort_build_blocks
( first + n_key_plus_buf-l_build_buf
, size_type(len-n_key_plus_buf+l_build_buf)
, l_base, l_build_buf, xbuf, comp);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" After build_blocks: ", len);
//Non-trivial merge
bool const buffer_right = adaptive_sort_combine_all_blocks
(first, n_keys, first+n_keys, size_type(len-n_keys), l_merged, l_intbuf, xbuf, comp);
//Sort keys and buffer and merge the whole sequence
adaptive_sort_final_merge(buffer_right, first, l_intbuf, n_keys, len, xbuf, comp);
}
}
}
} //namespace detail_adaptive {
///@endcond
//! <b>Effects</b>: Sorts the elements in the range [first, last) in ascending order according
//! to comparison functor "comp". The sort is stable (order of equal elements
//! is guaranteed to be preserved). Performance is improved if additional raw storage is
//! provided.
//!
//! <b>Requires</b>:
//! - RandIt must meet the requirements of ValueSwappable and RandomAccessIterator.
//! - The type of dereferenced RandIt must meet the requirements of MoveAssignable and MoveConstructible.
//!
//! <b>Parameters</b>:
//! - first, last: the range of elements to sort
//! - comp: comparison function object which returns true if the first argument is is ordered before the second.
//! - uninitialized, uninitialized_len: raw storage starting on "uninitialized", able to hold "uninitialized_len"
//! elements of type iterator_traits<RandIt>::value_type. Maximum performance is achieved when uninitialized_len
//! is ceil(std::distance(first, last)/2).
//!
//! <b>Throws</b>: If comp throws or the move constructor, move assignment or swap of the type
//! of dereferenced RandIt throws.
//!
//! <b>Complexity</b>: Always K x O(Nxlog(N)) comparisons and move assignments/constructors/swaps.
//! Comparisons are close to minimum even with no additional memory. Constant factor for data movement is minimized
//! when uninitialized_len is ceil(std::distance(first, last)/2). Pretty good enough performance is achieved when
//! ceil(sqrt(std::distance(first, last)))*2.
//!
//! <b>Caution</b>: Experimental implementation, not production-ready.
template<class RandIt, class RandRawIt, class Compare>
void adaptive_sort( RandIt first, RandIt last, Compare comp
, RandRawIt uninitialized
, typename iter_size<RandIt>::type uninitialized_len)
{
typedef typename iter_size<RandIt>::type size_type;
typedef typename iterator_traits<RandIt>::value_type value_type;
::boost::movelib::adaptive_xbuf<value_type, RandRawIt, size_type> xbuf(uninitialized, uninitialized_len);
::boost::movelib::detail_adaptive::adaptive_sort_impl(first, size_type(last - first), comp, xbuf);
}
template<class RandIt, class Compare>
void adaptive_sort( RandIt first, RandIt last, Compare comp)
{
typedef typename iterator_traits<RandIt>::value_type value_type;
adaptive_sort(first, last, comp, (value_type*)0, 0u);
}
} //namespace movelib {
} //namespace boost {
#include <boost/move/detail/config_end.hpp>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
#endif //#define BOOST_MOVE_ADAPTIVE_SORT_HPP

View File

@@ -0,0 +1,121 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2015-2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_ALGO_BASIC_OP
#define BOOST_MOVE_ALGO_BASIC_OP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/move/utility_core.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/detail/iterator_traits.hpp>
namespace boost {
namespace movelib {
struct forward_t{};
struct backward_t{};
struct three_way_t{};
struct three_way_forward_t{};
struct four_way_t{};
struct move_op
{
template <class SourceIt, class DestinationIt>
BOOST_MOVE_FORCEINLINE void operator()(SourceIt source, DestinationIt dest)
{ *dest = ::boost::move(*source); }
template <class SourceIt, class DestinationIt>
BOOST_MOVE_FORCEINLINE DestinationIt operator()(forward_t, SourceIt first, SourceIt last, DestinationIt dest_begin)
{ return ::boost::move(first, last, dest_begin); }
template <class SourceIt, class DestinationIt>
BOOST_MOVE_FORCEINLINE DestinationIt operator()(backward_t, SourceIt first, SourceIt last, DestinationIt dest_last)
{ return ::boost::move_backward(first, last, dest_last); }
template <class SourceIt, class DestinationIt1, class DestinationIt2>
BOOST_MOVE_FORCEINLINE void operator()(three_way_t, SourceIt srcit, DestinationIt1 dest1it, DestinationIt2 dest2it)
{
*dest2it = boost::move(*dest1it);
*dest1it = boost::move(*srcit);
}
template <class SourceIt, class DestinationIt1, class DestinationIt2>
DestinationIt2 operator()(three_way_forward_t, SourceIt srcit, SourceIt srcitend, DestinationIt1 dest1it, DestinationIt2 dest2it)
{
//Destination2 range can overlap SourceIt range so avoid boost::move
while(srcit != srcitend){
this->operator()(three_way_t(), srcit++, dest1it++, dest2it++);
}
return dest2it;
}
template <class SourceIt, class DestinationIt1, class DestinationIt2, class DestinationIt3>
BOOST_MOVE_FORCEINLINE void operator()(four_way_t, SourceIt srcit, DestinationIt1 dest1it, DestinationIt2 dest2it, DestinationIt3 dest3it)
{
*dest3it = boost::move(*dest2it);
*dest2it = boost::move(*dest1it);
*dest1it = boost::move(*srcit);
}
};
struct swap_op
{
template <class SourceIt, class DestinationIt>
BOOST_MOVE_FORCEINLINE void operator()(SourceIt source, DestinationIt dest)
{ boost::adl_move_swap(*dest, *source); }
template <class SourceIt, class DestinationIt>
BOOST_MOVE_FORCEINLINE DestinationIt operator()(forward_t, SourceIt first, SourceIt last, DestinationIt dest_begin)
{ return boost::adl_move_swap_ranges(first, last, dest_begin); }
template <class SourceIt, class DestinationIt>
BOOST_MOVE_FORCEINLINE DestinationIt operator()(backward_t, SourceIt first, SourceIt last, DestinationIt dest_begin)
{ return boost::adl_move_swap_ranges_backward(first, last, dest_begin); }
template <class SourceIt, class DestinationIt1, class DestinationIt2>
BOOST_MOVE_FORCEINLINE void operator()(three_way_t, SourceIt srcit, DestinationIt1 dest1it, DestinationIt2 dest2it)
{
typename ::boost::movelib::iterator_traits<SourceIt>::value_type tmp(boost::move(*dest2it));
*dest2it = boost::move(*dest1it);
*dest1it = boost::move(*srcit);
*srcit = boost::move(tmp);
}
template <class SourceIt, class DestinationIt1, class DestinationIt2>
DestinationIt2 operator()(three_way_forward_t, SourceIt srcit, SourceIt srcitend, DestinationIt1 dest1it, DestinationIt2 dest2it)
{
while(srcit != srcitend){
this->operator()(three_way_t(), srcit++, dest1it++, dest2it++);
}
return dest2it;
}
template <class SourceIt, class DestinationIt1, class DestinationIt2, class DestinationIt3>
BOOST_MOVE_FORCEINLINE void operator()(four_way_t, SourceIt srcit, DestinationIt1 dest1it, DestinationIt2 dest2it, DestinationIt3 dest3it)
{
typename ::boost::movelib::iterator_traits<SourceIt>::value_type tmp(boost::move(*dest3it));
*dest3it = boost::move(*dest2it);
*dest2it = boost::move(*dest1it);
*dest1it = boost::move(*srcit);
*srcit = boost::move(tmp);
}
};
}} //namespace boost::movelib
#endif //BOOST_MOVE_ALGO_BASIC_OP

View File

@@ -0,0 +1,121 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2017-2018.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//! \file
#ifndef BOOST_MOVE_DETAIL_HEAP_SORT_HPP
#define BOOST_MOVE_DETAIL_HEAP_SORT_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/move/detail/config_begin.hpp>
#include <boost/move/detail/workaround.hpp>
#include <boost/move/detail/iterator_traits.hpp>
#include <boost/move/algo/detail/is_sorted.hpp>
#include <boost/move/utility_core.hpp>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost { namespace movelib{
template <class RandomAccessIterator, class Compare>
class heap_sort_helper
{
typedef typename boost::movelib::iter_size<RandomAccessIterator>::type size_type;
typedef typename boost::movelib::iterator_traits<RandomAccessIterator>::value_type value_type;
static void adjust_heap(RandomAccessIterator first, size_type hole_index, size_type const len, value_type &value, Compare comp)
{
size_type const top_index = hole_index;
size_type second_child = size_type(2u*(hole_index + 1u));
while (second_child < len) {
if (comp(*(first + second_child), *(first + size_type(second_child - 1u))))
second_child--;
*(first + hole_index) = boost::move(*(first + second_child));
hole_index = second_child;
second_child = size_type(2u * (second_child + 1u));
}
if (second_child == len) {
*(first + hole_index) = boost::move(*(first + size_type(second_child - 1u)));
hole_index = size_type(second_child - 1);
}
{ //push_heap-like ending
size_type parent = size_type((hole_index - 1u) / 2u);
while (hole_index > top_index && comp(*(first + parent), value)) {
*(first + hole_index) = boost::move(*(first + parent));
hole_index = parent;
parent = size_type((hole_index - 1u) / 2u);
}
*(first + hole_index) = boost::move(value);
}
}
static void make_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp)
{
size_type const len = size_type(last - first);
if (len > 1) {
size_type parent = size_type(len/2u - 1u);
do {
value_type v(boost::move(*(first + parent)));
adjust_heap(first, parent, len, v, comp);
}while (parent--);
}
}
static void sort_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp)
{
size_type len = size_type(last - first);
while (len > 1) {
//move biggest to the safe zone
--last;
value_type v(boost::move(*last));
*last = boost::move(*first);
adjust_heap(first, size_type(0), --len, v, comp);
}
}
public:
static void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp)
{
make_heap(first, last, comp);
sort_heap(first, last, comp);
BOOST_ASSERT(boost::movelib::is_sorted(first, last, comp));
}
};
template <class RandomAccessIterator, class Compare>
BOOST_MOVE_FORCEINLINE void heap_sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp)
{
heap_sort_helper<RandomAccessIterator, Compare>::sort(first, last, comp);
}
}} //namespace boost { namespace movelib{
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
#include <boost/move/detail/config_end.hpp>
#endif //#ifndef BOOST_MOVE_DETAIL_HEAP_SORT_HPP

View File

@@ -0,0 +1,137 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2014-2014.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//! \file
#ifndef BOOST_MOVE_DETAIL_INSERT_SORT_HPP
#define BOOST_MOVE_DETAIL_INSERT_SORT_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/move/utility_core.hpp>
#include <boost/move/algo/move.hpp>
#include <boost/move/detail/iterator_traits.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/move/detail/placement_new.hpp>
#include <boost/move/detail/destruct_n.hpp>
#include <boost/move/algo/detail/basic_op.hpp>
#include <boost/move/detail/placement_new.hpp>
#include <boost/move/detail/iterator_to_raw_pointer.hpp>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost { namespace movelib{
// @cond
template <class Compare, class ForwardIterator, class BirdirectionalIterator, class Op>
void insertion_sort_op(ForwardIterator first1, ForwardIterator last1, BirdirectionalIterator first2, Compare comp, Op op)
{
if (first1 != last1){
BirdirectionalIterator last2 = first2;
op(first1, last2);
for (++last2; ++first1 != last1; ++last2){
BirdirectionalIterator j2 = last2;
BirdirectionalIterator i2 = j2;
if (comp(*first1, *--i2)){
op(i2, j2);
for (--j2; i2 != first2 && comp(*first1, *--i2); --j2) {
op(i2, j2);
}
}
op(first1, j2);
}
}
}
template <class Compare, class ForwardIterator, class BirdirectionalIterator>
void insertion_sort_swap(ForwardIterator first1, ForwardIterator last1, BirdirectionalIterator first2, Compare comp)
{
insertion_sort_op(first1, last1, first2, comp, swap_op());
}
template <class Compare, class ForwardIterator, class BirdirectionalIterator>
void insertion_sort_copy(ForwardIterator first1, ForwardIterator last1, BirdirectionalIterator first2, Compare comp)
{
insertion_sort_op(first1, last1, first2, comp, move_op());
}
// @endcond
template <class Compare, class BirdirectionalIterator>
void insertion_sort(BirdirectionalIterator first, BirdirectionalIterator last, Compare comp)
{
typedef typename boost::movelib::iterator_traits<BirdirectionalIterator>::value_type value_type;
if (first != last){
BirdirectionalIterator i = first;
for (++i; i != last; ++i){
BirdirectionalIterator j = i;
if (comp(*i, *--j)) {
value_type tmp(::boost::move(*i));
*i = ::boost::move(*j);
for (BirdirectionalIterator k = j; k != first && comp(tmp, *--k); --j) {
*j = ::boost::move(*k);
}
*j = ::boost::move(tmp);
}
}
}
}
template <class Compare, class BirdirectionalIterator, class BirdirectionalRawIterator>
void insertion_sort_uninitialized_copy
(BirdirectionalIterator first1, BirdirectionalIterator const last1
, BirdirectionalRawIterator const first2
, Compare comp)
{
typedef typename iterator_traits<BirdirectionalIterator>::value_type value_type;
if (first1 != last1){
BirdirectionalRawIterator last2 = first2;
::new((iterator_to_raw_pointer)(last2), boost_move_new_t()) value_type(::boost::move(*first1));
destruct_n<value_type, BirdirectionalRawIterator> d(first2);
d.incr();
for (++last2; ++first1 != last1; ++last2){
BirdirectionalRawIterator j2 = last2;
BirdirectionalRawIterator k2 = j2;
if (comp(*first1, *--k2)){
::new((iterator_to_raw_pointer)(j2), boost_move_new_t()) value_type(::boost::move(*k2));
d.incr();
for (--j2; k2 != first2 && comp(*first1, *--k2); --j2)
*j2 = ::boost::move(*k2);
*j2 = ::boost::move(*first1);
}
else{
::new((iterator_to_raw_pointer)(j2), boost_move_new_t()) value_type(::boost::move(*first1));
d.incr();
}
}
d.release();
}
}
}} //namespace boost { namespace movelib{
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
#endif //#ifndef BOOST_MOVE_DETAIL_INSERT_SORT_HPP

View File

@@ -0,0 +1,55 @@
#ifndef BOOST_MOVE_DETAIL_IS_SORTED_HPP
#define BOOST_MOVE_DETAIL_IS_SORTED_HPP
///////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2017-2018. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
namespace boost {
namespace movelib {
template<class ForwardIt, class Pred>
bool is_sorted(ForwardIt const first, ForwardIt last, Pred pred)
{
if (first != last) {
ForwardIt next = first, cur(first);
while (++next != last) {
if (pred(*next, *cur))
return false;
cur = next;
}
}
return true;
}
template<class ForwardIt, class Pred>
bool is_sorted_and_unique(ForwardIt first, ForwardIt last, Pred pred)
{
if (first != last) {
ForwardIt next = first;
while (++next != last) {
if (!pred(*first, *next))
return false;
first = next;
}
}
return true;
}
} //namespace movelib {
} //namespace boost {
#endif //BOOST_MOVE_DETAIL_IS_SORTED_HPP

View File

@@ -0,0 +1,946 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2015-2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_MERGE_HPP
#define BOOST_MOVE_MERGE_HPP
#include <boost/core/ignore_unused.hpp>
#include <boost/move/algo/move.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/algo/detail/basic_op.hpp>
#include <boost/move/detail/iterator_traits.hpp>
#include <boost/move/detail/destruct_n.hpp>
#include <boost/move/algo/predicate.hpp>
#include <boost/move/detail/iterator_to_raw_pointer.hpp>
#include <boost/assert.hpp>
#include <cstddef>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost {
namespace movelib {
template<class T, class RandRawIt = T*, class SizeType = typename iter_size<RandRawIt>::type>
class adaptive_xbuf
{
adaptive_xbuf(const adaptive_xbuf &);
adaptive_xbuf & operator=(const adaptive_xbuf &);
#if !defined(UINTPTR_MAX)
typedef std::size_t uintptr_t;
#endif
public:
typedef RandRawIt iterator;
typedef SizeType size_type;
BOOST_MOVE_FORCEINLINE adaptive_xbuf()
: m_ptr(), m_size(0), m_capacity(0)
{}
BOOST_MOVE_FORCEINLINE adaptive_xbuf(RandRawIt raw_memory, size_type cap)
: m_ptr(raw_memory), m_size(0), m_capacity(cap)
{}
template<class RandIt>
void move_assign(RandIt first, size_type n)
{
typedef typename iterator_traits<RandIt>::difference_type rand_diff_t;
if(n <= m_size){
boost::move(first, first+rand_diff_t(n), m_ptr);
size_type sz = m_size;
while(sz-- != n){
m_ptr[sz].~T();
}
m_size = n;
}
else{
RandRawIt result = boost::move(first, first+rand_diff_t(m_size), m_ptr);
boost::uninitialized_move(first+rand_diff_t(m_size), first+rand_diff_t(n), result);
m_size = n;
}
}
template<class RandIt>
void push_back(RandIt first, size_type n)
{
BOOST_ASSERT(m_capacity - m_size >= n);
boost::uninitialized_move(first, first+n, m_ptr+m_size);
m_size += n;
}
template<class RandIt>
iterator add(RandIt it)
{
BOOST_ASSERT(m_size < m_capacity);
RandRawIt p_ret = m_ptr + m_size;
::new(&*p_ret) T(::boost::move(*it));
++m_size;
return p_ret;
}
template<class RandIt>
void insert(iterator pos, RandIt it)
{
if(pos == (m_ptr + m_size)){
this->add(it);
}
else{
this->add(m_ptr+m_size-1);
//m_size updated
boost::move_backward(pos, m_ptr+m_size-2, m_ptr+m_size-1);
*pos = boost::move(*it);
}
}
BOOST_MOVE_FORCEINLINE void set_size(size_type sz)
{
m_size = sz;
}
void shrink_to_fit(size_type const sz)
{
if(m_size > sz){
for(size_type szt_i = sz; szt_i != m_size; ++szt_i){
m_ptr[szt_i].~T();
}
m_size = sz;
}
}
void initialize_until(size_type const sz, T &t)
{
BOOST_ASSERT(m_size < m_capacity);
if(m_size < sz){
BOOST_TRY
{
::new((void*)&m_ptr[m_size]) T(::boost::move(t));
++m_size;
for(; m_size != sz; ++m_size){
::new((void*)&m_ptr[m_size]) T(::boost::move(m_ptr[m_size-1]));
}
t = ::boost::move(m_ptr[m_size-1]);
}
BOOST_CATCH(...)
{
while(m_size)
{
--m_size;
m_ptr[m_size].~T();
}
}
BOOST_CATCH_END
}
}
private:
template<class RIt>
BOOST_MOVE_FORCEINLINE static bool is_raw_ptr(RIt)
{
return false;
}
BOOST_MOVE_FORCEINLINE static bool is_raw_ptr(T*)
{
return true;
}
public:
template<class U>
bool supports_aligned_trailing(size_type sz, size_type trail_count) const
{
if(this->is_raw_ptr(this->data()) && m_capacity){
uintptr_t u_addr_sz = uintptr_t(&*(this->data()+sz));
uintptr_t u_addr_cp = uintptr_t(&*(this->data()+this->capacity()));
u_addr_sz = ((u_addr_sz + sizeof(U)-1)/sizeof(U))*sizeof(U);
return (u_addr_cp >= u_addr_sz) && ((u_addr_cp - u_addr_sz)/sizeof(U) >= trail_count);
}
return false;
}
template<class U>
BOOST_MOVE_FORCEINLINE U *aligned_trailing() const
{
return this->aligned_trailing<U>(this->size());
}
template<class U>
BOOST_MOVE_FORCEINLINE U *aligned_trailing(size_type pos) const
{
uintptr_t u_addr = uintptr_t(&*(this->data()+pos));
u_addr = ((u_addr + sizeof(U)-1)/sizeof(U))*sizeof(U);
return (U*)u_addr;
}
BOOST_MOVE_FORCEINLINE ~adaptive_xbuf()
{
this->clear();
}
BOOST_MOVE_FORCEINLINE size_type capacity() const
{ return m_capacity; }
BOOST_MOVE_FORCEINLINE iterator data() const
{ return m_ptr; }
BOOST_MOVE_FORCEINLINE iterator begin() const
{ return m_ptr; }
BOOST_MOVE_FORCEINLINE iterator end() const
{ return m_ptr+m_size; }
BOOST_MOVE_FORCEINLINE size_type size() const
{ return m_size; }
BOOST_MOVE_FORCEINLINE bool empty() const
{ return !m_size; }
BOOST_MOVE_FORCEINLINE void clear()
{
this->shrink_to_fit(0u);
}
private:
RandRawIt m_ptr;
size_type m_size;
size_type m_capacity;
};
template<class Iterator, class SizeType, class Op>
class range_xbuf
{
range_xbuf(const range_xbuf &);
range_xbuf & operator=(const range_xbuf &);
public:
typedef SizeType size_type;
typedef Iterator iterator;
range_xbuf(Iterator first, Iterator last)
: m_first(first), m_last(first), m_cap(last)
{}
template<class RandIt>
void move_assign(RandIt first, size_type n)
{
BOOST_ASSERT(size_type(n) <= size_type(m_cap-m_first));
typedef typename iter_difference<RandIt>::type d_type;
m_last = Op()(forward_t(), first, first+d_type(n), m_first);
}
~range_xbuf()
{}
size_type capacity() const
{ return m_cap-m_first; }
Iterator data() const
{ return m_first; }
Iterator end() const
{ return m_last; }
size_type size() const
{ return m_last-m_first; }
bool empty() const
{ return m_first == m_last; }
void clear()
{
m_last = m_first;
}
template<class RandIt>
iterator add(RandIt it)
{
Iterator pos(m_last);
*pos = boost::move(*it);
++m_last;
return pos;
}
void set_size(size_type sz)
{
m_last = m_first;
m_last += sz;
}
private:
Iterator const m_first;
Iterator m_last;
Iterator const m_cap;
};
// @cond
/*
template<typename Unsigned>
inline Unsigned gcd(Unsigned x, Unsigned y)
{
if(0 == ((x &(x-1)) | (y & (y-1)))){
return x < y ? x : y;
}
else{
do
{
Unsigned t = x % y;
x = y;
y = t;
} while (y);
return x;
}
}
*/
//Modified version from "An Optimal In-Place Array Rotation Algorithm", Ching-Kuang Shene
template<typename Unsigned>
Unsigned gcd(Unsigned x, Unsigned y)
{
if(0 == ((x &(x-1)) | (y & (y-1)))){
return x < y ? x : y;
}
else{
Unsigned z = 1;
while((!(x&1)) & (!(y&1))){
z = Unsigned(z << 1);
x = Unsigned(x >> 1);
y = Unsigned(y >> 1);
}
while(x && y){
if(!(x&1))
x = Unsigned(x >> 1);
else if(!(y&1))
y = Unsigned (y >> 1);
else if(x >=y)
x = Unsigned((x-y) >> 1u);
else
y = Unsigned((y-x) >> 1);
}
return Unsigned(z*(x+y));
}
}
template<typename RandIt>
RandIt rotate_gcd(RandIt first, RandIt middle, RandIt last)
{
typedef typename iter_size<RandIt>::type size_type;
typedef typename iterator_traits<RandIt>::value_type value_type;
if(first == middle)
return last;
if(middle == last)
return first;
const size_type middle_pos = size_type(middle - first);
RandIt ret = last - middle_pos;
if (middle == ret){
boost::adl_move_swap_ranges(first, middle, middle);
}
else{
const size_type length = size_type(last - first);
for( RandIt it_i(first), it_gcd(it_i + gcd(length, middle_pos))
; it_i != it_gcd
; ++it_i){
value_type temp(boost::move(*it_i));
RandIt it_j = it_i;
RandIt it_k = it_j+middle_pos;
do{
*it_j = boost::move(*it_k);
it_j = it_k;
size_type const left = size_type(last - it_j);
it_k = left > middle_pos ? it_j + middle_pos : first + middle_pos - left;
} while(it_k != it_i);
*it_j = boost::move(temp);
}
}
return ret;
}
template <class RandIt, class T, class Compare>
RandIt lower_bound
(RandIt first, const RandIt last, const T& key, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
size_type len = size_type(last - first);
RandIt middle;
while (len) {
size_type step = size_type(len >> 1);
middle = first;
middle += step;
if (comp(*middle, key)) {
first = ++middle;
len = size_type(len - (step + 1));
}
else{
len = step;
}
}
return first;
}
template <class RandIt, class T, class Compare>
RandIt upper_bound
(RandIt first, const RandIt last, const T& key, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
size_type len = size_type(last - first);
RandIt middle;
while (len) {
size_type step = size_type(len >> 1);
middle = first;
middle += step;
if (!comp(key, *middle)) {
first = ++middle;
len = size_type(len - (step + 1));
}
else{
len = step;
}
}
return first;
}
template<class RandIt, class Compare, class Op>
void op_merge_left( RandIt buf_first
, RandIt first1
, RandIt const last1
, RandIt const last2
, Compare comp
, Op op)
{
for(RandIt first2=last1; first2 != last2; ++buf_first){
if(first1 == last1){
op(forward_t(), first2, last2, buf_first);
return;
}
else if(comp(*first2, *first1)){
op(first2, buf_first);
++first2;
}
else{
op(first1, buf_first);
++first1;
}
}
if(buf_first != first1){//In case all remaining elements are in the same place
//(e.g. buffer is exactly the size of the second half
//and all elements from the second half are less)
op(forward_t(), first1, last1, buf_first);
}
}
// [buf_first, first1) -> buffer
// [first1, last1) merge [last1,last2) -> [buf_first,buf_first+(last2-first1))
// Elements from buffer are moved to [last2 - (first1-buf_first), last2)
// Note: distance(buf_first, first1) >= distance(last1, last2), so no overlapping occurs
template<class RandIt, class Compare>
void merge_left
(RandIt buf_first, RandIt first1, RandIt const last1, RandIt const last2, Compare comp)
{
op_merge_left(buf_first, first1, last1, last2, comp, move_op());
}
// [buf_first, first1) -> buffer
// [first1, last1) merge [last1,last2) -> [buf_first,buf_first+(last2-first1))
// Elements from buffer are swapped to [last2 - (first1-buf_first), last2)
// Note: distance(buf_first, first1) >= distance(last1, last2), so no overlapping occurs
template<class RandIt, class Compare>
void swap_merge_left
(RandIt buf_first, RandIt first1, RandIt const last1, RandIt const last2, Compare comp)
{
op_merge_left(buf_first, first1, last1, last2, comp, swap_op());
}
template<class RandIt, class Compare, class Op>
void op_merge_right
(RandIt const first1, RandIt last1, RandIt last2, RandIt buf_last, Compare comp, Op op)
{
RandIt const first2 = last1;
while(first1 != last1){
if(last2 == first2){
op(backward_t(), first1, last1, buf_last);
return;
}
--last2;
--last1;
--buf_last;
if(comp(*last2, *last1)){
op(last1, buf_last);
++last2;
}
else{
op(last2, buf_last);
++last1;
}
}
if(last2 != buf_last){ //In case all remaining elements are in the same place
//(e.g. buffer is exactly the size of the first half
//and all elements from the second half are less)
op(backward_t(), first2, last2, buf_last);
}
}
// [last2, buf_last) - buffer
// [first1, last1) merge [last1,last2) -> [first1+(buf_last-last2), buf_last)
// Note: distance[last2, buf_last) >= distance[first1, last1), so no overlapping occurs
template<class RandIt, class Compare>
void merge_right
(RandIt first1, RandIt last1, RandIt last2, RandIt buf_last, Compare comp)
{
op_merge_right(first1, last1, last2, buf_last, comp, move_op());
}
// [last2, buf_last) - buffer
// [first1, last1) merge [last1,last2) -> [first1+(buf_last-last2), buf_last)
// Note: distance[last2, buf_last) >= distance[first1, last1), so no overlapping occurs
template<class RandIt, class Compare>
void swap_merge_right
(RandIt first1, RandIt last1, RandIt last2, RandIt buf_last, Compare comp)
{
op_merge_right(first1, last1, last2, buf_last, comp, swap_op());
}
///////////////////////////////////////////////////////////////////////////////
//
// BUFFERED MERGE
//
///////////////////////////////////////////////////////////////////////////////
template<class RandIt, class Compare, class Op, class Buf>
void op_buffered_merge
( RandIt first, RandIt const middle, RandIt last
, Compare comp, Op op
, Buf &xbuf)
{
if(first != middle && middle != last && comp(*middle, middle[-1])){
typedef typename iter_size<RandIt>::type size_type;
size_type const len1 = size_type(middle-first);
size_type const len2 = size_type(last-middle);
if(len1 <= len2){
first = boost::movelib::upper_bound(first, middle, *middle, comp);
xbuf.move_assign(first, size_type(middle-first));
op_merge_with_right_placed
(xbuf.data(), xbuf.end(), first, middle, last, comp, op);
}
else{
last = boost::movelib::lower_bound(middle, last, middle[-1], comp);
xbuf.move_assign(middle, size_type(last-middle));
op_merge_with_left_placed
(first, middle, last, xbuf.data(), xbuf.end(), comp, op);
}
}
}
template<class RandIt, class Compare, class XBuf>
void buffered_merge
( RandIt first, RandIt const middle, RandIt last
, Compare comp
, XBuf &xbuf)
{
op_buffered_merge(first, middle, last, comp, move_op(), xbuf);
}
//Complexity: min(len1,len2)^2 + max(len1,len2)
template<class RandIt, class Compare>
void merge_bufferless_ON2(RandIt first, RandIt middle, RandIt last, Compare comp)
{
if((middle - first) < (last - middle)){
while(first != middle){
RandIt const old_last1 = middle;
middle = boost::movelib::lower_bound(middle, last, *first, comp);
first = rotate_gcd(first, old_last1, middle);
if(middle == last){
break;
}
do{
++first;
} while(first != middle && !comp(*middle, *first));
}
}
else{
while(middle != last){
RandIt p = boost::movelib::upper_bound(first, middle, last[-1], comp);
last = rotate_gcd(p, middle, last);
middle = p;
if(middle == first){
break;
}
--p;
do{
--last;
} while(middle != last && !comp(last[-1], *p));
}
}
}
static const std::size_t MergeBufferlessONLogNRotationThreshold = 16u;
template <class RandIt, class Compare>
void merge_bufferless_ONlogN_recursive
( RandIt first, RandIt middle, RandIt last
, typename iter_size<RandIt>::type len1
, typename iter_size<RandIt>::type len2
, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
while(1) {
//trivial cases
if (!len2) {
return;
}
else if (!len1) {
return;
}
else if (size_type(len1 | len2) == 1u) {
if (comp(*middle, *first))
adl_move_swap(*first, *middle);
return;
}
else if(size_type(len1+len2) < MergeBufferlessONLogNRotationThreshold){
merge_bufferless_ON2(first, middle, last, comp);
return;
}
RandIt first_cut = first;
RandIt second_cut = middle;
size_type len11 = 0;
size_type len22 = 0;
if (len1 > len2) {
len11 = len1 / 2;
first_cut += len11;
second_cut = boost::movelib::lower_bound(middle, last, *first_cut, comp);
len22 = size_type(second_cut - middle);
}
else {
len22 = len2 / 2;
second_cut += len22;
first_cut = boost::movelib::upper_bound(first, middle, *second_cut, comp);
len11 = size_type(first_cut - first);
}
RandIt new_middle = rotate_gcd(first_cut, middle, second_cut);
//Avoid one recursive call doing a manual tail call elimination on the biggest range
const size_type len_internal = size_type(len11+len22);
if( len_internal < (len1 + len2 - len_internal) ) {
merge_bufferless_ONlogN_recursive(first, first_cut, new_middle, len11, len22, comp);
first = new_middle;
middle = second_cut;
len1 = size_type(len1-len11);
len2 = size_type(len2-len22);
}
else {
merge_bufferless_ONlogN_recursive
(new_middle, second_cut, last, size_type(len1 - len11), size_type(len2 - len22), comp);
middle = first_cut;
last = new_middle;
len1 = len11;
len2 = len22;
}
}
}
//Complexity: NlogN
template<class RandIt, class Compare>
void merge_bufferless_ONlogN(RandIt first, RandIt middle, RandIt last, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
merge_bufferless_ONlogN_recursive
(first, middle, last, size_type(middle - first), size_type(last - middle), comp);
}
template<class RandIt, class Compare>
void merge_bufferless(RandIt first, RandIt middle, RandIt last, Compare comp)
{
#define BOOST_ADAPTIVE_MERGE_NLOGN_MERGE
#ifdef BOOST_ADAPTIVE_MERGE_NLOGN_MERGE
merge_bufferless_ONlogN(first, middle, last, comp);
#else
merge_bufferless_ON2(first, middle, last, comp);
#endif //BOOST_ADAPTIVE_MERGE_NLOGN_MERGE
}
// [r_first, r_last) are already in the right part of the destination range.
template <class Compare, class InputIterator, class InputOutIterator, class Op>
void op_merge_with_right_placed
( InputIterator first, InputIterator last
, InputOutIterator dest_first, InputOutIterator r_first, InputOutIterator r_last
, Compare comp, Op op)
{
BOOST_ASSERT((last - first) == (r_first - dest_first));
while ( first != last ) {
if (r_first == r_last) {
InputOutIterator end = op(forward_t(), first, last, dest_first);
BOOST_ASSERT(end == r_last);
boost::ignore_unused(end);
return;
}
else if (comp(*r_first, *first)) {
op(r_first, dest_first);
++r_first;
}
else {
op(first, dest_first);
++first;
}
++dest_first;
}
// Remaining [r_first, r_last) already in the correct place
}
template <class Compare, class InputIterator, class InputOutIterator>
void swap_merge_with_right_placed
( InputIterator first, InputIterator last
, InputOutIterator dest_first, InputOutIterator r_first, InputOutIterator r_last
, Compare comp)
{
op_merge_with_right_placed(first, last, dest_first, r_first, r_last, comp, swap_op());
}
// [first, last) are already in the right part of the destination range.
template <class Compare, class Op, class BidirIterator, class BidirOutIterator>
void op_merge_with_left_placed
( BidirOutIterator const first, BidirOutIterator last, BidirOutIterator dest_last
, BidirIterator const r_first, BidirIterator r_last
, Compare comp, Op op)
{
BOOST_ASSERT((dest_last - last) == (r_last - r_first));
while( r_first != r_last ) {
if(first == last) {
BidirOutIterator res = op(backward_t(), r_first, r_last, dest_last);
BOOST_ASSERT(last == res);
boost::ignore_unused(res);
return;
}
--r_last;
--last;
if(comp(*r_last, *last)){
++r_last;
--dest_last;
op(last, dest_last);
}
else{
++last;
--dest_last;
op(r_last, dest_last);
}
}
// Remaining [first, last) already in the correct place
}
// @endcond
// [first, last) are already in the right part of the destination range.
template <class Compare, class BidirIterator, class BidirOutIterator>
void merge_with_left_placed
( BidirOutIterator const first, BidirOutIterator last, BidirOutIterator dest_last
, BidirIterator const r_first, BidirIterator r_last
, Compare comp)
{
op_merge_with_left_placed(first, last, dest_last, r_first, r_last, comp, move_op());
}
// [r_first, r_last) are already in the right part of the destination range.
template <class Compare, class InputIterator, class InputOutIterator>
void merge_with_right_placed
( InputIterator first, InputIterator last
, InputOutIterator dest_first, InputOutIterator r_first, InputOutIterator r_last
, Compare comp)
{
op_merge_with_right_placed(first, last, dest_first, r_first, r_last, comp, move_op());
}
// [r_first, r_last) are already in the right part of the destination range.
// [dest_first, r_first) is uninitialized memory
template <class Compare, class InputIterator, class InputOutIterator>
void uninitialized_merge_with_right_placed
( InputIterator first, InputIterator last
, InputOutIterator dest_first, InputOutIterator r_first, InputOutIterator r_last
, Compare comp)
{
BOOST_ASSERT((last - first) == (r_first - dest_first));
typedef typename iterator_traits<InputOutIterator>::value_type value_type;
InputOutIterator const original_r_first = r_first;
destruct_n<value_type, InputOutIterator> d(dest_first);
while ( first != last && dest_first != original_r_first ) {
if (r_first == r_last) {
for(; dest_first != original_r_first; ++dest_first, ++first){
::new((iterator_to_raw_pointer)(dest_first)) value_type(::boost::move(*first));
d.incr();
}
d.release();
InputOutIterator end = ::boost::move(first, last, original_r_first);
BOOST_ASSERT(end == r_last);
boost::ignore_unused(end);
return;
}
else if (comp(*r_first, *first)) {
::new((iterator_to_raw_pointer)(dest_first)) value_type(::boost::move(*r_first));
d.incr();
++r_first;
}
else {
::new((iterator_to_raw_pointer)(dest_first)) value_type(::boost::move(*first));
d.incr();
++first;
}
++dest_first;
}
d.release();
merge_with_right_placed(first, last, original_r_first, r_first, r_last, comp);
}
/// This is a helper function for the merge routines.
template<typename BidirectionalIterator1, typename BidirectionalIterator2>
BidirectionalIterator1
rotate_adaptive(BidirectionalIterator1 first,
BidirectionalIterator1 middle,
BidirectionalIterator1 last,
typename iter_size<BidirectionalIterator1>::type len1,
typename iter_size<BidirectionalIterator1>::type len2,
BidirectionalIterator2 buffer,
typename iter_size<BidirectionalIterator1>::type buffer_size)
{
if (len1 > len2 && len2 <= buffer_size)
{
if(len2) //Protect against self-move ranges
{
BidirectionalIterator2 buffer_end = boost::move(middle, last, buffer);
boost::move_backward(first, middle, last);
return boost::move(buffer, buffer_end, first);
}
else
return first;
}
else if (len1 <= buffer_size)
{
if(len1) //Protect against self-move ranges
{
BidirectionalIterator2 buffer_end = boost::move(first, middle, buffer);
BidirectionalIterator1 ret = boost::move(middle, last, first);
boost::move(buffer, buffer_end, ret);
return ret;
}
else
return last;
}
else
return rotate_gcd(first, middle, last);
}
template<typename BidirectionalIterator,
typename Pointer, typename Compare>
void merge_adaptive_ONlogN_recursive
(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last,
typename iter_size<BidirectionalIterator>::type len1,
typename iter_size<BidirectionalIterator>::type len2,
Pointer buffer,
typename iter_size<BidirectionalIterator>::type buffer_size,
Compare comp)
{
typedef typename iter_size<BidirectionalIterator>::type size_type;
//trivial cases
if (!len2 || !len1) {
// no-op
}
else if (len1 <= buffer_size || len2 <= buffer_size) {
range_xbuf<Pointer, size_type, move_op> rxbuf(buffer, buffer + buffer_size);
buffered_merge(first, middle, last, comp, rxbuf);
}
else if (size_type(len1 + len2) == 2u) {
if (comp(*middle, *first))
adl_move_swap(*first, *middle);
}
else if (size_type(len1 + len2) < MergeBufferlessONLogNRotationThreshold) {
merge_bufferless_ON2(first, middle, last, comp);
}
else {
BidirectionalIterator first_cut = first;
BidirectionalIterator second_cut = middle;
size_type len11 = 0;
size_type len22 = 0;
if (len1 > len2) //(len1 < len2)
{
len11 = len1 / 2;
first_cut += len11;
second_cut = boost::movelib::lower_bound(middle, last, *first_cut, comp);
len22 = size_type(second_cut - middle);
}
else
{
len22 = len2 / 2;
second_cut += len22;
first_cut = boost::movelib::upper_bound(first, middle, *second_cut, comp);
len11 = size_type(first_cut - first);
}
BidirectionalIterator new_middle
= rotate_adaptive(first_cut, middle, second_cut,
size_type(len1 - len11), len22, buffer,
buffer_size);
merge_adaptive_ONlogN_recursive(first, first_cut, new_middle, len11,
len22, buffer, buffer_size, comp);
merge_adaptive_ONlogN_recursive(new_middle, second_cut, last,
size_type(len1 - len11), size_type(len2 - len22), buffer, buffer_size, comp);
}
}
template<typename BidirectionalIterator, typename Compare, typename RandRawIt>
void merge_adaptive_ONlogN(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last,
Compare comp,
RandRawIt uninitialized,
typename iter_size<BidirectionalIterator>::type uninitialized_len)
{
typedef typename iterator_traits<BidirectionalIterator>::value_type value_type;
typedef typename iter_size<BidirectionalIterator>::type size_type;
if (first == middle || middle == last)
return;
if(uninitialized_len)
{
const size_type len1 = size_type(middle - first);
const size_type len2 = size_type(last - middle);
::boost::movelib::adaptive_xbuf<value_type, RandRawIt> xbuf(uninitialized, uninitialized_len);
xbuf.initialize_until(uninitialized_len, *first);
merge_adaptive_ONlogN_recursive(first, middle, last, len1, len2, xbuf.begin(), uninitialized_len, comp);
}
else
{
merge_bufferless(first, middle, last, comp);
}
}
} //namespace movelib {
} //namespace boost {
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
#endif //#define BOOST_MOVE_MERGE_HPP

View File

@@ -0,0 +1,216 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2015-2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//! \file
#ifndef BOOST_MOVE_DETAIL_MERGE_SORT_HPP
#define BOOST_MOVE_DETAIL_MERGE_SORT_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/move/detail/config_begin.hpp>
#include <boost/move/detail/workaround.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/move/algo/move.hpp>
#include <boost/move/algo/detail/merge.hpp>
#include <boost/move/detail/iterator_traits.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/detail/destruct_n.hpp>
#include <boost/move/algo/detail/insertion_sort.hpp>
#include <cassert>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost {
namespace movelib {
// @cond
static const unsigned MergeSortInsertionSortThreshold = 16;
template <class RandIt, class Compare>
void inplace_stable_sort(RandIt first, RandIt last, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
if (size_type(last - first) <= size_type(MergeSortInsertionSortThreshold)) {
insertion_sort(first, last, comp);
return;
}
RandIt middle = first + (last - first) / 2;
inplace_stable_sort(first, middle, comp);
inplace_stable_sort(middle, last, comp);
merge_bufferless_ONlogN_recursive
(first, middle, last, size_type(middle - first), size_type(last - middle), comp);
}
// @endcond
template<class RandIt, class RandIt2, class Compare>
void merge_sort_copy( RandIt first, RandIt last
, RandIt2 dest, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
size_type const count = size_type(last - first);
if(count <= MergeSortInsertionSortThreshold){
insertion_sort_copy(first, last, dest, comp);
}
else{
size_type const half = size_type(count/2u);
merge_sort_copy(first + half, last , dest+half , comp);
merge_sort_copy(first , first + half, first + half, comp);
merge_with_right_placed
( first + half, first + half + half
, dest, dest+half, dest + count
, comp);
}
}
template<class RandIt, class RandItRaw, class Compare>
void merge_sort_uninitialized_copy( RandIt first, RandIt last
, RandItRaw uninitialized
, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
typedef typename iterator_traits<RandIt>::value_type value_type;
size_type const count = size_type(last - first);
if(count <= MergeSortInsertionSortThreshold){
insertion_sort_uninitialized_copy(first, last, uninitialized, comp);
}
else{
size_type const half = count/2;
merge_sort_uninitialized_copy(first + half, last, uninitialized + half, comp);
destruct_n<value_type, RandItRaw> d(uninitialized+half);
d.incr(size_type(count-half));
merge_sort_copy(first, first + half, first + half, comp);
uninitialized_merge_with_right_placed
( first + half, first + half + half
, uninitialized, uninitialized+half, uninitialized+count
, comp);
d.release();
}
}
template<class RandIt, class RandItRaw, class Compare>
void merge_sort( RandIt first, RandIt last, Compare comp
, RandItRaw uninitialized)
{
typedef typename iter_size<RandIt>::type size_type;
typedef typename iterator_traits<RandIt>::value_type value_type;
size_type const count = size_type(last - first);
if(count <= MergeSortInsertionSortThreshold){
insertion_sort(first, last, comp);
}
else{
size_type const half = size_type(count/2u);
size_type const rest = size_type(count - half);
RandIt const half_it = first + half;
RandIt const rest_it = first + rest;
merge_sort_uninitialized_copy(half_it, last, uninitialized, comp);
destruct_n<value_type, RandItRaw> d(uninitialized);
d.incr(rest);
merge_sort_copy(first, half_it, rest_it, comp);
merge_with_right_placed
( uninitialized, uninitialized + rest
, first, rest_it, last, antistable<Compare>(comp));
}
}
///@cond
template<class RandIt, class RandItRaw, class Compare>
void merge_sort_with_constructed_buffer( RandIt first, RandIt last, Compare comp, RandItRaw buffer)
{
typedef typename iter_size<RandIt>::type size_type;
size_type const count = size_type(last - first);
if(count <= MergeSortInsertionSortThreshold){
insertion_sort(first, last, comp);
}
else{
size_type const half = size_type(count/2);
size_type const rest = size_type(count - half);
RandIt const half_it = first + half;
RandIt const rest_it = first + rest;
merge_sort_copy(half_it, last, buffer, comp);
merge_sort_copy(first, half_it, rest_it, comp);
merge_with_right_placed
(buffer, buffer + rest
, first, rest_it, last, antistable<Compare>(comp));
}
}
template<typename RandIt, typename Pointer,
typename Distance, typename Compare>
void stable_sort_ONlogN_recursive(RandIt first, RandIt last, Pointer buffer, Distance buffer_size, Compare comp)
{
typedef typename iter_size<RandIt>::type size_type;
if (size_type(last - first) <= size_type(MergeSortInsertionSortThreshold)) {
insertion_sort(first, last, comp);
}
else {
const size_type len = size_type(last - first) / 2u;
const RandIt middle = first + len;
if (len > ((buffer_size+1)/2)){
stable_sort_ONlogN_recursive(first, middle, buffer, buffer_size, comp);
stable_sort_ONlogN_recursive(middle, last, buffer, buffer_size, comp);
}
else{
merge_sort_with_constructed_buffer(first, middle, comp, buffer);
merge_sort_with_constructed_buffer(middle, last, comp, buffer);
}
merge_adaptive_ONlogN_recursive(first, middle, last,
size_type(middle - first),
size_type(last - middle),
buffer, buffer_size,
comp);
}
}
template<typename BidirectionalIterator, typename Compare, typename RandRawIt>
void stable_sort_adaptive_ONlogN2(BidirectionalIterator first,
BidirectionalIterator last,
Compare comp,
RandRawIt uninitialized,
std::size_t uninitialized_len)
{
typedef typename iterator_traits<BidirectionalIterator>::value_type value_type;
::boost::movelib::adaptive_xbuf<value_type, RandRawIt> xbuf(uninitialized, uninitialized_len);
xbuf.initialize_until(uninitialized_len, *first);
stable_sort_ONlogN_recursive(first, last, uninitialized, uninitialized_len, comp);
}
///@endcond
}} //namespace boost { namespace movelib{
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
#include <boost/move/detail/config_end.hpp>
#endif //#ifndef BOOST_MOVE_DETAIL_MERGE_SORT_HPP

View File

@@ -0,0 +1,344 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Orson Peters 2017.
// (C) Copyright Ion Gaztanaga 2017-2018.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//
// This implementation of Pattern-defeating quicksort (pdqsort) was written
// by Orson Peters, and discussed in the Boost mailing list:
// http://boost.2283326.n4.nabble.com/sort-pdqsort-td4691031.html
//
// This implementation is the adaptation by Ion Gaztanaga of code originally in GitHub
// with permission from the author to relicense it under the Boost Software License
// (see the Boost mailing list for details).
//
// The original copyright statement is pasted here for completeness:
//
// pdqsort.h - Pattern-defeating quicksort.
// Copyright (c) 2015 Orson Peters
// This software is provided 'as-is', without any express or implied warranty. In no event will the
// authors be held liable for any damages arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose, including commercial
// applications, and to alter it and redistribute it freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not claim that you wrote the
// original software. If you use this software in a product, an acknowledgment in the product
// documentation would be appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be misrepresented as
// being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_ALGO_PDQSORT_HPP
#define BOOST_MOVE_ALGO_PDQSORT_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/move/detail/config_begin.hpp>
#include <boost/move/detail/workaround.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/move/algo/detail/insertion_sort.hpp>
#include <boost/move/algo/detail/heap_sort.hpp>
#include <boost/move/detail/iterator_traits.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <cstddef>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost {
namespace movelib {
namespace pdqsort_detail {
//A simple pair implementation to avoid including <utility>
template<class T1, class T2>
struct pair
{
pair()
{}
pair(const T1 &t1, const T2 &t2)
: first(t1), second(t2)
{}
T1 first;
T2 second;
};
enum {
// Partitions below this size are sorted using insertion sort.
insertion_sort_threshold = 24,
// Partitions above this size use Tukey's ninther to select the pivot.
ninther_threshold = 128,
// When we detect an already sorted partition, attempt an insertion sort that allows this
// amount of element moves before giving up.
partial_insertion_sort_limit = 8,
// Must be multiple of 8 due to loop unrolling, and < 256 to fit in unsigned char.
block_size = 64,
// Cacheline size, assumes power of two.
cacheline_size = 64
};
// Returns floor(log2(n)), assumes n > 0.
template<class Unsigned>
Unsigned log2(Unsigned n) {
Unsigned log = 0;
while (n >>= 1) ++log;
return log;
}
// Attempts to use insertion sort on [begin, end). Will return false if more than
// partial_insertion_sort_limit elements were moved, and abort sorting. Otherwise it will
// successfully sort and return true.
template<class Iter, class Compare>
inline bool partial_insertion_sort(Iter begin, Iter end, Compare comp) {
typedef typename boost::movelib::iterator_traits<Iter>::value_type T;
typedef typename boost::movelib:: iter_size<Iter>::type size_type;
if (begin == end) return true;
size_type limit = 0;
for (Iter cur = begin + 1; cur != end; ++cur) {
if (limit > partial_insertion_sort_limit) return false;
Iter sift = cur;
Iter sift_1 = cur - 1;
// Compare first so we can avoid 2 moves for an element already positioned correctly.
if (comp(*sift, *sift_1)) {
T tmp = boost::move(*sift);
do { *sift-- = boost::move(*sift_1); }
while (sift != begin && comp(tmp, *--sift_1));
*sift = boost::move(tmp);
limit += size_type(cur - sift);
}
}
return true;
}
template<class Iter, class Compare>
inline void sort2(Iter a, Iter b, Compare comp) {
if (comp(*b, *a)) boost::adl_move_iter_swap(a, b);
}
// Sorts the elements *a, *b and *c using comparison function comp.
template<class Iter, class Compare>
inline void sort3(Iter a, Iter b, Iter c, Compare comp) {
sort2(a, b, comp);
sort2(b, c, comp);
sort2(a, b, comp);
}
// Partitions [begin, end) around pivot *begin using comparison function comp. Elements equal
// to the pivot are put in the right-hand partition. Returns the position of the pivot after
// partitioning and whether the passed sequence already was correctly partitioned. Assumes the
// pivot is a median of at least 3 elements and that [begin, end) is at least
// insertion_sort_threshold long.
template<class Iter, class Compare>
pdqsort_detail::pair<Iter, bool> partition_right(Iter begin, Iter end, Compare comp) {
typedef typename boost::movelib::iterator_traits<Iter>::value_type T;
// Move pivot into local for speed.
T pivot(boost::move(*begin));
Iter first = begin;
Iter last = end;
// Find the first element greater than or equal than the pivot (the median of 3 guarantees
// this exists).
while (comp(*++first, pivot));
// Find the first element strictly smaller than the pivot. We have to guard this search if
// there was no element before *first.
if (first - 1 == begin) while (first < last && !comp(*--last, pivot));
else while ( !comp(*--last, pivot));
// If the first pair of elements that should be swapped to partition are the same element,
// the passed in sequence already was correctly partitioned.
bool already_partitioned = first >= last;
// Keep swapping pairs of elements that are on the wrong side of the pivot. Previously
// swapped pairs guard the searches, which is why the first iteration is special-cased
// above.
while (first < last) {
boost::adl_move_iter_swap(first, last);
while (comp(*++first, pivot));
while (!comp(*--last, pivot));
}
// Put the pivot in the right place.
Iter pivot_pos = first - 1;
*begin = boost::move(*pivot_pos);
*pivot_pos = boost::move(pivot);
return pdqsort_detail::pair<Iter, bool>(pivot_pos, already_partitioned);
}
// Similar function to the one above, except elements equal to the pivot are put to the left of
// the pivot and it doesn't check or return if the passed sequence already was partitioned.
// Since this is rarely used (the many equal case), and in that case pdqsort already has O(n)
// performance, no block quicksort is applied here for simplicity.
template<class Iter, class Compare>
inline Iter partition_left(Iter begin, Iter end, Compare comp) {
typedef typename boost::movelib::iterator_traits<Iter>::value_type T;
T pivot(boost::move(*begin));
Iter first = begin;
Iter last = end;
while (comp(pivot, *--last));
if (last + 1 == end) while (first < last && !comp(pivot, *++first));
else while ( !comp(pivot, *++first));
while (first < last) {
boost::adl_move_iter_swap(first, last);
while (comp(pivot, *--last));
while (!comp(pivot, *++first));
}
Iter pivot_pos = last;
*begin = boost::move(*pivot_pos);
*pivot_pos = boost::move(pivot);
return pivot_pos;
}
template<class Iter, class Compare>
void pdqsort_loop( Iter begin, Iter end, Compare comp
, typename boost::movelib:: iter_size<Iter>::type bad_allowed
, bool leftmost = true)
{
typedef typename boost::movelib:: iter_size<Iter>::type size_type;
// Use a while loop for tail recursion elimination.
while (true) {
size_type size = size_type(end - begin);
// Insertion sort is faster for small arrays.
if (size < insertion_sort_threshold) {
insertion_sort(begin, end, comp);
return;
}
// Choose pivot as median of 3 or pseudomedian of 9.
size_type s2 = size / 2;
if (size > ninther_threshold) {
sort3(begin, begin + s2, end - 1, comp);
sort3(begin + 1, begin + (s2 - 1), end - 2, comp);
sort3(begin + 2, begin + (s2 + 1), end - 3, comp);
sort3(begin + (s2 - 1), begin + s2, begin + (s2 + 1), comp);
boost::adl_move_iter_swap(begin, begin + s2);
} else sort3(begin + s2, begin, end - 1, comp);
// If *(begin - 1) is the end of the right partition of a previous partition operation
// there is no element in [begin, end) that is smaller than *(begin - 1). Then if our
// pivot compares equal to *(begin - 1) we change strategy, putting equal elements in
// the left partition, greater elements in the right partition. We do not have to
// recurse on the left partition, since it's sorted (all equal).
if (!leftmost && !comp(*(begin - 1), *begin)) {
begin = partition_left(begin, end, comp) + 1;
continue;
}
// Partition and get results.
pdqsort_detail::pair<Iter, bool> part_result = partition_right(begin, end, comp);
Iter pivot_pos = part_result.first;
bool already_partitioned = part_result.second;
// Check for a highly unbalanced partition.
size_type l_size = size_type(pivot_pos - begin);
size_type r_size = size_type(end - (pivot_pos + 1));
bool highly_unbalanced = l_size < size / 8 || r_size < size / 8;
// If we got a highly unbalanced partition we shuffle elements to break many patterns.
if (highly_unbalanced) {
// If we had too many bad partitions, switch to heapsort to guarantee O(n log n).
if (--bad_allowed == 0) {
boost::movelib::heap_sort(begin, end, comp);
return;
}
if (l_size >= insertion_sort_threshold) {
boost::adl_move_iter_swap(begin, begin + l_size / 4);
boost::adl_move_iter_swap(pivot_pos - 1, pivot_pos - l_size / 4);
if (l_size > ninther_threshold) {
boost::adl_move_iter_swap(begin + 1, begin + (l_size / 4 + 1));
boost::adl_move_iter_swap(begin + 2, begin + (l_size / 4 + 2));
boost::adl_move_iter_swap(pivot_pos - 2, pivot_pos - (l_size / 4 + 1));
boost::adl_move_iter_swap(pivot_pos - 3, pivot_pos - (l_size / 4 + 2));
}
}
if (r_size >= insertion_sort_threshold) {
boost::adl_move_iter_swap(pivot_pos + 1, pivot_pos + (1 + r_size / 4));
boost::adl_move_iter_swap(end - 1, end - r_size / 4);
if (r_size > ninther_threshold) {
boost::adl_move_iter_swap(pivot_pos + 2, pivot_pos + (2 + r_size / 4));
boost::adl_move_iter_swap(pivot_pos + 3, pivot_pos + (3 + r_size / 4));
boost::adl_move_iter_swap(end - 2, end - (1 + r_size / 4));
boost::adl_move_iter_swap(end - 3, end - (2 + r_size / 4));
}
}
} else {
// If we were decently balanced and we tried to sort an already partitioned
// sequence try to use insertion sort.
if (already_partitioned && partial_insertion_sort(begin, pivot_pos, comp)
&& partial_insertion_sort(pivot_pos + 1, end, comp)) return;
}
// Sort the left partition first using recursion and do tail recursion elimination for
// the right-hand partition.
pdqsort_loop<Iter, Compare>(begin, pivot_pos, comp, bad_allowed, leftmost);
begin = pivot_pos + 1;
leftmost = false;
}
}
}
template<class Iter, class Compare>
void pdqsort(Iter begin, Iter end, Compare comp)
{
if (begin == end) return;
typedef typename boost::movelib:: iter_size<Iter>::type size_type;
pdqsort_detail::pdqsort_loop<Iter, Compare>(begin, end, comp, pdqsort_detail::log2(size_type(end - begin)));
}
} //namespace movelib {
} //namespace boost {
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
#include <boost/move/detail/config_end.hpp>
#endif //BOOST_MOVE_ALGO_PDQSORT_HPP

View File

@@ -0,0 +1,213 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2017-2017.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_SET_DIFFERENCE_HPP
#define BOOST_MOVE_SET_DIFFERENCE_HPP
#include <boost/move/algo/move.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/utility_core.hpp>
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace boost {
namespace move_detail{
template<class InputIt, class OutputIt>
OutputIt copy(InputIt first, InputIt last, OutputIt result)
{
while (first != last) {
*result++ = *first;
++result;
++first;
}
return result;
}
} //namespace move_detail{
namespace movelib {
//Moves the elements from the sorted range [first1, last1) which are not found in the sorted
//range [first2, last2) to the range beginning at result.
//The resulting range is also sorted. Equivalent elements are treated individually,
//that is, if some element is found m times in [first1, last1) and n times in [first2, last2),
//it will be moved to result exactly max(m-n, 0) times.
//The resulting range cannot overlap with either of the input ranges.
template<class InputIt1, class InputIt2,
class OutputIt, class Compare>
OutputIt set_difference
(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, OutputIt result, Compare comp)
{
while (first1 != last1) {
if (first2 == last2)
return boost::move_detail::copy(first1, last1, result);
if (comp(*first1, *first2)) {
*result = *first1;
++result;
++first1;
}
else {
if (!comp(*first2, *first1)) {
++first1;
}
++first2;
}
}
return result;
}
//Moves the elements from the sorted range [first1, last1) which are not found in the sorted
//range [first2, last2) to the range beginning at first1 (in place operation in range1).
//The resulting range is also sorted. Equivalent elements are treated individually,
//that is, if some element is found m times in [first1, last1) and n times in [first2, last2),
//it will be moved to result exactly max(m-n, 0) times.
template<class InputOutputIt1, class InputIt2, class Compare>
InputOutputIt1 inplace_set_difference
(InputOutputIt1 first1, InputOutputIt1 last1, InputIt2 first2, InputIt2 last2, Compare comp )
{
while (first1 != last1) {
//Skip copying from range 1 if no element has to be skipped
if (first2 == last2){
return last1;
}
else if (comp(*first1, *first2)){
++first1;
}
else{
if (!comp(*first2, *first1)) {
InputOutputIt1 result = first1;
//An element from range 1 must be skipped, no longer an inplace operation
return boost::movelib::set_difference
( boost::make_move_iterator(++first1)
, boost::make_move_iterator(last1)
, ++first2, last2, result, comp);
}
++first2;
}
}
return first1;
}
//Moves the elements from the sorted range [first1, last1) which are not found in the sorted
//range [first2, last2) to the range beginning at first1.
//The resulting range is also sorted. Equivalent elements from range 1 are moved past to end
//of the result,
//that is, if some element is found m times in [first1, last1) and n times in [first2, last2),
//it will be moved to result exactly max(m-n, 0) times.
//The resulting range cannot overlap with either of the input ranges.
template<class ForwardIt1, class InputIt2,
class OutputIt, class Compare>
OutputIt set_unique_difference
(ForwardIt1 first1, ForwardIt1 last1, InputIt2 first2, InputIt2 last2, OutputIt result, Compare comp)
{
while (first1 != last1) {
if (first2 == last2){
//unique_copy-like sequence with forward iterators but don't write i
//to result before comparing as moving *i could alter the value in i.
ForwardIt1 i = first1;
while (++first1 != last1) {
if (comp(*i, *first1)) {
*result = *i;
++result;
i = first1;
}
}
*result = *i;
++result;
break;
}
if (comp(*first1, *first2)) {
//Skip equivalent elements in range1 but don't write i
//to result before comparing as moving *i could alter the value in i.
ForwardIt1 i = first1;
while (++first1 != last1) {
if (comp(*i, *first1)) {
break;
}
}
*result = *i;
++result;
}
else {
if (comp(*first2, *first1)) {
++first2;
}
else{
++first1;
}
}
}
return result;
}
//Moves the elements from the sorted range [first1, last1) which are not found in the sorted
//range [first2, last2) to the range beginning at first1 (in place operation in range1).
//The resulting range is also sorted. Equivalent elements are treated individually,
//that is, if some element is found m times in [first1, last1) and n times in [first2, last2),
//it will be moved to result exactly max(m-n, 0) times.
template<class ForwardOutputIt1, class ForwardIt2, class Compare>
ForwardOutputIt1 inplace_set_unique_difference
(ForwardOutputIt1 first1, ForwardOutputIt1 last1, ForwardIt2 first2, ForwardIt2 last2, Compare comp )
{
while (first1 != last1) {
//Skip copying from range 1 if no element has to be skipped
if (first2 == last2){
//unique-like algorithm for the remaining range 1
ForwardOutputIt1 result = first1;
while (++first1 != last1) {
if (comp(*result, *first1) && ++result != first1) {
*result = boost::move(*first1);
}
}
return ++result;
}
else if (comp(*first2, *first1)) {
++first2;
}
else if (comp(*first1, *first2)){
//skip any adjacent equivalent element in range 1
ForwardOutputIt1 result = first1;
if (++first1 != last1 && !comp(*result, *first1)) {
//Some elements from range 1 must be skipped, no longer an inplace operation
while (++first1 != last1 && !comp(*result, *first1)){}
return boost::movelib::set_unique_difference
( boost::make_move_iterator(first1)
, boost::make_move_iterator(last1)
, first2, last2, ++result, comp);
}
}
else{
ForwardOutputIt1 result = first1;
//Some elements from range 1 must be skipped, no longer an inplace operation
while (++first1 != last1 && !comp(*result, *first1)){}
//An element from range 1 must be skipped, no longer an inplace operation
return boost::movelib::set_unique_difference
( boost::make_move_iterator(first1)
, boost::make_move_iterator(last1)
, first2, last2, result, comp);
}
}
return first1;
}
#if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600))
#pragma GCC diagnostic pop
#endif
} //namespace movelib {
} //namespace boost {
#endif //#define BOOST_MOVE_SET_DIFFERENCE_HPP

View File

@@ -0,0 +1,160 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2012-2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//! \file
#ifndef BOOST_MOVE_ALGO_MOVE_HPP
#define BOOST_MOVE_ALGO_MOVE_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/move/detail/config_begin.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/move/detail/iterator_traits.hpp>
#include <boost/move/detail/iterator_to_raw_pointer.hpp>
#include <boost/move/detail/addressof.hpp>
#include <boost/core/no_exceptions_support.hpp>
#if defined(BOOST_MOVE_USE_STANDARD_LIBRARY_MOVE)
#include <algorithm>
#endif
namespace boost {
//////////////////////////////////////////////////////////////////////////////
//
// move
//
//////////////////////////////////////////////////////////////////////////////
#if !defined(BOOST_MOVE_USE_STANDARD_LIBRARY_MOVE)
//! <b>Effects</b>: Moves elements in the range [first,last) into the range [result,result + (last -
//! first)) starting from first and proceeding to last. For each non-negative integer n < (last-first),
//! performs *(result + n) = ::boost::move (*(first + n)).
//!
//! <b>Effects</b>: result + (last - first).
//!
//! <b>Requires</b>: result shall not be in the range [first,last).
//!
//! <b>Complexity</b>: Exactly last - first move assignments.
template <typename I, // I models InputIterator
typename O> // O models OutputIterator
O move(I f, I l, O result)
{
while (f != l) {
*result = ::boost::move(*f);
++f; ++result;
}
return result;
}
//////////////////////////////////////////////////////////////////////////////
//
// move_backward
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>: Moves elements in the range [first,last) into the range
//! [result - (last-first),result) starting from last - 1 and proceeding to
//! first. For each positive integer n <= (last - first),
//! performs *(result - n) = ::boost::move(*(last - n)).
//!
//! <b>Requires</b>: result shall not be in the range [first,last).
//!
//! <b>Returns</b>: result - (last - first).
//!
//! <b>Complexity</b>: Exactly last - first assignments.
template <typename I, // I models BidirectionalIterator
typename O> // O models BidirectionalIterator
O move_backward(I f, I l, O result)
{
while (f != l) {
--l; --result;
*result = ::boost::move(*l);
}
return result;
}
#else
using ::std::move_backward;
#endif //!defined(BOOST_MOVE_USE_STANDARD_LIBRARY_MOVE)
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_move
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; first != last; ++result, ++first)
//! new (static_cast<void*>(&*result))
//! typename iterator_traits<ForwardIterator>::value_type(boost::move(*first));
//! \endcode
//!
//! <b>Returns</b>: result
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
F uninitialized_move(I f, I l, F r
/// @cond
// ,typename ::boost::move_detail::enable_if<has_move_emulation_enabled<typename boost::movelib::iterator_traits<I>::value_type> >::type* = 0
/// @endcond
)
{
typedef typename boost::movelib::iterator_traits<I>::value_type input_value_type;
F back = r;
BOOST_TRY{
while (f != l) {
void * const addr = static_cast<void*>(::boost::move_detail::addressof(*r));
::new(addr) input_value_type(::boost::move(*f));
++f; ++r;
}
}
BOOST_CATCH(...){
for (; back != r; ++back){
boost::movelib::iterator_to_raw_pointer(back)->~input_value_type();
}
BOOST_RETHROW;
}
BOOST_CATCH_END
return r;
}
/// @cond
/*
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
F uninitialized_move(I f, I l, F r,
typename ::boost::move_detail::disable_if<has_move_emulation_enabled<typename boost::movelib::iterator_traits<I>::value_type> >::type* = 0)
{
return std::uninitialized_copy(f, l, r);
}
*/
/// @endcond
} //namespace boost {
#include <boost/move/detail/config_end.hpp>
#endif //#ifndef BOOST_MOVE_ALGO_MOVE_HPP

View File

@@ -0,0 +1,101 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2015-2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_ALGO_PREDICATE_HPP
#define BOOST_MOVE_ALGO_PREDICATE_HPP
#include <boost/move/algo/move.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/algo/detail/basic_op.hpp>
#include <boost/move/detail/iterator_traits.hpp>
#include <boost/move/detail/destruct_n.hpp>
#include <boost/assert.hpp>
namespace boost {
namespace movelib {
template<class Comp>
struct antistable
{
BOOST_MOVE_FORCEINLINE explicit antistable(Comp &comp)
: m_comp(comp)
{}
BOOST_MOVE_FORCEINLINE antistable(const antistable & other)
: m_comp(other.m_comp)
{}
template<class U, class V>
BOOST_MOVE_FORCEINLINE bool operator()(const U &u, const V & v)
{ return !m_comp(v, u); }
BOOST_MOVE_FORCEINLINE const Comp &get() const
{ return m_comp; }
private:
antistable & operator=(const antistable &);
Comp &m_comp;
};
template<class Comp>
Comp unantistable(Comp comp)
{ return comp; }
template<class Comp>
Comp unantistable(antistable<Comp> comp)
{ return comp.get(); }
template <class Comp>
class negate
{
public:
BOOST_MOVE_FORCEINLINE negate()
{}
BOOST_MOVE_FORCEINLINE explicit negate(Comp comp)
: m_comp(comp)
{}
template <class T1, class T2>
BOOST_MOVE_FORCEINLINE bool operator()(const T1& l, const T2& r)
{
return !m_comp(l, r);
}
private:
Comp m_comp;
};
template <class Comp>
class inverse
{
public:
BOOST_MOVE_FORCEINLINE inverse()
{}
BOOST_MOVE_FORCEINLINE explicit inverse(Comp comp)
: m_comp(comp)
{}
template <class T1, class T2>
BOOST_MOVE_FORCEINLINE bool operator()(const T1& l, const T2& r)
{
return m_comp(r, l);
}
private:
Comp m_comp;
};
} //namespace movelib {
} //namespace boost {
#endif //#define BOOST_MOVE_ALGO_PREDICATE_HPP

View File

@@ -0,0 +1,55 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2017-2017.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_ALGO_UNIQUE_HPP
#define BOOST_MOVE_ALGO_UNIQUE_HPP
#include <boost/move/detail/config_begin.hpp>
#include <boost/move/utility_core.hpp>
namespace boost {
namespace movelib {
//! <b>Requires</b>: The comparison function shall be an equivalence relation. The type of *first shall satisfy
//! the MoveAssignable requirements
//!
//! <b>Effects</b>: For a nonempty range, eliminates all but the first element from every consecutive group
//! of equivalent elements referred to by the iterator i in the range [first + 1, last) for which the
//! following conditions hold: pred(*(i - 1), *i) != false.
//!
//! <b>Returns</b>: The end of the resulting range.
//!
//! <b>Complexity</b>: For nonempty ranges, exactly (last - first) - 1 applications of the corresponding predicate.
template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last, BinaryPredicate pred)
{
if (first != last) {
ForwardIterator next(first);
++next;
for (; next != last; ++next, ++first) {
if (pred(*first, *next)) { //Find first equal element
while (++next != last)
if (!pred(*first, *next))
*++first = ::boost::move(*next);
break;
}
}
++first;
}
return first;
}
} //namespace movelib {
} //namespace boost {
#include <boost/move/detail/config_end.hpp>
#endif //#define BOOST_MOVE_ALGO_UNIQUE_HPP