early-access version 2156

This commit is contained in:
pineappleEA
2021-10-24 06:39:01 +02:00
parent 238cebb24e
commit f85f34d123
119 changed files with 8931 additions and 610 deletions

View File

@@ -130,6 +130,8 @@ add_library(video_core STATIC
renderer_vulkan/vk_descriptor_pool.h
renderer_vulkan/vk_fence_manager.cpp
renderer_vulkan/vk_fence_manager.h
renderer_vulkan/vk_fsr.cpp
renderer_vulkan/vk_fsr.h
renderer_vulkan/vk_graphics_pipeline.cpp
renderer_vulkan/vk_graphics_pipeline.h
renderer_vulkan/vk_master_semaphore.cpp

View File

@@ -853,12 +853,14 @@ void BufferCache<P>::CommitAsyncFlushesHigh() {
}
if constexpr (USE_MEMORY_MAPS) {
auto download_staging = runtime.DownloadStagingBuffer(total_size_bytes);
runtime.PreCopyBarrier();
for (auto& [copy, buffer_id] : downloads) {
// Have in mind the staging buffer offset for the copy
copy.dst_offset += download_staging.offset;
const std::array copies{copy};
runtime.CopyBuffer(download_staging.buffer, slot_buffers[buffer_id], copies);
runtime.CopyBuffer(download_staging.buffer, slot_buffers[buffer_id], copies, false);
}
runtime.PostCopyBarrier();
runtime.Finish();
for (const auto& [copy, buffer_id] : downloads) {
const Buffer& buffer = slot_buffers[buffer_id];

View File

@@ -29,6 +29,8 @@ enum : u8 {
ColorBuffer6,
ColorBuffer7,
ZetaBuffer,
RescaleViewports,
RescaleScissors,
VertexBuffers,
VertexBuffer0,

View File

@@ -1,3 +1,11 @@
set(FIDELITYFX_INCLUDE_DIR ${CMAKE_SOURCE_DIR}/externals/FidelityFX-FSR/ffx-fsr)
set(GLSL_INCLUDES
fidelityfx_fsr.comp
${FIDELITYFX_INCLUDE_DIR}/ffx_a.h
${FIDELITYFX_INCLUDE_DIR}/ffx_fsr1.h
)
set(SHADER_FILES
astc_decoder.comp
block_linear_unswizzle_2d.comp
@@ -5,14 +13,25 @@ set(SHADER_FILES
convert_depth_to_float.frag
convert_float_to_depth.frag
full_screen_triangle.vert
fxaa.frag
fxaa.vert
opengl_copy_bc4.comp
opengl_present.frag
opengl_present.vert
opengl_present_scaleforce.frag
pitch_unswizzle.comp
present_bicubic.frag
present_gaussian.frag
vulkan_blit_color_float.frag
vulkan_blit_depth_stencil.frag
vulkan_fidelityfx_fsr_easu_fp16.comp
vulkan_fidelityfx_fsr_easu_fp32.comp
vulkan_fidelityfx_fsr_rcas_fp16.comp
vulkan_fidelityfx_fsr_rcas_fp32.comp
vulkan_present.frag
vulkan_present.vert
vulkan_present_scaleforce_fp16.frag
vulkan_present_scaleforce_fp32.frag
vulkan_quad_indexed.comp
vulkan_uint8.comp
)
@@ -76,7 +95,7 @@ foreach(FILENAME IN ITEMS ${SHADER_FILES})
OUTPUT
${SPIRV_HEADER_FILE}
COMMAND
${GLSLANGVALIDATOR} -V ${QUIET_FLAG} ${GLSL_FLAGS} --variable-name ${SPIRV_VARIABLE_NAME} -o ${SPIRV_HEADER_FILE} ${SOURCE_FILE}
${GLSLANGVALIDATOR} -V ${QUIET_FLAG} -I"${FIDELITYFX_INCLUDE_DIR}" ${GLSL_FLAGS} --variable-name ${SPIRV_VARIABLE_NAME} -o ${SPIRV_HEADER_FILE} ${SOURCE_FILE}
MAIN_DEPENDENCY
${SOURCE_FILE}
)
@@ -84,9 +103,12 @@ foreach(FILENAME IN ITEMS ${SHADER_FILES})
endif()
endforeach()
set(SHADER_SOURCES ${SHADER_FILES})
list(APPEND SHADER_SOURCES ${GLSL_INCLUDES})
add_custom_target(host_shaders
DEPENDS
${SHADER_HEADERS}
SOURCES
${SHADER_FILES}
${SHADER_SOURCES}
)

View File

@@ -0,0 +1,116 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
//!#version 460 core
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types : require
// FidelityFX Super Resolution Sample
//
// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
layout( push_constant ) uniform constants {
uvec4 Const0;
uvec4 Const1;
uvec4 Const2;
uvec4 Const3;
};
layout(set=0,binding=0) uniform sampler2D InputTexture;
layout(set=0,binding=1,rgba16f) uniform image2D OutputTexture;
#define A_GPU 1
#define A_GLSL 1
#ifndef YUZU_USE_FP16
#include "ffx_a.h"
#if USE_EASU
#define FSR_EASU_F 1
AF4 FsrEasuRF(AF2 p) { AF4 res = textureGather(InputTexture, p, 0); return res; }
AF4 FsrEasuGF(AF2 p) { AF4 res = textureGather(InputTexture, p, 1); return res; }
AF4 FsrEasuBF(AF2 p) { AF4 res = textureGather(InputTexture, p, 2); return res; }
#endif
#if USE_RCAS
#define FSR_RCAS_F 1
AF4 FsrRcasLoadF(ASU2 p) { return texelFetch(InputTexture, ASU2(p), 0); }
void FsrRcasInputF(inout AF1 r, inout AF1 g, inout AF1 b) {}
#endif
#else
#define A_HALF
#include "ffx_a.h"
#if USE_EASU
#define FSR_EASU_H 1
AH4 FsrEasuRH(AF2 p) { AH4 res = AH4(textureGather(InputTexture, p, 0)); return res; }
AH4 FsrEasuGH(AF2 p) { AH4 res = AH4(textureGather(InputTexture, p, 1)); return res; }
AH4 FsrEasuBH(AF2 p) { AH4 res = AH4(textureGather(InputTexture, p, 2)); return res; }
#endif
#if USE_RCAS
#define FSR_RCAS_H 1
AH4 FsrRcasLoadH(ASW2 p) { return AH4(texelFetch(InputTexture, ASU2(p), 0)); }
void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b){}
#endif
#endif
#include "ffx_fsr1.h"
void CurrFilter(AU2 pos) {
#if USE_BILINEAR
AF2 pp = (AF2(pos) * AF2_AU2(Const0.xy) + AF2_AU2(Const0.zw)) * AF2_AU2(Const1.xy) + AF2(0.5, -0.5) * AF2_AU2(Const1.zw);
imageStore(OutputTexture, ASU2(pos), textureLod(InputTexture, pp, 0.0));
#endif
#if USE_EASU
#ifndef YUZU_USE_FP16
AF3 c;
FsrEasuF(c, pos, Const0, Const1, Const2, Const3);
imageStore(OutputTexture, ASU2(pos), AF4(c, 1));
#else
AH3 c;
FsrEasuH(c, pos, Const0, Const1, Const2, Const3);
imageStore(OutputTexture, ASU2(pos), AH4(c, 1));
#endif
#endif
#if USE_RCAS
#ifndef YUZU_USE_FP16
AF3 c;
FsrRcasF(c.r, c.g, c.b, pos, Const0);
imageStore(OutputTexture, ASU2(pos), AF4(c, 1));
#else
AH3 c;
FsrRcasH(c.r, c.g, c.b, pos, Const0);
imageStore(OutputTexture, ASU2(pos), AH4(c, 1));
#endif
#endif
}
layout(local_size_x=64) in;
void main() {
// Do remapping of local xy in workgroup for a more PS-like swizzle pattern.
AU2 gxy = ARmp8x8(gl_LocalInvocationID.x) + AU2(gl_WorkGroupID.x << 4u, gl_WorkGroupID.y << 4u);
CurrFilter(gxy);
gxy.x += 8u;
CurrFilter(gxy);
gxy.y += 8u;
CurrFilter(gxy);
gxy.x -= 8u;
CurrFilter(gxy);
}

View File

@@ -0,0 +1,76 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
// Source code is adapted from
// https://www.geeks3d.com/20110405/fxaa-fast-approximate-anti-aliasing-demo-glsl-opengl-test-radeon-geforce/3/
#version 460
#ifdef VULKAN
#define BINDING_COLOR_TEXTURE 1
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BINDING_COLOR_TEXTURE 0
#endif
layout (location = 0) in vec4 posPos;
layout (location = 0) out vec4 frag_color;
layout (binding = BINDING_COLOR_TEXTURE) uniform sampler2D input_texture;
const float FXAA_SPAN_MAX = 8.0;
const float FXAA_REDUCE_MUL = 1.0 / 8.0;
const float FXAA_REDUCE_MIN = 1.0 / 128.0;
#define FxaaTexLod0(t, p) textureLod(t, p, 0.0)
#define FxaaTexOff(t, p, o) textureLodOffset(t, p, 0.0, o)
vec3 FxaaPixelShader(vec4 posPos, sampler2D tex) {
vec3 rgbNW = FxaaTexLod0(tex, posPos.zw).xyz;
vec3 rgbNE = FxaaTexOff(tex, posPos.zw, ivec2(1,0)).xyz;
vec3 rgbSW = FxaaTexOff(tex, posPos.zw, ivec2(0,1)).xyz;
vec3 rgbSE = FxaaTexOff(tex, posPos.zw, ivec2(1,1)).xyz;
vec3 rgbM = FxaaTexLod0(tex, posPos.xy).xyz;
/*---------------------------------------------------------*/
vec3 luma = vec3(0.299, 0.587, 0.114);
float lumaNW = dot(rgbNW, luma);
float lumaNE = dot(rgbNE, luma);
float lumaSW = dot(rgbSW, luma);
float lumaSE = dot(rgbSE, luma);
float lumaM = dot(rgbM, luma);
/*---------------------------------------------------------*/
float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE)));
float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE)));
/*---------------------------------------------------------*/
vec2 dir;
dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE));
dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE));
/*---------------------------------------------------------*/
float dirReduce = max(
(lumaNW + lumaNE + lumaSW + lumaSE) * (0.25 * FXAA_REDUCE_MUL),
FXAA_REDUCE_MIN);
float rcpDirMin = 1.0/(min(abs(dir.x), abs(dir.y)) + dirReduce);
dir = min(vec2( FXAA_SPAN_MAX, FXAA_SPAN_MAX),
max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX),
dir * rcpDirMin)) / textureSize(tex, 0);
/*--------------------------------------------------------*/
vec3 rgbA = (1.0 / 2.0) * (
FxaaTexLod0(tex, posPos.xy + dir * (1.0 / 3.0 - 0.5)).xyz +
FxaaTexLod0(tex, posPos.xy + dir * (2.0 / 3.0 - 0.5)).xyz);
vec3 rgbB = rgbA * (1.0 / 2.0) + (1.0 / 4.0) * (
FxaaTexLod0(tex, posPos.xy + dir * (0.0 / 3.0 - 0.5)).xyz +
FxaaTexLod0(tex, posPos.xy + dir * (3.0 / 3.0 - 0.5)).xyz);
float lumaB = dot(rgbB, luma);
if((lumaB < lumaMin) || (lumaB > lumaMax)) return rgbA;
return rgbB;
}
void main() {
frag_color = vec4(FxaaPixelShader(posPos, input_texture), 1.0);
}

View File

@@ -0,0 +1,38 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#version 460
out gl_PerVertex {
vec4 gl_Position;
};
const vec2 vertices[4] =
vec2[4](vec2(-1.0, 1.0), vec2(1.0, 1.0), vec2(-1.0, -1.0), vec2(1.0, -1.0));
layout (location = 0) out vec4 posPos;
#ifdef VULKAN
#define BINDING_COLOR_TEXTURE 0
#define VERTEX_ID gl_VertexIndex
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BINDING_COLOR_TEXTURE 0
#define VERTEX_ID gl_VertexID
#endif
layout (binding = BINDING_COLOR_TEXTURE) uniform sampler2D input_texture;
const float FXAA_SUBPIX_SHIFT = 0;
void main() {
vec2 vertex = vertices[VERTEX_ID];
gl_Position = vec4(vertex, 0.0, 1.0);
vec2 vert_tex_coord = (vertex + 1.0) / 2.0;
posPos.xy = vert_tex_coord;
posPos.zw = vert_tex_coord - (0.5 + FXAA_SUBPIX_SHIFT) / textureSize(input_texture, 0);
}

View File

@@ -0,0 +1,130 @@
// MIT License
//
// Copyright (c) 2020 BreadFish64
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// Adapted from https://github.com/BreadFish64/ScaleFish/tree/master/scaleforce
//! #version 460
#extension GL_ARB_separate_shader_objects : enable
#ifdef YUZU_USE_FP16
#extension GL_AMD_gpu_shader_half_float : enable
#extension GL_NV_gpu_shader5 : enable
#define lfloat float16_t
#define lvec2 f16vec2
#define lvec3 f16vec3
#define lvec4 f16vec4
#else
#define lfloat float
#define lvec2 vec2
#define lvec3 vec3
#define lvec4 vec4
#endif
#ifdef VULKAN
#define BINDING_COLOR_TEXTURE 1
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BINDING_COLOR_TEXTURE 0
#endif
layout (location = 0) in vec2 tex_coord;
layout (location = 0) out vec4 frag_color;
layout (binding = BINDING_COLOR_TEXTURE) uniform sampler2D input_texture;
const bool ignore_alpha = true;
lfloat ColorDist1(lvec4 a, lvec4 b) {
// https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.2020_conversion
const lvec3 K = lvec3(0.2627, 0.6780, 0.0593);
const lfloat scaleB = lfloat(0.5) / (lfloat(1.0) - K.b);
const lfloat scaleR = lfloat(0.5) / (lfloat(1.0) - K.r);
lvec4 diff = a - b;
lfloat Y = dot(diff.rgb, K);
lfloat Cb = scaleB * (diff.b - Y);
lfloat Cr = scaleR * (diff.r - Y);
lvec3 YCbCr = lvec3(Y, Cb, Cr);
lfloat d = length(YCbCr);
if (ignore_alpha) {
return d;
}
return sqrt(a.a * b.a * d * d + diff.a * diff.a);
}
lvec4 ColorDist(lvec4 ref, lvec4 A, lvec4 B, lvec4 C, lvec4 D) {
return lvec4(
ColorDist1(ref, A),
ColorDist1(ref, B),
ColorDist1(ref, C),
ColorDist1(ref, D)
);
}
vec4 Scaleforce(sampler2D tex, vec2 tex_coord) {
lvec4 bl = lvec4(textureOffset(tex, tex_coord, ivec2(-1, -1)));
lvec4 bc = lvec4(textureOffset(tex, tex_coord, ivec2(0, -1)));
lvec4 br = lvec4(textureOffset(tex, tex_coord, ivec2(1, -1)));
lvec4 cl = lvec4(textureOffset(tex, tex_coord, ivec2(-1, 0)));
lvec4 cc = lvec4(texture(tex, tex_coord));
lvec4 cr = lvec4(textureOffset(tex, tex_coord, ivec2(1, 0)));
lvec4 tl = lvec4(textureOffset(tex, tex_coord, ivec2(-1, 1)));
lvec4 tc = lvec4(textureOffset(tex, tex_coord, ivec2(0, 1)));
lvec4 tr = lvec4(textureOffset(tex, tex_coord, ivec2(1, 1)));
lvec4 offset_tl = ColorDist(cc, tl, tc, tr, cr);
lvec4 offset_br = ColorDist(cc, br, bc, bl, cl);
// Calculate how different cc is from the texels around it
const lfloat plus_weight = lfloat(1.5);
const lfloat cross_weight = lfloat(1.5);
lfloat total_dist = dot(offset_tl + offset_br, lvec4(cross_weight, plus_weight, cross_weight, plus_weight));
if (total_dist == lfloat(0.0)) {
return cc;
} else {
// Add together all the distances with direction taken into account
lvec4 tmp = offset_tl - offset_br;
lvec2 total_offset = tmp.wy * plus_weight + (tmp.zz + lvec2(-tmp.x, tmp.x)) * cross_weight;
// When the image has thin points, they tend to split apart.
// This is because the texels all around are different and total_offset reaches into clear areas.
// This works pretty well to keep the offset in bounds for these cases.
lfloat clamp_val = length(total_offset) / total_dist;
vec2 final_offset = vec2(clamp(total_offset, -clamp_val, clamp_val)) / textureSize(tex, 0);
return texture(tex, tex_coord - final_offset);
}
}
void main() {
frag_color = Scaleforce(input_texture, tex_coord);
}

View File

@@ -0,0 +1,67 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#version 460 core
#ifdef VULKAN
#define BINDING_COLOR_TEXTURE 1
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BINDING_COLOR_TEXTURE 0
#endif
layout (location = 0) in vec2 frag_tex_coord;
layout (location = 0) out vec4 color;
layout (binding = BINDING_COLOR_TEXTURE) uniform sampler2D color_texture;
vec4 cubic(float v) {
vec4 n = vec4(1.0, 2.0, 3.0, 4.0) - v;
vec4 s = n * n * n;
float x = s.x;
float y = s.y - 4.0 * s.x;
float z = s.z - 4.0 * s.y + 6.0 * s.x;
float w = 6.0 - x - y - z;
return vec4(x, y, z, w) * (1.0 / 6.0);
}
vec4 textureBicubic( sampler2D textureSampler, vec2 texCoords ) {
vec2 texSize = textureSize(textureSampler, 0);
vec2 invTexSize = 1.0 / texSize;
texCoords = texCoords * texSize - 0.5;
vec2 fxy = fract(texCoords);
texCoords -= fxy;
vec4 xcubic = cubic(fxy.x);
vec4 ycubic = cubic(fxy.y);
vec4 c = texCoords.xxyy + vec2(-0.5, +1.5).xyxy;
vec4 s = vec4(xcubic.xz + xcubic.yw, ycubic.xz + ycubic.yw);
vec4 offset = c + vec4(xcubic.yw, ycubic.yw) / s;
offset *= invTexSize.xxyy;
vec4 sample0 = texture(textureSampler, offset.xz);
vec4 sample1 = texture(textureSampler, offset.yz);
vec4 sample2 = texture(textureSampler, offset.xw);
vec4 sample3 = texture(textureSampler, offset.yw);
float sx = s.x / (s.x + s.y);
float sy = s.z / (s.z + s.w);
return mix(mix(sample3, sample2, sx), mix(sample1, sample0, sx), sy);
}
void main() {
color = vec4(textureBicubic(color_texture, frag_tex_coord).rgb, 1.0f);
}

View File

@@ -0,0 +1,70 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
// Code adapted from the following sources:
// - https://learnopengl.com/Advanced-Lighting/Bloom
// - https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
#version 460 core
#ifdef VULKAN
#define BINDING_COLOR_TEXTURE 1
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BINDING_COLOR_TEXTURE 0
#endif
layout(location = 0) in vec2 frag_tex_coord;
layout(location = 0) out vec4 color;
layout(binding = BINDING_COLOR_TEXTURE) uniform sampler2D color_texture;
const float offset[3] = float[](0.0, 1.3846153846, 3.2307692308);
const float weight[3] = float[](0.2270270270, 0.3162162162, 0.0702702703);
vec4 blurVertical(sampler2D textureSampler, vec2 coord, vec2 norm) {
vec4 result = vec4(0.0f);
for (int i = 1; i < 3; i++) {
result += texture(textureSampler, vec2(coord) + (vec2(0.0, offset[i]) * norm)) * weight[i];
result += texture(textureSampler, vec2(coord) - (vec2(0.0, offset[i]) * norm)) * weight[i];
}
return result;
}
vec4 blurHorizontal(sampler2D textureSampler, vec2 coord, vec2 norm) {
vec4 result = vec4(0.0f);
for (int i = 1; i < 3; i++) {
result += texture(textureSampler, vec2(coord) + (vec2(offset[i], 0.0) * norm)) * weight[i];
result += texture(textureSampler, vec2(coord) - (vec2(offset[i], 0.0) * norm)) * weight[i];
}
return result;
}
vec4 blurDiagonal(sampler2D textureSampler, vec2 coord, vec2 norm) {
vec4 result = vec4(0.0f);
for (int i = 1; i < 3; i++) {
result +=
texture(textureSampler, vec2(coord) + (vec2(offset[i], offset[i]) * norm)) * weight[i];
result +=
texture(textureSampler, vec2(coord) - (vec2(offset[i], offset[i]) * norm)) * weight[i];
}
return result;
}
void main() {
vec3 base = texture(color_texture, vec2(frag_tex_coord)).rgb * weight[0];
vec2 tex_offset = 1.0f / textureSize(color_texture, 0);
// TODO(Blinkhawk): This code can be optimized through shader group instructions.
vec3 horizontal = blurHorizontal(color_texture, frag_tex_coord, tex_offset).rgb;
vec3 vertical = blurVertical(color_texture, frag_tex_coord, tex_offset).rgb;
vec3 diagonalA = blurVertical(color_texture, frag_tex_coord, tex_offset).rgb;
vec3 diagonalB = blurVertical(color_texture, frag_tex_coord, tex_offset * vec2(1.0, -1.0)).rgb;
vec3 combination = mix(mix(horizontal, vertical, 0.5f), mix(diagonalA, diagonalB, 0.5f), 0.5f);
color = vec4(combination + base, 1.0f);
}

View File

@@ -0,0 +1,11 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#version 460 core
#extension GL_GOOGLE_include_directive : enable
#define YUZU_USE_FP16
#define USE_EASU 1
#include "fidelityfx_fsr.comp"

View File

@@ -0,0 +1,10 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#version 460 core
#extension GL_GOOGLE_include_directive : enable
#define USE_EASU 1
#include "fidelityfx_fsr.comp"

View File

@@ -0,0 +1,11 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#version 460 core
#extension GL_GOOGLE_include_directive : enable
#define YUZU_USE_FP16
#define USE_RCAS 1
#include "fidelityfx_fsr.comp"

View File

@@ -0,0 +1,10 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#version 460 core
#extension GL_GOOGLE_include_directive : enable
#define USE_RCAS 1
#include "fidelityfx_fsr.comp"

View File

@@ -0,0 +1,7 @@
#version 460
#extension GL_GOOGLE_include_directive : enable
#define YUZU_USE_FP16
#include "opengl_present_scaleforce.frag"

View File

@@ -0,0 +1,5 @@
#version 460
#extension GL_GOOGLE_include_directive : enable
#include "opengl_present_scaleforce.frag"

View File

@@ -5,6 +5,7 @@
#include <algorithm>
#include <span>
#include "shader_recompiler/backend/glasm/emit_glasm.h"
#include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/renderer_opengl/gl_buffer_cache.h"
#include "video_core/renderer_opengl/gl_device.h"
@@ -229,8 +230,10 @@ void BufferCacheRuntime::BindStorageBuffer(size_t stage, u32 binding_index, Buff
.padding = 0,
};
buffer.MakeResident(is_written ? GL_READ_WRITE : GL_READ_ONLY);
glProgramLocalParametersI4uivNV(PROGRAM_LUT[stage], binding_index, 1,
reinterpret_cast<const GLuint*>(&ssbo));
glProgramLocalParametersI4uivNV(
PROGRAM_LUT[stage],
Shader::Backend::GLASM::PROGRAM_LOCAL_PARAMETER_STORAGE_BUFFER_BASE + binding_index, 1,
reinterpret_cast<const GLuint*>(&ssbo));
}
}
@@ -250,8 +253,10 @@ void BufferCacheRuntime::BindComputeStorageBuffer(u32 binding_index, Buffer& buf
.padding = 0,
};
buffer.MakeResident(is_written ? GL_READ_WRITE : GL_READ_ONLY);
glProgramLocalParametersI4uivNV(GL_COMPUTE_PROGRAM_NV, binding_index, 1,
reinterpret_cast<const GLuint*>(&ssbo));
glProgramLocalParametersI4uivNV(
GL_COMPUTE_PROGRAM_NV,
Shader::Backend::GLASM::PROGRAM_LOCAL_PARAMETER_STORAGE_BUFFER_BASE + binding_index, 1,
reinterpret_cast<const GLuint*>(&ssbo));
}
}

View File

@@ -19,15 +19,6 @@ using VideoCommon::ImageId;
constexpr u32 MAX_TEXTURES = 64;
constexpr u32 MAX_IMAGES = 16;
template <typename Range>
u32 AccumulateCount(const Range& range) {
u32 num{};
for (const auto& desc : range) {
num += desc.count;
}
return num;
}
size_t ComputePipelineKey::Hash() const noexcept {
return static_cast<size_t>(
Common::CityHash64(reinterpret_cast<const char*>(this), sizeof *this));
@@ -58,17 +49,17 @@ ComputePipeline::ComputePipeline(const Device& device, TextureCache& texture_cac
std::copy_n(info.constant_buffer_used_sizes.begin(), uniform_buffer_sizes.size(),
uniform_buffer_sizes.begin());
num_texture_buffers = AccumulateCount(info.texture_buffer_descriptors);
num_image_buffers = AccumulateCount(info.image_buffer_descriptors);
num_texture_buffers = Shader::NumDescriptors(info.texture_buffer_descriptors);
num_image_buffers = Shader::NumDescriptors(info.image_buffer_descriptors);
const u32 num_textures{num_texture_buffers + AccumulateCount(info.texture_descriptors)};
const u32 num_textures{num_texture_buffers + Shader::NumDescriptors(info.texture_descriptors)};
ASSERT(num_textures <= MAX_TEXTURES);
const u32 num_images{num_image_buffers + AccumulateCount(info.image_descriptors)};
const u32 num_images{num_image_buffers + Shader::NumDescriptors(info.image_descriptors)};
ASSERT(num_images <= MAX_IMAGES);
const bool is_glasm{assembly_program.handle != 0};
const u32 num_storage_buffers{AccumulateCount(info.storage_buffers_descriptors)};
const u32 num_storage_buffers{Shader::NumDescriptors(info.storage_buffers_descriptors)};
use_storage_buffers =
!is_glasm || num_storage_buffers < device.GetMaxGLASMStorageBufferBlocks();
writes_global_memory = !use_storage_buffers &&
@@ -88,8 +79,7 @@ void ComputePipeline::Configure() {
}
texture_cache.SynchronizeComputeDescriptors();
std::array<ImageViewId, MAX_TEXTURES + MAX_IMAGES> image_view_ids;
boost::container::static_vector<u32, MAX_TEXTURES + MAX_IMAGES> image_view_indices;
boost::container::static_vector<VideoCommon::ImageViewInOut, MAX_TEXTURES + MAX_IMAGES> views;
std::array<GLuint, MAX_TEXTURES> samplers;
std::array<GLuint, MAX_TEXTURES> textures;
std::array<GLuint, MAX_IMAGES> images;
@@ -119,33 +109,39 @@ void ComputePipeline::Configure() {
}
return TexturePair(gpu_memory.Read<u32>(addr), via_header_index);
}};
const auto add_image{[&](const auto& desc) {
const auto add_image{[&](const auto& desc, bool blacklist) {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices.push_back(handle.first);
views.push_back({
.index = handle.first,
.blacklist = blacklist,
.id = {},
});
}
}};
for (const auto& desc : info.texture_buffer_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices.push_back(handle.first);
views.push_back({handle.first});
samplers[sampler_binding++] = 0;
}
}
std::ranges::for_each(info.image_buffer_descriptors, add_image);
for (const auto& desc : info.image_buffer_descriptors) {
add_image(desc, false);
}
for (const auto& desc : info.texture_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices.push_back(handle.first);
views.push_back({handle.first});
Sampler* const sampler = texture_cache.GetComputeSampler(handle.second);
samplers[sampler_binding++] = sampler->Handle();
}
}
std::ranges::for_each(info.image_descriptors, add_image);
const std::span indices_span(image_view_indices.data(), image_view_indices.size());
texture_cache.FillComputeImageViews(indices_span, image_view_ids);
for (const auto& desc : info.image_descriptors) {
add_image(desc, desc.is_written);
}
texture_cache.FillComputeImageViews(std::span(views.data(), views.size()));
if (assembly_program.handle != 0) {
program_manager.BindComputeAssemblyProgram(assembly_program.handle);
@@ -161,7 +157,7 @@ void ComputePipeline::Configure() {
if constexpr (is_image) {
is_written = desc.is_written;
}
ImageView& image_view{texture_cache.GetImageView(image_view_ids[texbuf_index])};
ImageView& image_view{texture_cache.GetImageView(views[texbuf_index].id)};
buffer_cache.BindComputeTextureBuffer(texbuf_index, image_view.GpuAddr(),
image_view.BufferSize(), image_view.format,
is_written, is_image);
@@ -177,23 +173,45 @@ void ComputePipeline::Configure() {
buffer_cache.runtime.SetImagePointers(textures.data(), images.data());
buffer_cache.BindHostComputeBuffers();
const ImageId* views_it{image_view_ids.data() + num_texture_buffers + num_image_buffers};
const VideoCommon::ImageViewInOut* views_it{views.data() + num_texture_buffers +
num_image_buffers};
texture_binding += num_texture_buffers;
image_binding += num_image_buffers;
u32 texture_scaling_mask{};
for (const auto& desc : info.texture_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
ImageView& image_view{texture_cache.GetImageView(*(views_it++))};
textures[texture_binding++] = image_view.Handle(desc.type);
ImageView& image_view{texture_cache.GetImageView((views_it++)->id)};
textures[texture_binding] = image_view.Handle(desc.type);
if (texture_cache.IsRescaling(image_view)) {
texture_scaling_mask |= 1u << texture_binding;
}
++texture_binding;
}
}
u32 image_scaling_mask{};
for (const auto& desc : info.image_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
ImageView& image_view{texture_cache.GetImageView(*(views_it++))};
ImageView& image_view{texture_cache.GetImageView((views_it++)->id)};
if (desc.is_written) {
texture_cache.MarkModification(image_view.image_id);
}
images[image_binding++] = image_view.StorageView(desc.type, desc.format);
images[image_binding] = image_view.StorageView(desc.type, desc.format);
if (texture_cache.IsRescaling(image_view)) {
image_scaling_mask |= 1u << image_binding;
}
++image_binding;
}
}
if (info.uses_rescaling_uniform) {
const f32 float_texture_scaling_mask{Common::BitCast<f32>(texture_scaling_mask)};
const f32 float_image_scaling_mask{Common::BitCast<f32>(image_scaling_mask)};
if (assembly_program.handle != 0) {
glProgramLocalParameter4fARB(GL_COMPUTE_PROGRAM_NV, 0, float_texture_scaling_mask,
float_image_scaling_mask, 0.0f, 0.0f);
} else {
glProgramUniform4f(source_program.handle, 0, float_texture_scaling_mask,
float_image_scaling_mask, 0.0f, 0.0f);
}
}
if (texture_binding != 0) {

View File

@@ -15,7 +15,7 @@
#include "video_core/renderer_opengl/gl_shader_util.h"
#include "video_core/renderer_opengl/gl_state_tracker.h"
#include "video_core/shader_notify.h"
#include "video_core/texture_cache/texture_cache_base.h"
#include "video_core/texture_cache/texture_cache.h"
#if defined(_MSC_VER) && defined(NDEBUG)
#define LAMBDA_FORCEINLINE [[msvc::forceinline]]
@@ -27,6 +27,7 @@ namespace OpenGL {
namespace {
using Shader::ImageBufferDescriptor;
using Shader::ImageDescriptor;
using Shader::NumDescriptors;
using Shader::TextureBufferDescriptor;
using Shader::TextureDescriptor;
using Tegra::Texture::TexturePair;
@@ -35,15 +36,6 @@ using VideoCommon::ImageId;
constexpr u32 MAX_TEXTURES = 64;
constexpr u32 MAX_IMAGES = 8;
template <typename Range>
u32 AccumulateCount(const Range& range) {
u32 num{};
for (const auto& desc : range) {
num += desc.count;
}
return num;
}
GLenum Stage(size_t stage_index) {
switch (stage_index) {
case 0:
@@ -204,23 +196,23 @@ GraphicsPipeline::GraphicsPipeline(
base_uniform_bindings[stage + 1] = base_uniform_bindings[stage];
base_storage_bindings[stage + 1] = base_storage_bindings[stage];
base_uniform_bindings[stage + 1] += AccumulateCount(info.constant_buffer_descriptors);
base_storage_bindings[stage + 1] += AccumulateCount(info.storage_buffers_descriptors);
base_uniform_bindings[stage + 1] += NumDescriptors(info.constant_buffer_descriptors);
base_storage_bindings[stage + 1] += NumDescriptors(info.storage_buffers_descriptors);
}
enabled_uniform_buffer_masks[stage] = info.constant_buffer_mask;
std::ranges::copy(info.constant_buffer_used_sizes, uniform_buffer_sizes[stage].begin());
const u32 num_tex_buffer_bindings{AccumulateCount(info.texture_buffer_descriptors)};
const u32 num_tex_buffer_bindings{NumDescriptors(info.texture_buffer_descriptors)};
num_texture_buffers[stage] += num_tex_buffer_bindings;
num_textures += num_tex_buffer_bindings;
const u32 num_img_buffers_bindings{AccumulateCount(info.image_buffer_descriptors)};
const u32 num_img_buffers_bindings{NumDescriptors(info.image_buffer_descriptors)};
num_image_buffers[stage] += num_img_buffers_bindings;
num_images += num_img_buffers_bindings;
num_textures += AccumulateCount(info.texture_descriptors);
num_images += AccumulateCount(info.image_descriptors);
num_storage_buffers += AccumulateCount(info.storage_buffers_descriptors);
num_textures += NumDescriptors(info.texture_descriptors);
num_images += NumDescriptors(info.image_descriptors);
num_storage_buffers += NumDescriptors(info.storage_buffers_descriptors);
writes_global_memory |= std::ranges::any_of(
info.storage_buffers_descriptors, [](const auto& desc) { return desc.is_written; });
@@ -288,10 +280,9 @@ GraphicsPipeline::GraphicsPipeline(
template <typename Spec>
void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
std::array<ImageId, MAX_TEXTURES + MAX_IMAGES> image_view_ids;
std::array<u32, MAX_TEXTURES + MAX_IMAGES> image_view_indices;
std::array<VideoCommon::ImageViewInOut, MAX_TEXTURES + MAX_IMAGES> views;
std::array<GLuint, MAX_TEXTURES> samplers;
size_t image_view_index{};
size_t views_index{};
GLsizei sampler_binding{};
texture_cache.SynchronizeGraphicsDescriptors();
@@ -336,30 +327,34 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
}
return TexturePair(gpu_memory.Read<u32>(addr), via_header_index);
}};
const auto add_image{[&](const auto& desc) {
const auto add_image{[&](const auto& desc, bool blacklist) LAMBDA_FORCEINLINE {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices[image_view_index++] = handle.first;
views[views_index++] = {
.index = handle.first,
.blacklist = blacklist,
.id = {},
};
}
}};
if constexpr (Spec::has_texture_buffers) {
for (const auto& desc : info.texture_buffer_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices[image_view_index++] = handle.first;
views[views_index++] = {handle.first};
samplers[sampler_binding++] = 0;
}
}
}
if constexpr (Spec::has_image_buffers) {
for (const auto& desc : info.image_buffer_descriptors) {
add_image(desc);
add_image(desc, false);
}
}
for (const auto& desc : info.texture_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices[image_view_index++] = handle.first;
views[views_index++] = {handle.first};
Sampler* const sampler{texture_cache.GetGraphicsSampler(handle.second)};
samplers[sampler_binding++] = sampler->Handle();
@@ -367,7 +362,7 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
}
if constexpr (Spec::has_images) {
for (const auto& desc : info.image_descriptors) {
add_image(desc);
add_image(desc, desc.is_written);
}
}
}};
@@ -386,13 +381,12 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
if constexpr (Spec::enabled_stages[4]) {
config_stage(4);
}
const std::span indices_span(image_view_indices.data(), image_view_index);
texture_cache.FillGraphicsImageViews(indices_span, image_view_ids);
texture_cache.FillGraphicsImageViews<Spec::has_images>(std::span(views.data(), views_index));
texture_cache.UpdateRenderTargets(false);
state_tracker.BindFramebuffer(texture_cache.GetFramebuffer()->Handle());
ImageId* texture_buffer_index{image_view_ids.data()};
VideoCommon::ImageViewInOut* texture_buffer_it{views.data()};
const auto bind_stage_info{[&](size_t stage) LAMBDA_FORCEINLINE {
size_t index{};
const auto add_buffer{[&](const auto& desc) {
@@ -402,12 +396,12 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
if constexpr (is_image) {
is_written = desc.is_written;
}
ImageView& image_view{texture_cache.GetImageView(*texture_buffer_index)};
ImageView& image_view{texture_cache.GetImageView(texture_buffer_it->id)};
buffer_cache.BindGraphicsTextureBuffer(stage, index, image_view.GpuAddr(),
image_view.BufferSize(), image_view.format,
is_written, is_image);
++index;
++texture_buffer_index;
++texture_buffer_it;
}
}};
const Shader::Info& info{stage_infos[stage]};
@@ -423,13 +417,9 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
add_buffer(desc);
}
}
for (const auto& desc : info.texture_descriptors) {
texture_buffer_index += desc.count;
}
texture_buffer_it += Shader::NumDescriptors(info.texture_descriptors);
if constexpr (Spec::has_images) {
for (const auto& desc : info.image_descriptors) {
texture_buffer_index += desc.count;
}
texture_buffer_it += Shader::NumDescriptors(info.image_descriptors);
}
}};
if constexpr (Spec::enabled_stages[0]) {
@@ -453,12 +443,13 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
if (!is_built.load(std::memory_order::relaxed)) {
WaitForBuild();
}
if (assembly_programs[0].handle != 0) {
const bool use_assembly{assembly_programs[0].handle != 0};
if (use_assembly) {
program_manager.BindAssemblyPrograms(assembly_programs, enabled_stages_mask);
} else {
program_manager.BindSourcePrograms(source_programs);
}
const ImageId* views_it{image_view_ids.data()};
const VideoCommon::ImageViewInOut* views_it{views.data()};
GLsizei texture_binding = 0;
GLsizei image_binding = 0;
std::array<GLuint, MAX_TEXTURES> textures;
@@ -473,20 +464,49 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
views_it += num_texture_buffers[stage];
views_it += num_image_buffers[stage];
u32 texture_scaling_mask{};
u32 image_scaling_mask{};
u32 stage_texture_binding{};
u32 stage_image_binding{};
const auto& info{stage_infos[stage]};
for (const auto& desc : info.texture_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
ImageView& image_view{texture_cache.GetImageView(*(views_it++))};
textures[texture_binding++] = image_view.Handle(desc.type);
ImageView& image_view{texture_cache.GetImageView((views_it++)->id)};
textures[texture_binding] = image_view.Handle(desc.type);
if (texture_cache.IsRescaling(image_view)) {
texture_scaling_mask |= 1u << stage_texture_binding;
}
++texture_binding;
++stage_texture_binding;
}
}
for (const auto& desc : info.image_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
ImageView& image_view{texture_cache.GetImageView(*(views_it++))};
ImageView& image_view{texture_cache.GetImageView((views_it++)->id)};
if (desc.is_written) {
texture_cache.MarkModification(image_view.image_id);
}
images[image_binding++] = image_view.StorageView(desc.type, desc.format);
images[image_binding] = image_view.StorageView(desc.type, desc.format);
if (texture_cache.IsRescaling(image_view)) {
image_scaling_mask |= 1u << stage_image_binding;
}
++image_binding;
++stage_image_binding;
}
}
if (info.uses_rescaling_uniform) {
const f32 float_texture_scaling_mask{Common::BitCast<f32>(texture_scaling_mask)};
const f32 float_image_scaling_mask{Common::BitCast<f32>(image_scaling_mask)};
const bool is_rescaling{texture_cache.IsRescaling()};
const f32 config_down_factor{Settings::values.resolution_info.down_factor};
const f32 down_factor{is_rescaling ? config_down_factor : 1.0f};
if (use_assembly) {
glProgramLocalParameter4fARB(AssemblyStage(stage), 0, float_texture_scaling_mask,
float_image_scaling_mask, down_factor, 0.0f);
} else {
glProgramUniform4f(source_programs[stage].handle, 0, float_texture_scaling_mask,
float_image_scaling_mask, down_factor, 0.0f);
}
}
}};

View File

@@ -186,6 +186,10 @@ void RasterizerOpenGL::Clear() {
SyncRasterizeEnable();
SyncStencilTestState();
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UpdateRenderTargets(true);
state_tracker.BindFramebuffer(texture_cache.GetFramebuffer()->Handle());
SyncViewport();
if (regs.clear_flags.scissor) {
SyncScissorTest();
} else {
@@ -194,10 +198,6 @@ void RasterizerOpenGL::Clear() {
}
UNIMPLEMENTED_IF(regs.clear_flags.viewport);
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UpdateRenderTargets(true);
state_tracker.BindFramebuffer(texture_cache.GetFramebuffer()->Handle());
if (use_color) {
glClearBufferfv(GL_COLOR, regs.clear_buffers.RT, regs.clear_color);
}
@@ -216,8 +216,6 @@ void RasterizerOpenGL::Draw(bool is_indexed, bool is_instanced) {
query_cache.UpdateCounters();
SyncState();
GraphicsPipeline* const pipeline{shader_cache.CurrentGraphicsPipeline()};
if (!pipeline) {
return;
@@ -225,6 +223,8 @@ void RasterizerOpenGL::Draw(bool is_indexed, bool is_instanced) {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
pipeline->Configure(is_indexed);
SyncState();
const GLenum primitive_mode = MaxwellToGL::PrimitiveTopology(maxwell3d.regs.draw.topology);
BeginTransformFeedback(pipeline, primitive_mode);
@@ -535,7 +535,8 @@ void RasterizerOpenGL::SyncViewport() {
auto& flags = maxwell3d.dirty.flags;
const auto& regs = maxwell3d.regs;
const bool dirty_viewport = flags[Dirty::Viewports];
const bool rescale_viewports = flags[VideoCommon::Dirty::RescaleViewports];
const bool dirty_viewport = flags[Dirty::Viewports] || rescale_viewports;
const bool dirty_clip_control = flags[Dirty::ClipControl];
if (dirty_clip_control || flags[Dirty::FrontFace]) {
@@ -555,8 +556,7 @@ void RasterizerOpenGL::SyncViewport() {
}
glFrontFace(mode);
}
if (dirty_viewport || flags[Dirty::ClipControl]) {
if (dirty_viewport || dirty_clip_control) {
flags[Dirty::ClipControl] = false;
bool flip_y = false;
@@ -572,37 +572,58 @@ void RasterizerOpenGL::SyncViewport() {
state_tracker.ClipControl(origin, depth);
state_tracker.SetYNegate(regs.screen_y_control.y_negate != 0);
}
const bool is_rescaling{texture_cache.IsRescaling()};
const float scale = is_rescaling ? Settings::values.resolution_info.up_factor : 1.0f;
const auto conv = [scale](float value) -> GLfloat {
float new_value = value * scale;
if (scale < 1.0f) {
const bool sign = std::signbit(value);
new_value = std::round(std::abs(new_value));
new_value = sign ? -new_value : new_value;
}
return static_cast<GLfloat>(new_value);
};
if (dirty_viewport) {
flags[Dirty::Viewports] = false;
const bool force = flags[Dirty::ViewportTransform];
const bool force = flags[Dirty::ViewportTransform] || rescale_viewports;
flags[Dirty::ViewportTransform] = false;
flags[VideoCommon::Dirty::RescaleViewports] = false;
for (std::size_t i = 0; i < Maxwell::NumViewports; ++i) {
if (!force && !flags[Dirty::Viewport0 + i]) {
for (size_t index = 0; index < Maxwell::NumViewports; ++index) {
if (!force && !flags[Dirty::Viewport0 + index]) {
continue;
}
flags[Dirty::Viewport0 + i] = false;
flags[Dirty::Viewport0 + index] = false;
const auto& src = regs.viewport_transform[i];
const Common::Rectangle<f32> rect{src.GetRect()};
glViewportIndexedf(static_cast<GLuint>(i), rect.left, rect.bottom, rect.GetWidth(),
rect.GetHeight());
const auto& src = regs.viewport_transform[index];
GLfloat x = conv(src.translate_x - src.scale_x);
GLfloat y = conv(src.translate_y - src.scale_y);
GLfloat width = conv(src.scale_x * 2.0f);
GLfloat height = conv(src.scale_y * 2.0f);
if (height < 0) {
y += height;
height = -height;
}
glViewportIndexedf(static_cast<GLuint>(index), x, y, width != 0.0f ? width : 1.0f,
height != 0.0f ? height : 1.0f);
const GLdouble reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne;
const GLdouble near_depth = src.translate_z - src.scale_z * reduce_z;
const GLdouble far_depth = src.translate_z + src.scale_z;
if (device.HasDepthBufferFloat()) {
glDepthRangeIndexeddNV(static_cast<GLuint>(i), near_depth, far_depth);
glDepthRangeIndexeddNV(static_cast<GLuint>(index), near_depth, far_depth);
} else {
glDepthRangeIndexed(static_cast<GLuint>(i), near_depth, far_depth);
glDepthRangeIndexed(static_cast<GLuint>(index), near_depth, far_depth);
}
if (!GLAD_GL_NV_viewport_swizzle) {
continue;
}
glViewportSwizzleNV(static_cast<GLuint>(i), MaxwellToGL::ViewportSwizzle(src.swizzle.x),
glViewportSwizzleNV(static_cast<GLuint>(index),
MaxwellToGL::ViewportSwizzle(src.swizzle.x),
MaxwellToGL::ViewportSwizzle(src.swizzle.y),
MaxwellToGL::ViewportSwizzle(src.swizzle.z),
MaxwellToGL::ViewportSwizzle(src.swizzle.w));
@@ -905,14 +926,34 @@ void RasterizerOpenGL::SyncLogicOpState() {
void RasterizerOpenGL::SyncScissorTest() {
auto& flags = maxwell3d.dirty.flags;
if (!flags[Dirty::Scissors]) {
if (!flags[Dirty::Scissors] && !flags[VideoCommon::Dirty::RescaleScissors]) {
return;
}
flags[Dirty::Scissors] = false;
const bool force = flags[VideoCommon::Dirty::RescaleScissors];
flags[VideoCommon::Dirty::RescaleScissors] = false;
const auto& regs = maxwell3d.regs;
const auto& resolution = Settings::values.resolution_info;
const bool is_rescaling{texture_cache.IsRescaling()};
const u32 up_scale = is_rescaling ? resolution.up_scale : 1U;
const u32 down_shift = is_rescaling ? resolution.down_shift : 0U;
const auto scale_up = [up_scale, down_shift](u32 value) -> u32 {
if (value == 0) {
return 0U;
}
const u32 upset = value * up_scale;
u32 acumm{};
if ((up_scale >> down_shift) == 0) {
acumm = upset % 2;
}
const u32 converted_value = upset >> down_shift;
return std::max<u32>(converted_value + acumm, 1U);
};
for (std::size_t index = 0; index < Maxwell::NumViewports; ++index) {
if (!flags[Dirty::Scissor0 + index]) {
if (!force && !flags[Dirty::Scissor0 + index]) {
continue;
}
flags[Dirty::Scissor0 + index] = false;
@@ -920,8 +961,8 @@ void RasterizerOpenGL::SyncScissorTest() {
const auto& src = regs.scissor_test[index];
if (src.enable) {
glEnablei(GL_SCISSOR_TEST, static_cast<GLuint>(index));
glScissorIndexed(static_cast<GLuint>(index), src.min_x, src.min_y,
src.max_x - src.min_x, src.max_y - src.min_y);
glScissorIndexed(static_cast<GLuint>(index), scale_up(src.min_x), scale_up(src.min_y),
scale_up(src.max_x - src.min_x), scale_up(src.max_y - src.min_y));
} else {
glDisablei(GL_SCISSOR_TEST, static_cast<GLuint>(index));
}

View File

@@ -166,7 +166,7 @@ void OGLFramebuffer::Create() {
return;
MICROPROFILE_SCOPE(OpenGL_ResourceCreation);
glGenFramebuffers(1, &handle);
glCreateFramebuffers(1, &handle);
}
void OGLFramebuffer::Release() {

View File

@@ -426,16 +426,14 @@ std::unique_ptr<GraphicsPipeline> ShaderCache::CreateGraphicsPipeline(
// Normal path
programs[index] = TranslateProgram(pools.inst, pools.block, env, cfg, host_info);
for (const auto& desc : programs[index].info.storage_buffers_descriptors) {
total_storage_buffers += desc.count;
}
total_storage_buffers +=
Shader::NumDescriptors(programs[index].info.storage_buffers_descriptors);
} else {
// VertexB path when VertexA is present.
auto& program_va{programs[0]};
auto program_vb{TranslateProgram(pools.inst, pools.block, env, cfg, host_info)};
for (const auto& desc : program_vb.info.storage_buffers_descriptors) {
total_storage_buffers += desc.count;
}
total_storage_buffers +=
Shader::NumDescriptors(program_vb.info.storage_buffers_descriptors);
programs[index] = MergeDualVertexPrograms(program_va, program_vb, env);
}
}
@@ -510,10 +508,7 @@ std::unique_ptr<ComputePipeline> ShaderCache::CreateComputePipeline(
Shader::Maxwell::Flow::CFG cfg{env, pools.flow_block, env.StartAddress()};
auto program{TranslateProgram(pools.inst, pools.block, env, cfg, host_info)};
u32 num_storage_buffers{};
for (const auto& desc : program.info.storage_buffers_descriptors) {
num_storage_buffers += desc.count;
}
const u32 num_storage_buffers{Shader::NumDescriptors(program.info.storage_buffers_descriptors)};
Shader::RuntimeInfo info;
info.glasm_use_storage_buffers = num_storage_buffers <= device.GetMaxGLASMStorageBufferBlocks();

View File

@@ -316,6 +316,52 @@ void AttachTexture(GLuint fbo, GLenum attachment, const ImageView* image_view) {
}
}
OGLTexture MakeImage(const VideoCommon::ImageInfo& info, GLenum gl_internal_format) {
const GLenum target = ImageTarget(info);
const GLsizei width = info.size.width;
const GLsizei height = info.size.height;
const GLsizei depth = info.size.depth;
const int max_host_mip_levels = std::bit_width(info.size.width);
const GLsizei num_levels = std::min(info.resources.levels, max_host_mip_levels);
const GLsizei num_layers = info.resources.layers;
const GLsizei num_samples = info.num_samples;
GLuint handle = 0;
OGLTexture texture;
if (target != GL_TEXTURE_BUFFER) {
texture.Create(target);
handle = texture.handle;
}
switch (target) {
case GL_TEXTURE_1D_ARRAY:
glTextureStorage2D(handle, num_levels, gl_internal_format, width, num_layers);
break;
case GL_TEXTURE_2D_ARRAY:
glTextureStorage3D(handle, num_levels, gl_internal_format, width, height, num_layers);
break;
case GL_TEXTURE_2D_MULTISAMPLE_ARRAY: {
// TODO: Where should 'fixedsamplelocations' come from?
const auto [samples_x, samples_y] = SamplesLog2(info.num_samples);
glTextureStorage3DMultisample(handle, num_samples, gl_internal_format, width >> samples_x,
height >> samples_y, num_layers, GL_FALSE);
break;
}
case GL_TEXTURE_RECTANGLE:
glTextureStorage2D(handle, num_levels, gl_internal_format, width, height);
break;
case GL_TEXTURE_3D:
glTextureStorage3D(handle, num_levels, gl_internal_format, width, height, depth);
break;
case GL_TEXTURE_BUFFER:
UNREACHABLE();
break;
default:
UNREACHABLE_MSG("Invalid target=0x{:x}", target);
break;
}
return texture;
}
[[nodiscard]] bool IsPixelFormatBGR(PixelFormat format) {
switch (format) {
case PixelFormat::B5G6R5_UNORM:
@@ -359,7 +405,8 @@ ImageBufferMap::~ImageBufferMap() {
TextureCacheRuntime::TextureCacheRuntime(const Device& device_, ProgramManager& program_manager,
StateTracker& state_tracker_)
: device{device_}, state_tracker{state_tracker_}, util_shaders(program_manager) {
: device{device_}, state_tracker{state_tracker_},
util_shaders(program_manager), resolution{Settings::values.resolution_info} {
static constexpr std::array TARGETS{GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_3D};
for (size_t i = 0; i < TARGETS.size(); ++i) {
const GLenum target = TARGETS[i];
@@ -426,6 +473,17 @@ TextureCacheRuntime::TextureCacheRuntime(const Device& device_, ProgramManager&
set_view(Shader::TextureType::ColorArray1D, null_image_1d_array.handle);
set_view(Shader::TextureType::ColorArray2D, null_image_view_2d_array.handle);
set_view(Shader::TextureType::ColorArrayCube, null_image_cube_array.handle);
if (resolution.active) {
for (size_t i = 0; i < rescale_draw_fbos.size(); ++i) {
rescale_draw_fbos[i].Create();
rescale_read_fbos[i].Create();
// Make sure the framebuffer is created without DSA
glBindFramebuffer(GL_READ_FRAMEBUFFER, rescale_draw_fbos[i].handle);
glBindFramebuffer(GL_READ_FRAMEBUFFER, rescale_read_fbos[i].handle);
}
}
}
TextureCacheRuntime::~TextureCacheRuntime() = default;
@@ -605,13 +663,13 @@ std::optional<size_t> TextureCacheRuntime::StagingBuffers::FindBuffer(size_t req
return found;
}
Image::Image(TextureCacheRuntime& runtime, const VideoCommon::ImageInfo& info_, GPUVAddr gpu_addr_,
Image::Image(TextureCacheRuntime& runtime_, const VideoCommon::ImageInfo& info_, GPUVAddr gpu_addr_,
VAddr cpu_addr_)
: VideoCommon::ImageBase(info_, gpu_addr_, cpu_addr_) {
if (CanBeAccelerated(runtime, info)) {
: VideoCommon::ImageBase(info_, gpu_addr_, cpu_addr_), runtime{&runtime_} {
if (CanBeAccelerated(*runtime, info)) {
flags |= ImageFlagBits::AcceleratedUpload;
}
if (IsConverted(runtime.device, info.format, info.type)) {
if (IsConverted(runtime->device, info.format, info.type)) {
flags |= ImageFlagBits::Converted;
gl_internal_format = IsPixelFormatSRGB(info.format) ? GL_SRGB8_ALPHA8 : GL_RGBA8;
gl_format = GL_RGBA;
@@ -622,58 +680,25 @@ Image::Image(TextureCacheRuntime& runtime, const VideoCommon::ImageInfo& info_,
gl_format = tuple.format;
gl_type = tuple.type;
}
const GLenum target = ImageTarget(info);
const GLsizei width = info.size.width;
const GLsizei height = info.size.height;
const GLsizei depth = info.size.depth;
const int max_host_mip_levels = std::bit_width(info.size.width);
const GLsizei num_levels = std::min(info.resources.levels, max_host_mip_levels);
const GLsizei num_layers = info.resources.layers;
const GLsizei num_samples = info.num_samples;
GLuint handle = 0;
if (target != GL_TEXTURE_BUFFER) {
texture.Create(target);
handle = texture.handle;
}
switch (target) {
case GL_TEXTURE_1D_ARRAY:
glTextureStorage2D(handle, num_levels, gl_internal_format, width, num_layers);
break;
case GL_TEXTURE_2D_ARRAY:
glTextureStorage3D(handle, num_levels, gl_internal_format, width, height, num_layers);
break;
case GL_TEXTURE_2D_MULTISAMPLE_ARRAY: {
// TODO: Where should 'fixedsamplelocations' come from?
const auto [samples_x, samples_y] = SamplesLog2(info.num_samples);
glTextureStorage3DMultisample(handle, num_samples, gl_internal_format, width >> samples_x,
height >> samples_y, num_layers, GL_FALSE);
break;
}
case GL_TEXTURE_RECTANGLE:
glTextureStorage2D(handle, num_levels, gl_internal_format, width, height);
break;
case GL_TEXTURE_3D:
glTextureStorage3D(handle, num_levels, gl_internal_format, width, height, depth);
break;
case GL_TEXTURE_BUFFER:
UNREACHABLE();
break;
default:
UNREACHABLE_MSG("Invalid target=0x{:x}", target);
break;
}
if (runtime.device.HasDebuggingToolAttached()) {
texture = MakeImage(info, gl_internal_format);
current_texture = texture.handle;
if (runtime->device.HasDebuggingToolAttached()) {
const std::string name = VideoCommon::Name(*this);
glObjectLabel(target == GL_TEXTURE_BUFFER ? GL_BUFFER : GL_TEXTURE, handle,
static_cast<GLsizei>(name.size()), name.data());
glObjectLabel(ImageTarget(info) == GL_TEXTURE_BUFFER ? GL_BUFFER : GL_TEXTURE,
texture.handle, static_cast<GLsizei>(name.size()), name.data());
}
}
Image::Image(const VideoCommon::NullImageParams& params) : VideoCommon::ImageBase{params} {}
Image::~Image() = default;
void Image::UploadMemory(const ImageBufferMap& map,
std::span<const VideoCommon::BufferImageCopy> copies) {
const bool is_rescaled = True(flags & ImageFlagBits::Rescaled);
if (is_rescaled) {
ScaleDown(true);
}
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, map.buffer);
glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, map.offset, unswizzled_size_bytes);
@@ -693,12 +718,18 @@ void Image::UploadMemory(const ImageBufferMap& map,
}
CopyBufferToImage(copy, map.offset);
}
if (is_rescaled) {
ScaleUp();
}
}
void Image::DownloadMemory(ImageBufferMap& map,
std::span<const VideoCommon::BufferImageCopy> copies) {
const bool is_rescaled = True(flags & ImageFlagBits::Rescaled);
if (is_rescaled) {
ScaleDown();
}
glMemoryBarrier(GL_PIXEL_BUFFER_BARRIER_BIT); // TODO: Move this to its own API
glBindBuffer(GL_PIXEL_PACK_BUFFER, map.buffer);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
@@ -716,6 +747,9 @@ void Image::DownloadMemory(ImageBufferMap& map,
}
CopyImageToBuffer(copy, map.offset);
}
if (is_rescaled) {
ScaleUp(true);
}
}
GLuint Image::StorageHandle() noexcept {
@@ -741,11 +775,11 @@ GLuint Image::StorageHandle() noexcept {
return store_view.handle;
}
store_view.Create();
glTextureView(store_view.handle, ImageTarget(info), texture.handle, GL_RGBA8, 0,
glTextureView(store_view.handle, ImageTarget(info), current_texture, GL_RGBA8, 0,
info.resources.levels, 0, info.resources.layers);
return store_view.handle;
default:
return texture.handle;
return current_texture;
}
}
@@ -849,6 +883,140 @@ void Image::CopyImageToBuffer(const VideoCommon::BufferImageCopy& copy, size_t b
}
}
void Image::Scale(bool up_scale) {
const auto format_type = GetFormatType(info.format);
const GLenum attachment = [format_type] {
switch (format_type) {
case SurfaceType::ColorTexture:
return GL_COLOR_ATTACHMENT0;
case SurfaceType::Depth:
return GL_DEPTH_ATTACHMENT;
case SurfaceType::DepthStencil:
return GL_DEPTH_STENCIL_ATTACHMENT;
default:
UNREACHABLE();
return GL_COLOR_ATTACHMENT0;
}
}();
const GLenum mask = [format_type] {
switch (format_type) {
case SurfaceType::ColorTexture:
return GL_COLOR_BUFFER_BIT;
case SurfaceType::Depth:
return GL_DEPTH_BUFFER_BIT;
case SurfaceType::DepthStencil:
return GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT;
default:
UNREACHABLE();
return GL_COLOR_BUFFER_BIT;
}
}();
const size_t fbo_index = [format_type] {
switch (format_type) {
case SurfaceType::ColorTexture:
return 0;
case SurfaceType::Depth:
return 1;
case SurfaceType::DepthStencil:
return 2;
default:
UNREACHABLE();
return 0;
}
}();
const bool is_2d = info.type == ImageType::e2D;
const bool is_color{(mask & GL_COLOR_BUFFER_BIT) != 0};
// Integer formats must use NEAREST filter
const bool linear_color_format{is_color && !IsPixelFormatInteger(info.format)};
const GLenum filter = linear_color_format ? GL_LINEAR : GL_NEAREST;
const auto& resolution = runtime->resolution;
const u32 scaled_width = resolution.ScaleUp(info.size.width);
const u32 scaled_height = is_2d ? resolution.ScaleUp(info.size.height) : info.size.height;
const u32 original_width = info.size.width;
const u32 original_height = info.size.height;
if (!upscaled_backup.handle) {
auto dst_info = info;
dst_info.size.width = scaled_width;
dst_info.size.height = scaled_height;
upscaled_backup = MakeImage(dst_info, gl_internal_format);
}
const u32 src_width = up_scale ? original_width : scaled_width;
const u32 src_height = up_scale ? original_height : scaled_height;
const u32 dst_width = up_scale ? scaled_width : original_width;
const u32 dst_height = up_scale ? scaled_height : original_height;
const auto src_handle = up_scale ? texture.handle : upscaled_backup.handle;
const auto dst_handle = up_scale ? upscaled_backup.handle : texture.handle;
// TODO (ameerj): Investigate other GL states that affect blitting.
glDisablei(GL_SCISSOR_TEST, 0);
glViewportIndexedf(0, 0.0f, 0.0f, static_cast<GLfloat>(dst_width),
static_cast<GLfloat>(dst_height));
const GLuint read_fbo = runtime->rescale_read_fbos[fbo_index].handle;
const GLuint draw_fbo = runtime->rescale_draw_fbos[fbo_index].handle;
for (s32 layer = 0; layer < info.resources.layers; ++layer) {
for (s32 level = 0; level < info.resources.levels; ++level) {
const u32 src_level_width = std::max(1u, src_width >> level);
const u32 src_level_height = std::max(1u, src_height >> level);
const u32 dst_level_width = std::max(1u, dst_width >> level);
const u32 dst_level_height = std::max(1u, dst_height >> level);
glNamedFramebufferTextureLayer(read_fbo, attachment, src_handle, level, layer);
glNamedFramebufferTextureLayer(draw_fbo, attachment, dst_handle, level, layer);
glBlitNamedFramebuffer(read_fbo, draw_fbo, 0, 0, src_level_width, src_level_height, 0,
0, dst_level_width, dst_level_height, mask, filter);
}
}
current_texture = dst_handle;
auto& state_tracker = runtime->GetStateTracker();
state_tracker.NotifyViewport0();
state_tracker.NotifyScissor0();
}
bool Image::ScaleUp(bool ignore) {
if (True(flags & ImageFlagBits::Rescaled)) {
return false;
}
if (gl_format == 0 && gl_type == 0) {
// compressed textures
return false;
}
if (info.type == ImageType::Linear) {
UNREACHABLE();
return false;
}
flags |= ImageFlagBits::Rescaled;
if (!runtime->resolution.active) {
return false;
}
has_scaled = true;
if (ignore) {
current_texture = upscaled_backup.handle;
return true;
}
Scale(true);
return true;
}
bool Image::ScaleDown(bool ignore) {
if (False(flags & ImageFlagBits::Rescaled)) {
return false;
}
flags &= ~ImageFlagBits::Rescaled;
if (!runtime->resolution.active) {
return false;
}
if (ignore) {
current_texture = texture.handle;
return true;
}
Scale(false);
return true;
}
ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::ImageViewInfo& info,
ImageId image_id_, Image& image)
: VideoCommon::ImageViewBase{info, image.info, image_id_}, views{runtime.null_image_views} {
@@ -862,7 +1030,7 @@ ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::ImageViewI
flat_range = info.range;
set_object_label = device.HasDebuggingToolAttached();
is_render_target = info.IsRenderTarget();
original_texture = image.texture.handle;
original_texture = image.Handle();
num_samples = image.info.num_samples;
if (!is_render_target) {
swizzle[0] = info.x_source;
@@ -950,7 +1118,7 @@ ImageView::ImageView(TextureCacheRuntime&, const VideoCommon::ImageInfo& info,
const VideoCommon::ImageViewInfo& view_info)
: VideoCommon::ImageViewBase{info, view_info} {}
ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::NullImageParams& params)
ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::NullImageViewParams& params)
: VideoCommon::ImageViewBase{params}, views{runtime.null_image_views} {}
GLuint ImageView::StorageView(Shader::TextureType texture_type, Shader::ImageFormat image_format) {
@@ -1116,25 +1284,24 @@ Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM
void BGRCopyPass::CopyBGR(Image& dst_image, Image& src_image,
std::span<const VideoCommon::ImageCopy> copies) {
static constexpr VideoCommon::Offset3D zero_offset{0, 0, 0};
const u32 requested_pbo_size =
std::max(src_image.unswizzled_size_bytes, dst_image.unswizzled_size_bytes);
if (bgr_pbo_size < requested_pbo_size) {
bgr_pbo.Create();
bgr_pbo_size = requested_pbo_size;
glNamedBufferData(bgr_pbo.handle, bgr_pbo_size, nullptr, GL_STREAM_COPY);
}
const u32 img_bpp = BytesPerBlock(src_image.info.format);
for (const ImageCopy& copy : copies) {
ASSERT(copy.src_offset == zero_offset);
ASSERT(copy.dst_offset == zero_offset);
const u32 num_src_layers = static_cast<u32>(copy.src_subresource.num_layers);
const u32 copy_size = copy.extent.width * copy.extent.height * num_src_layers * img_bpp;
if (bgr_pbo_size < copy_size) {
bgr_pbo.Create();
bgr_pbo_size = copy_size;
glNamedBufferData(bgr_pbo.handle, bgr_pbo_size, nullptr, GL_STREAM_COPY);
}
// Copy from source to PBO
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glPixelStorei(GL_PACK_ROW_LENGTH, copy.extent.width);
glBindBuffer(GL_PIXEL_PACK_BUFFER, bgr_pbo.handle);
glGetTextureSubImage(src_image.Handle(), 0, 0, 0, 0, copy.extent.width, copy.extent.height,
copy.src_subresource.num_layers, src_image.GlFormat(),
src_image.GlType(), static_cast<GLsizei>(bgr_pbo_size), nullptr);
num_src_layers, src_image.GlFormat(), src_image.GlType(),
static_cast<GLsizei>(bgr_pbo_size), nullptr);
// Copy from PBO to destination in desired GL format
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

View File

@@ -15,6 +15,10 @@
#include "video_core/texture_cache/image_view_base.h"
#include "video_core/texture_cache/texture_cache_base.h"
namespace Settings {
struct ResolutionScalingInfo;
}
namespace OpenGL {
class Device;
@@ -80,7 +84,7 @@ public:
void CopyImage(Image& dst, Image& src, std::span<const VideoCommon::ImageCopy> copies);
void ConvertImage(Framebuffer* dst, ImageView& dst_view, ImageView& src_view) {
void ConvertImage(Framebuffer* dst, ImageView& dst_view, ImageView& src_view, bool rescaled) {
UNIMPLEMENTED();
}
@@ -110,6 +114,12 @@ public:
bool HasNativeASTC() const noexcept;
void TickFrame() {}
StateTracker& GetStateTracker() {
return state_tracker;
}
private:
struct StagingBuffers {
explicit StagingBuffers(GLenum storage_flags_, GLenum map_flags_);
@@ -149,6 +159,10 @@ private:
OGLTextureView null_image_view_cube;
std::array<GLuint, Shader::NUM_TEXTURE_TYPES> null_image_views{};
std::array<OGLFramebuffer, 3> rescale_draw_fbos;
std::array<OGLFramebuffer, 3> rescale_read_fbos;
const Settings::ResolutionScalingInfo& resolution;
};
class Image : public VideoCommon::ImageBase {
@@ -157,6 +171,7 @@ class Image : public VideoCommon::ImageBase {
public:
explicit Image(TextureCacheRuntime&, const VideoCommon::ImageInfo& info, GPUVAddr gpu_addr,
VAddr cpu_addr);
explicit Image(const VideoCommon::NullImageParams&);
~Image();
@@ -174,7 +189,7 @@ public:
GLuint StorageHandle() noexcept;
GLuint Handle() const noexcept {
return texture.handle;
return current_texture;
}
GLuint GlFormat() const noexcept {
@@ -185,16 +200,25 @@ public:
return gl_type;
}
bool ScaleUp(bool ignore = false);
bool ScaleDown(bool ignore = false);
private:
void CopyBufferToImage(const VideoCommon::BufferImageCopy& copy, size_t buffer_offset);
void CopyImageToBuffer(const VideoCommon::BufferImageCopy& copy, size_t buffer_offset);
void Scale(bool up_scale);
OGLTexture texture;
OGLTexture upscaled_backup;
OGLTextureView store_view;
GLenum gl_internal_format = GL_NONE;
GLenum gl_format = GL_NONE;
GLenum gl_type = GL_NONE;
TextureCacheRuntime* runtime{};
GLuint current_texture{};
};
class ImageView : public VideoCommon::ImageViewBase {
@@ -206,7 +230,7 @@ public:
const VideoCommon::ImageViewInfo&, GPUVAddr);
explicit ImageView(TextureCacheRuntime&, const VideoCommon::ImageInfo& info,
const VideoCommon::ImageViewInfo& view_info);
explicit ImageView(TextureCacheRuntime&, const VideoCommon::NullImageParams&);
explicit ImageView(TextureCacheRuntime&, const VideoCommon::NullImageViewParams&);
[[nodiscard]] GLuint StorageView(Shader::TextureType texture_type,
Shader::ImageFormat image_format);

View File

@@ -21,8 +21,13 @@
#include "core/memory.h"
#include "core/perf_stats.h"
#include "core/telemetry_session.h"
#include "video_core/host_shaders/fxaa_frag.h"
#include "video_core/host_shaders/fxaa_vert.h"
#include "video_core/host_shaders/opengl_present_frag.h"
#include "video_core/host_shaders/opengl_present_scaleforce_frag.h"
#include "video_core/host_shaders/opengl_present_vert.h"
#include "video_core/host_shaders/present_bicubic_frag.h"
#include "video_core/host_shaders/present_gaussian_frag.h"
#include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_manager.h"
#include "video_core/renderer_opengl/gl_shader_util.h"
@@ -208,7 +213,9 @@ void RendererOpenGL::LoadFBToScreenInfo(const Tegra::FramebufferConfig& framebuf
framebuffer_crop_rect = framebuffer.crop_rect;
const VAddr framebuffer_addr{framebuffer.address + framebuffer.offset};
if (rasterizer.AccelerateDisplay(framebuffer, framebuffer_addr, framebuffer.stride)) {
screen_info.was_accelerated =
rasterizer.AccelerateDisplay(framebuffer, framebuffer_addr, framebuffer.stride);
if (screen_info.was_accelerated) {
return;
}
@@ -251,12 +258,25 @@ void RendererOpenGL::LoadColorToActiveGLTexture(u8 color_r, u8 color_g, u8 color
void RendererOpenGL::InitOpenGLObjects() {
// Create shader programs
fxaa_vertex = CreateProgram(HostShaders::FXAA_VERT, GL_VERTEX_SHADER);
fxaa_fragment = CreateProgram(HostShaders::FXAA_FRAG, GL_FRAGMENT_SHADER);
present_vertex = CreateProgram(HostShaders::OPENGL_PRESENT_VERT, GL_VERTEX_SHADER);
present_fragment = CreateProgram(HostShaders::OPENGL_PRESENT_FRAG, GL_FRAGMENT_SHADER);
present_bilinear_fragment = CreateProgram(HostShaders::OPENGL_PRESENT_FRAG, GL_FRAGMENT_SHADER);
present_bicubic_fragment = CreateProgram(HostShaders::PRESENT_BICUBIC_FRAG, GL_FRAGMENT_SHADER);
present_gaussian_fragment =
CreateProgram(HostShaders::PRESENT_GAUSSIAN_FRAG, GL_FRAGMENT_SHADER);
present_scaleforce_fragment =
CreateProgram(fmt::format("#version 460\n{}", HostShaders::OPENGL_PRESENT_SCALEFORCE_FRAG),
GL_FRAGMENT_SHADER);
// Generate presentation sampler
present_sampler.Create();
glSamplerParameteri(present_sampler.handle, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glSamplerParameteri(present_sampler.handle, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
present_sampler_nn.Create();
glSamplerParameteri(present_sampler_nn.handle, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glSamplerParameteri(present_sampler_nn.handle, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// Generate VBO handle for drawing
vertex_buffer.Create();
@@ -274,6 +294,8 @@ void RendererOpenGL::InitOpenGLObjects() {
// Clear screen to black
LoadColorToActiveGLTexture(0, 0, 0, 0, screen_info.texture);
fxaa_framebuffer.Create();
}
void RendererOpenGL::AddTelemetryFields() {
@@ -325,18 +347,130 @@ void RendererOpenGL::ConfigureFramebufferTexture(TextureInfo& texture,
texture.resource.Release();
texture.resource.Create(GL_TEXTURE_2D);
glTextureStorage2D(texture.resource.handle, 1, internal_format, texture.width, texture.height);
fxaa_texture.Release();
fxaa_texture.Create(GL_TEXTURE_2D);
glTextureStorage2D(fxaa_texture.handle, 1, GL_RGBA16F,
Settings::values.resolution_info.ScaleUp(screen_info.texture.width),
Settings::values.resolution_info.ScaleUp(screen_info.texture.height));
glNamedFramebufferTexture(fxaa_framebuffer.handle, GL_COLOR_ATTACHMENT0, fxaa_texture.handle,
0);
}
void RendererOpenGL::DrawScreen(const Layout::FramebufferLayout& layout) {
// TODO: Signal state tracker about these changes
state_tracker.NotifyScreenDrawVertexArray();
state_tracker.NotifyPolygonModes();
state_tracker.NotifyViewport0();
state_tracker.NotifyScissor0();
state_tracker.NotifyColorMask(0);
state_tracker.NotifyBlend0();
state_tracker.NotifyFramebuffer();
state_tracker.NotifyFrontFace();
state_tracker.NotifyCullTest();
state_tracker.NotifyDepthTest();
state_tracker.NotifyStencilTest();
state_tracker.NotifyPolygonOffset();
state_tracker.NotifyRasterizeEnable();
state_tracker.NotifyFramebufferSRGB();
state_tracker.NotifyLogicOp();
state_tracker.NotifyClipControl();
state_tracker.NotifyAlphaTest();
state_tracker.ClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE);
// Update background color before drawing
glClearColor(Settings::values.bg_red.GetValue() / 255.0f,
Settings::values.bg_green.GetValue() / 255.0f,
Settings::values.bg_blue.GetValue() / 255.0f, 1.0f);
glEnable(GL_CULL_FACE);
glDisable(GL_COLOR_LOGIC_OP);
glDisable(GL_DEPTH_TEST);
glDisable(GL_STENCIL_TEST);
glDisable(GL_POLYGON_OFFSET_FILL);
glDisable(GL_RASTERIZER_DISCARD);
glDisable(GL_ALPHA_TEST);
glDisablei(GL_BLEND, 0);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glCullFace(GL_BACK);
glFrontFace(GL_CW);
glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glBindTextureUnit(0, screen_info.display_texture);
if (Settings::values.anti_aliasing.GetValue() == Settings::AntiAliasing::Fxaa) {
program_manager.BindPresentPrograms(fxaa_vertex.handle, fxaa_fragment.handle);
glEnablei(GL_SCISSOR_TEST, 0);
auto viewport_width = screen_info.texture.width;
auto scissor_width = framebuffer_crop_rect.GetWidth();
if (scissor_width <= 0) {
scissor_width = viewport_width;
}
auto viewport_height = screen_info.texture.height;
auto scissor_height = framebuffer_crop_rect.GetHeight();
if (scissor_height <= 0) {
scissor_height = viewport_height;
}
if (screen_info.was_accelerated) {
viewport_width = Settings::values.resolution_info.ScaleUp(viewport_width);
scissor_width = Settings::values.resolution_info.ScaleUp(scissor_width);
viewport_height = Settings::values.resolution_info.ScaleUp(viewport_height);
scissor_height = Settings::values.resolution_info.ScaleUp(scissor_height);
}
glScissorIndexed(0, 0, 0, scissor_width, scissor_height);
glViewportIndexedf(0, 0.0f, 0.0f, static_cast<GLfloat>(viewport_width),
static_cast<GLfloat>(viewport_height));
glDepthRangeIndexed(0, 0.0, 0.0);
glBindSampler(0, present_sampler.handle);
GLint old_read_fb;
GLint old_draw_fb;
glGetIntegerv(GL_READ_FRAMEBUFFER_BINDING, &old_read_fb);
glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &old_draw_fb);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fxaa_framebuffer.handle);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindFramebuffer(GL_READ_FRAMEBUFFER, old_read_fb);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, old_draw_fb);
glBindTextureUnit(0, fxaa_texture.handle);
}
// Set projection matrix
const std::array ortho_matrix =
MakeOrthographicMatrix(static_cast<float>(layout.width), static_cast<float>(layout.height));
program_manager.BindPresentPrograms(present_vertex.handle, present_fragment.handle);
GLuint fragment_handle;
const auto filter = Settings::values.scaling_filter.GetValue();
switch (filter) {
case Settings::ScalingFilter::NearestNeighbor:
fragment_handle = present_bilinear_fragment.handle;
break;
case Settings::ScalingFilter::Bilinear:
fragment_handle = present_bilinear_fragment.handle;
break;
case Settings::ScalingFilter::Bicubic:
fragment_handle = present_bicubic_fragment.handle;
break;
case Settings::ScalingFilter::Gaussian:
fragment_handle = present_gaussian_fragment.handle;
break;
case Settings::ScalingFilter::ScaleForce:
fragment_handle = present_scaleforce_fragment.handle;
break;
case Settings::ScalingFilter::Fsr:
LOG_WARNING(
Render_OpenGL,
"FidelityFX FSR Super Sampling is not supported in OpenGL, changing to ScaleForce");
fragment_handle = present_scaleforce_fragment.handle;
break;
default:
fragment_handle = present_bilinear_fragment.handle;
break;
}
program_manager.BindPresentPrograms(present_vertex.handle, fragment_handle);
glProgramUniformMatrix3x2fv(present_vertex.handle, ModelViewMatrixLocation, 1, GL_FALSE,
ortho_matrix.data());
@@ -370,6 +504,11 @@ void RendererOpenGL::DrawScreen(const Layout::FramebufferLayout& layout) {
scale_v = static_cast<f32>(framebuffer_crop_rect.GetHeight()) /
static_cast<f32>(screen_info.texture.height);
}
if (Settings::values.anti_aliasing.GetValue() == Settings::AntiAliasing::Fxaa &&
!screen_info.was_accelerated) {
scale_u /= Settings::values.resolution_info.up_factor;
scale_v /= Settings::values.resolution_info.up_factor;
}
const auto& screen = layout.screen;
const std::array vertices = {
@@ -380,47 +519,14 @@ void RendererOpenGL::DrawScreen(const Layout::FramebufferLayout& layout) {
};
glNamedBufferSubData(vertex_buffer.handle, 0, sizeof(vertices), std::data(vertices));
// TODO: Signal state tracker about these changes
state_tracker.NotifyScreenDrawVertexArray();
state_tracker.NotifyPolygonModes();
state_tracker.NotifyViewport0();
state_tracker.NotifyScissor0();
state_tracker.NotifyColorMask(0);
state_tracker.NotifyBlend0();
state_tracker.NotifyFramebuffer();
state_tracker.NotifyFrontFace();
state_tracker.NotifyCullTest();
state_tracker.NotifyDepthTest();
state_tracker.NotifyStencilTest();
state_tracker.NotifyPolygonOffset();
state_tracker.NotifyRasterizeEnable();
state_tracker.NotifyFramebufferSRGB();
state_tracker.NotifyLogicOp();
state_tracker.NotifyClipControl();
state_tracker.NotifyAlphaTest();
state_tracker.ClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE);
glEnable(GL_CULL_FACE);
if (screen_info.display_srgb) {
glEnable(GL_FRAMEBUFFER_SRGB);
} else {
glDisable(GL_FRAMEBUFFER_SRGB);
}
glDisable(GL_COLOR_LOGIC_OP);
glDisable(GL_DEPTH_TEST);
glDisable(GL_STENCIL_TEST);
glDisable(GL_POLYGON_OFFSET_FILL);
glDisable(GL_RASTERIZER_DISCARD);
glDisable(GL_ALPHA_TEST);
glDisablei(GL_BLEND, 0);
glDisablei(GL_SCISSOR_TEST, 0);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glCullFace(GL_BACK);
glFrontFace(GL_CW);
glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glViewportIndexedf(0, 0.0f, 0.0f, static_cast<GLfloat>(layout.width),
static_cast<GLfloat>(layout.height));
glDepthRangeIndexed(0, 0.0, 0.0);
glEnableVertexAttribArray(PositionLocation);
glEnableVertexAttribArray(TexCoordLocation);
@@ -440,8 +546,11 @@ void RendererOpenGL::DrawScreen(const Layout::FramebufferLayout& layout) {
glBindVertexBuffer(0, vertex_buffer.handle, 0, sizeof(ScreenRectVertex));
}
glBindTextureUnit(0, screen_info.display_texture);
glBindSampler(0, present_sampler.handle);
if (Settings::values.scaling_filter.GetValue() != Settings::ScalingFilter::NearestNeighbor) {
glBindSampler(0, present_sampler.handle);
} else {
glBindSampler(0, present_sampler_nn.handle);
}
glClear(GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

View File

@@ -50,6 +50,7 @@ struct TextureInfo {
/// Structure used for storing information about the display target for the Switch screen
struct ScreenInfo {
GLuint display_texture{};
bool was_accelerated = false;
bool display_srgb{};
const Common::Rectangle<float> display_texcoords{0.0f, 0.0f, 1.0f, 1.0f};
TextureInfo texture;
@@ -109,9 +110,15 @@ private:
// OpenGL object IDs
OGLSampler present_sampler;
OGLSampler present_sampler_nn;
OGLBuffer vertex_buffer;
OGLProgram fxaa_vertex;
OGLProgram fxaa_fragment;
OGLProgram present_vertex;
OGLProgram present_fragment;
OGLProgram present_bilinear_fragment;
OGLProgram present_bicubic_fragment;
OGLProgram present_gaussian_fragment;
OGLProgram present_scaleforce_fragment;
OGLFramebuffer screenshot_framebuffer;
// GPU address of the vertex buffer
@@ -119,6 +126,8 @@ private:
/// Display information for Switch screen
ScreenInfo screen_info;
OGLTexture fxaa_texture;
OGLFramebuffer fxaa_framebuffer;
/// OpenGL framebuffer data
std::vector<u8> gl_framebuffer_data;

View File

@@ -363,7 +363,7 @@ BlitImageHelper::BlitImageHelper(const Device& device_, VKScheduler& scheduler_,
BlitImageHelper::~BlitImageHelper() = default;
void BlitImageHelper::BlitColor(const Framebuffer* dst_framebuffer, const ImageView& src_image_view,
void BlitImageHelper::BlitColor(const Framebuffer* dst_framebuffer, VkImageView src_view,
const Region2D& dst_region, const Region2D& src_region,
Tegra::Engines::Fermi2D::Filter filter,
Tegra::Engines::Fermi2D::Operation operation) {
@@ -373,9 +373,8 @@ void BlitImageHelper::BlitColor(const Framebuffer* dst_framebuffer, const ImageV
.operation = operation,
};
const VkPipelineLayout layout = *one_texture_pipeline_layout;
const VkImageView src_view = src_image_view.Handle(Shader::TextureType::Color2D);
const VkSampler sampler = is_linear ? *linear_sampler : *nearest_sampler;
const VkPipeline pipeline = FindOrEmplacePipeline(key);
const VkPipeline pipeline = FindOrEmplaceColorPipeline(key);
scheduler.RequestRenderpass(dst_framebuffer);
scheduler.Record([this, dst_region, src_region, pipeline, layout, sampler,
src_view](vk::CommandBuffer cmdbuf) {
@@ -398,10 +397,13 @@ void BlitImageHelper::BlitDepthStencil(const Framebuffer* dst_framebuffer,
Tegra::Engines::Fermi2D::Operation operation) {
ASSERT(filter == Tegra::Engines::Fermi2D::Filter::Point);
ASSERT(operation == Tegra::Engines::Fermi2D::Operation::SrcCopy);
const BlitImagePipelineKey key{
.renderpass = dst_framebuffer->RenderPass(),
.operation = operation,
};
const VkPipelineLayout layout = *two_textures_pipeline_layout;
const VkSampler sampler = *nearest_sampler;
const VkPipeline pipeline = BlitDepthStencilPipeline(dst_framebuffer->RenderPass());
const VkPipeline pipeline = FindOrEmplaceDepthStencilPipeline(key);
scheduler.RequestRenderpass(dst_framebuffer);
scheduler.Record([dst_region, src_region, pipeline, layout, sampler, src_depth_view,
src_stencil_view, this](vk::CommandBuffer cmdbuf) {
@@ -419,40 +421,45 @@ void BlitImageHelper::BlitDepthStencil(const Framebuffer* dst_framebuffer,
}
void BlitImageHelper::ConvertD32ToR32(const Framebuffer* dst_framebuffer,
const ImageView& src_image_view) {
const ImageView& src_image_view, u32 up_scale,
u32 down_shift) {
ConvertDepthToColorPipeline(convert_d32_to_r32_pipeline, dst_framebuffer->RenderPass());
Convert(*convert_d32_to_r32_pipeline, dst_framebuffer, src_image_view);
Convert(*convert_d32_to_r32_pipeline, dst_framebuffer, src_image_view, up_scale, down_shift);
}
void BlitImageHelper::ConvertR32ToD32(const Framebuffer* dst_framebuffer,
const ImageView& src_image_view) {
const ImageView& src_image_view, u32 up_scale,
u32 down_shift) {
ConvertColorToDepthPipeline(convert_r32_to_d32_pipeline, dst_framebuffer->RenderPass());
Convert(*convert_r32_to_d32_pipeline, dst_framebuffer, src_image_view);
Convert(*convert_r32_to_d32_pipeline, dst_framebuffer, src_image_view, up_scale, down_shift);
}
void BlitImageHelper::ConvertD16ToR16(const Framebuffer* dst_framebuffer,
const ImageView& src_image_view) {
const ImageView& src_image_view, u32 up_scale,
u32 down_shift) {
ConvertDepthToColorPipeline(convert_d16_to_r16_pipeline, dst_framebuffer->RenderPass());
Convert(*convert_d16_to_r16_pipeline, dst_framebuffer, src_image_view);
Convert(*convert_d16_to_r16_pipeline, dst_framebuffer, src_image_view, up_scale, down_shift);
}
void BlitImageHelper::ConvertR16ToD16(const Framebuffer* dst_framebuffer,
const ImageView& src_image_view) {
const ImageView& src_image_view, u32 up_scale,
u32 down_shift) {
ConvertColorToDepthPipeline(convert_r16_to_d16_pipeline, dst_framebuffer->RenderPass());
Convert(*convert_r16_to_d16_pipeline, dst_framebuffer, src_image_view);
Convert(*convert_r16_to_d16_pipeline, dst_framebuffer, src_image_view, up_scale, down_shift);
}
void BlitImageHelper::Convert(VkPipeline pipeline, const Framebuffer* dst_framebuffer,
const ImageView& src_image_view) {
const ImageView& src_image_view, u32 up_scale, u32 down_shift) {
const VkPipelineLayout layout = *one_texture_pipeline_layout;
const VkImageView src_view = src_image_view.Handle(Shader::TextureType::Color2D);
const VkSampler sampler = *nearest_sampler;
const VkExtent2D extent{
.width = src_image_view.size.width,
.height = src_image_view.size.height,
.width = std::max((src_image_view.size.width * up_scale) >> down_shift, 1U),
.height = std::max((src_image_view.size.height * up_scale) >> down_shift, 1U),
};
scheduler.RequestRenderpass(dst_framebuffer);
scheduler.Record([pipeline, layout, sampler, src_view, extent, this](vk::CommandBuffer cmdbuf) {
scheduler.Record([pipeline, layout, sampler, src_view, extent, up_scale, down_shift,
this](vk::CommandBuffer cmdbuf) {
const VkOffset2D offset{
.x = 0,
.y = 0,
@@ -488,7 +495,7 @@ void BlitImageHelper::Convert(VkPipeline pipeline, const Framebuffer* dst_frameb
scheduler.InvalidateState();
}
VkPipeline BlitImageHelper::FindOrEmplacePipeline(const BlitImagePipelineKey& key) {
VkPipeline BlitImageHelper::FindOrEmplaceColorPipeline(const BlitImagePipelineKey& key) {
const auto it = std::ranges::find(blit_color_keys, key);
if (it != blit_color_keys.end()) {
return *blit_color_pipelines[std::distance(blit_color_keys.begin(), it)];
@@ -542,12 +549,14 @@ VkPipeline BlitImageHelper::FindOrEmplacePipeline(const BlitImagePipelineKey& ke
return *blit_color_pipelines.back();
}
VkPipeline BlitImageHelper::BlitDepthStencilPipeline(VkRenderPass renderpass) {
if (blit_depth_stencil_pipeline) {
return *blit_depth_stencil_pipeline;
VkPipeline BlitImageHelper::FindOrEmplaceDepthStencilPipeline(const BlitImagePipelineKey& key) {
const auto it = std::ranges::find(blit_depth_stencil_keys, key);
if (it != blit_depth_stencil_keys.end()) {
return *blit_depth_stencil_pipelines[std::distance(blit_depth_stencil_keys.begin(), it)];
}
blit_depth_stencil_keys.push_back(key);
const std::array stages = MakeStages(*full_screen_vert, *blit_depth_stencil_frag);
blit_depth_stencil_pipeline = device.GetLogical().CreateGraphicsPipeline({
blit_depth_stencil_pipelines.push_back(device.GetLogical().CreateGraphicsPipeline({
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
@@ -560,15 +569,15 @@ VkPipeline BlitImageHelper::BlitDepthStencilPipeline(VkRenderPass renderpass) {
.pRasterizationState = &PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.pMultisampleState = &PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.pDepthStencilState = &PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
.pColorBlendState = &PIPELINE_COLOR_BLEND_STATE_EMPTY_CREATE_INFO,
.pColorBlendState = &PIPELINE_COLOR_BLEND_STATE_GENERIC_CREATE_INFO,
.pDynamicState = &PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.layout = *two_textures_pipeline_layout,
.renderPass = renderpass,
.renderPass = key.renderpass,
.subpass = 0,
.basePipelineHandle = VK_NULL_HANDLE,
.basePipelineIndex = 0,
});
return *blit_depth_stencil_pipeline;
}));
return *blit_depth_stencil_pipelines.back();
}
void BlitImageHelper::ConvertDepthToColorPipeline(vk::Pipeline& pipeline, VkRenderPass renderpass) {

View File

@@ -34,7 +34,7 @@ public:
StateTracker& state_tracker, DescriptorPool& descriptor_pool);
~BlitImageHelper();
void BlitColor(const Framebuffer* dst_framebuffer, const ImageView& src_image_view,
void BlitColor(const Framebuffer* dst_framebuffer, VkImageView src_image_view,
const Region2D& dst_region, const Region2D& src_region,
Tegra::Engines::Fermi2D::Filter filter,
Tegra::Engines::Fermi2D::Operation operation);
@@ -44,21 +44,25 @@ public:
const Region2D& src_region, Tegra::Engines::Fermi2D::Filter filter,
Tegra::Engines::Fermi2D::Operation operation);
void ConvertD32ToR32(const Framebuffer* dst_framebuffer, const ImageView& src_image_view);
void ConvertD32ToR32(const Framebuffer* dst_framebuffer, const ImageView& src_image_view,
u32 up_scale, u32 down_shift);
void ConvertR32ToD32(const Framebuffer* dst_framebuffer, const ImageView& src_image_view);
void ConvertR32ToD32(const Framebuffer* dst_framebuffer, const ImageView& src_image_view,
u32 up_scale, u32 down_shift);
void ConvertD16ToR16(const Framebuffer* dst_framebuffer, const ImageView& src_image_view);
void ConvertD16ToR16(const Framebuffer* dst_framebuffer, const ImageView& src_image_view,
u32 up_scale, u32 down_shift);
void ConvertR16ToD16(const Framebuffer* dst_framebuffer, const ImageView& src_image_view);
void ConvertR16ToD16(const Framebuffer* dst_framebuffer, const ImageView& src_image_view,
u32 up_scale, u32 down_shift);
private:
void Convert(VkPipeline pipeline, const Framebuffer* dst_framebuffer,
const ImageView& src_image_view);
const ImageView& src_image_view, u32 up_scale, u32 down_shift);
[[nodiscard]] VkPipeline FindOrEmplacePipeline(const BlitImagePipelineKey& key);
[[nodiscard]] VkPipeline FindOrEmplaceColorPipeline(const BlitImagePipelineKey& key);
[[nodiscard]] VkPipeline BlitDepthStencilPipeline(VkRenderPass renderpass);
[[nodiscard]] VkPipeline FindOrEmplaceDepthStencilPipeline(const BlitImagePipelineKey& key);
void ConvertDepthToColorPipeline(vk::Pipeline& pipeline, VkRenderPass renderpass);
@@ -84,7 +88,8 @@ private:
std::vector<BlitImagePipelineKey> blit_color_keys;
std::vector<vk::Pipeline> blit_color_pipelines;
vk::Pipeline blit_depth_stencil_pipeline;
std::vector<BlitImagePipelineKey> blit_depth_stencil_keys;
std::vector<vk::Pipeline> blit_depth_stencil_pipelines;
vk::Pipeline convert_d32_to_r32_pipeline;
vk::Pipeline convert_r32_to_d32_pipeline;
vk::Pipeline convert_d16_to_r16_pipeline;

View File

@@ -10,6 +10,7 @@
#include "common/assert.h"
#include "common/common_types.h"
#include "shader_recompiler/backend/spirv/emit_spirv.h"
#include "shader_recompiler/shader_info.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"
@@ -20,6 +21,8 @@
namespace Vulkan {
using Shader::Backend::SPIRV::NUM_TEXTURE_AND_IMAGE_SCALING_WORDS;
class DescriptorLayoutBuilder {
public:
DescriptorLayoutBuilder(const Device& device_) : device{&device_} {}
@@ -68,18 +71,28 @@ public:
}
vk::PipelineLayout CreatePipelineLayout(VkDescriptorSetLayout descriptor_set_layout) const {
using Shader::Backend::SPIRV::RescalingLayout;
const u32 size_offset = is_compute ? sizeof(RescalingLayout::down_factor) : 0u;
const VkPushConstantRange range{
.stageFlags = static_cast<VkShaderStageFlags>(
is_compute ? VK_SHADER_STAGE_COMPUTE_BIT : VK_SHADER_STAGE_ALL_GRAPHICS),
.offset = 0,
.size = static_cast<u32>(sizeof(RescalingLayout)) - size_offset,
};
return device->GetLogical().CreatePipelineLayout({
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.setLayoutCount = descriptor_set_layout ? 1U : 0U,
.pSetLayouts = bindings.empty() ? nullptr : &descriptor_set_layout,
.pushConstantRangeCount = 0,
.pPushConstantRanges = nullptr,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &range,
});
}
void Add(const Shader::Info& info, VkShaderStageFlags stage) {
is_compute |= (stage & VK_SHADER_STAGE_COMPUTE_BIT) != 0;
Add(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, stage, info.constant_buffer_descriptors);
Add(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, stage, info.storage_buffers_descriptors);
Add(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, stage, info.texture_buffer_descriptors);
@@ -115,6 +128,7 @@ private:
}
const Device* device{};
bool is_compute{};
boost::container::small_vector<VkDescriptorSetLayoutBinding, 32> bindings;
boost::container::small_vector<VkDescriptorUpdateTemplateEntryKHR, 32> entries;
u32 binding{};
@@ -122,31 +136,68 @@ private:
size_t offset{};
};
inline void PushImageDescriptors(const Shader::Info& info, const VkSampler*& samplers,
const ImageId*& image_view_ids, TextureCache& texture_cache,
VKUpdateDescriptorQueue& update_descriptor_queue) {
for (const auto& desc : info.texture_buffer_descriptors) {
image_view_ids += desc.count;
class RescalingPushConstant {
public:
explicit RescalingPushConstant() noexcept {}
void PushTexture(bool is_rescaled) noexcept {
*texture_ptr |= is_rescaled ? texture_bit : 0u;
texture_bit <<= 1u;
if (texture_bit == 0u) {
texture_bit = 1u;
++texture_ptr;
}
}
for (const auto& desc : info.image_buffer_descriptors) {
image_view_ids += desc.count;
void PushImage(bool is_rescaled) noexcept {
*image_ptr |= is_rescaled ? image_bit : 0u;
image_bit <<= 1u;
if (image_bit == 0u) {
image_bit = 1u;
++image_ptr;
}
}
const std::array<u32, NUM_TEXTURE_AND_IMAGE_SCALING_WORDS>& Data() const noexcept {
return words;
}
private:
std::array<u32, NUM_TEXTURE_AND_IMAGE_SCALING_WORDS> words{};
u32* texture_ptr{words.data()};
u32* image_ptr{words.data() + Shader::Backend::SPIRV::NUM_TEXTURE_SCALING_WORDS};
u32 texture_bit{1u};
u32 image_bit{1u};
};
inline void PushImageDescriptors(TextureCache& texture_cache,
VKUpdateDescriptorQueue& update_descriptor_queue,
const Shader::Info& info, RescalingPushConstant& rescaling,
const VkSampler*& samplers,
const VideoCommon::ImageViewInOut*& views) {
const u32 num_texture_buffers = Shader::NumDescriptors(info.texture_buffer_descriptors);
const u32 num_image_buffers = Shader::NumDescriptors(info.image_buffer_descriptors);
views += num_texture_buffers;
views += num_image_buffers;
for (const auto& desc : info.texture_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
const VideoCommon::ImageViewId image_view_id{(views++)->id};
const VkSampler sampler{*(samplers++)};
ImageView& image_view{texture_cache.GetImageView(*(image_view_ids++))};
ImageView& image_view{texture_cache.GetImageView(image_view_id)};
const VkImageView vk_image_view{image_view.Handle(desc.type)};
update_descriptor_queue.AddSampledImage(vk_image_view, sampler);
rescaling.PushTexture(texture_cache.IsRescaling(image_view));
}
}
for (const auto& desc : info.image_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
ImageView& image_view{texture_cache.GetImageView(*(image_view_ids++))};
ImageView& image_view{texture_cache.GetImageView((views++)->id)};
if (desc.is_written) {
texture_cache.MarkModification(image_view.image_id);
}
const VkImageView vk_image_view{image_view.StorageView(desc.type, desc.format)};
update_descriptor_queue.AddImage(vk_image_view);
rescaling.PushImage(texture_cache.IsRescaling(image_view));
}
}
}

View File

@@ -12,14 +12,22 @@
#include "common/assert.h"
#include "common/common_types.h"
#include "common/math_util.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/frontend/emu_window.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/host_shaders/fxaa_frag_spv.h"
#include "video_core/host_shaders/fxaa_vert_spv.h"
#include "video_core/host_shaders/present_bicubic_frag_spv.h"
#include "video_core/host_shaders/present_gaussian_frag_spv.h"
#include "video_core/host_shaders/vulkan_present_frag_spv.h"
#include "video_core/host_shaders/vulkan_present_scaleforce_fp16_frag_spv.h"
#include "video_core/host_shaders/vulkan_present_scaleforce_fp32_frag_spv.h"
#include "video_core/host_shaders/vulkan_present_vert_spv.h"
#include "video_core/renderer_vulkan/renderer_vulkan.h"
#include "video_core/renderer_vulkan/vk_blit_screen.h"
#include "video_core/renderer_vulkan/vk_fsr.h"
#include "video_core/renderer_vulkan/vk_master_semaphore.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_shader_util.h"
@@ -144,8 +152,8 @@ VkSemaphore VKBlitScreen::Draw(const Tegra::FramebufferConfig& framebuffer,
scheduler.Wait(resource_ticks[image_index]);
resource_ticks[image_index] = scheduler.CurrentTick();
UpdateDescriptorSet(image_index,
use_accelerated ? screen_info.image_view : *raw_image_views[image_index]);
VkImageView source_image_view =
use_accelerated ? screen_info.image_view : *raw_image_views[image_index];
BufferData data;
SetUniformData(data, layout);
@@ -222,9 +230,134 @@ VkSemaphore VKBlitScreen::Draw(const Tegra::FramebufferConfig& framebuffer,
read_barrier);
cmdbuf.CopyBufferToImage(*buffer, image, VK_IMAGE_LAYOUT_GENERAL, copy);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, write_barrier);
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
0, write_barrier);
});
}
const auto anti_alias_pass = Settings::values.anti_aliasing.GetValue();
if (use_accelerated && anti_alias_pass != Settings::AntiAliasing::None) {
UpdateAADescriptorSet(image_index, source_image_view, false);
const u32 up_scale = Settings::values.resolution_info.up_scale;
const u32 down_shift = Settings::values.resolution_info.down_shift;
VkExtent2D size{
.width = (up_scale * framebuffer.width) >> down_shift,
.height = (up_scale * framebuffer.height) >> down_shift,
};
scheduler.Record([this, image_index, size, anti_alias_pass](vk::CommandBuffer cmdbuf) {
const VkImageMemoryBarrier base_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = 0,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = {},
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
{
VkImageMemoryBarrier fsr_write_barrier = base_barrier;
fsr_write_barrier.image = *aa_image;
fsr_write_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, fsr_write_barrier);
}
const f32 bg_red = Settings::values.bg_red.GetValue() / 255.0f;
const f32 bg_green = Settings::values.bg_green.GetValue() / 255.0f;
const f32 bg_blue = Settings::values.bg_blue.GetValue() / 255.0f;
const VkClearValue clear_color{
.color = {.float32 = {bg_red, bg_green, bg_blue, 1.0f}},
};
const VkRenderPassBeginInfo renderpass_bi{
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.pNext = nullptr,
.renderPass = *aa_renderpass,
.framebuffer = *aa_framebuffer,
.renderArea =
{
.offset = {0, 0},
.extent = size,
},
.clearValueCount = 1,
.pClearValues = &clear_color,
};
const VkViewport viewport{
.x = 0.0f,
.y = 0.0f,
.width = static_cast<float>(size.width),
.height = static_cast<float>(size.height),
.minDepth = 0.0f,
.maxDepth = 1.0f,
};
const VkRect2D scissor{
.offset = {0, 0},
.extent = size,
};
cmdbuf.BeginRenderPass(renderpass_bi, VK_SUBPASS_CONTENTS_INLINE);
switch (anti_alias_pass) {
case Settings::AntiAliasing::Fxaa:
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *aa_pipeline);
break;
default:
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *aa_pipeline);
break;
}
cmdbuf.SetViewport(0, viewport);
cmdbuf.SetScissor(0, scissor);
cmdbuf.BindVertexBuffer(0, *buffer, offsetof(BufferData, vertices));
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_GRAPHICS, *aa_pipeline_layout, 0,
aa_descriptor_sets[image_index], {});
cmdbuf.Draw(4, 1, 0, 0);
cmdbuf.EndRenderPass();
{
VkImageMemoryBarrier blit_read_barrier = base_barrier;
blit_read_barrier.image = *aa_image;
blit_read_barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
blit_read_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, blit_read_barrier);
}
});
source_image_view = *aa_image_view;
}
if (fsr) {
auto crop_rect = framebuffer.crop_rect;
if (crop_rect.GetWidth() == 0) {
crop_rect.right = framebuffer.width;
}
if (crop_rect.GetHeight() == 0) {
crop_rect.bottom = framebuffer.height;
}
crop_rect = crop_rect.Scale(Settings::values.resolution_info.up_factor);
VkExtent2D fsr_input_size{
.width = Settings::values.resolution_info.ScaleUp(framebuffer.width),
.height = Settings::values.resolution_info.ScaleUp(framebuffer.height),
};
VkImageView fsr_image_view =
fsr->Draw(scheduler, image_index, source_image_view, fsr_input_size, crop_rect);
UpdateDescriptorSet(image_index, fsr_image_view, true);
} else {
const bool is_nn =
Settings::values.scaling_filter.GetValue() == Settings::ScalingFilter::NearestNeighbor;
UpdateDescriptorSet(image_index, source_image_view, is_nn);
}
scheduler.Record(
[this, host_framebuffer, image_index, size = render_area](vk::CommandBuffer cmdbuf) {
const f32 bg_red = Settings::values.bg_red.GetValue() / 255.0f;
@@ -258,8 +391,28 @@ VkSemaphore VKBlitScreen::Draw(const Tegra::FramebufferConfig& framebuffer,
.offset = {0, 0},
.extent = size,
};
const auto filter = Settings::values.scaling_filter.GetValue();
cmdbuf.BeginRenderPass(renderpass_bi, VK_SUBPASS_CONTENTS_INLINE);
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
switch (filter) {
case Settings::ScalingFilter::NearestNeighbor:
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *bilinear_pipeline);
break;
case Settings::ScalingFilter::Bilinear:
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *bilinear_pipeline);
break;
case Settings::ScalingFilter::Bicubic:
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *bicubic_pipeline);
break;
case Settings::ScalingFilter::Gaussian:
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *gaussian_pipeline);
break;
case Settings::ScalingFilter::ScaleForce:
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *scaleforce_pipeline);
break;
default:
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *bilinear_pipeline);
break;
}
cmdbuf.SetViewport(0, viewport);
cmdbuf.SetScissor(0, scissor);
@@ -281,11 +434,16 @@ VkSemaphore VKBlitScreen::DrawToSwapchain(const Tegra::FramebufferConfig& frameb
}
vk::Framebuffer VKBlitScreen::CreateFramebuffer(const VkImageView& image_view, VkExtent2D extent) {
return CreateFramebuffer(image_view, extent, renderpass);
}
vk::Framebuffer VKBlitScreen::CreateFramebuffer(const VkImageView& image_view, VkExtent2D extent,
vk::RenderPass& rd) {
return device.GetLogical().CreateFramebuffer(VkFramebufferCreateInfo{
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.renderPass = *renderpass,
.renderPass = *rd,
.attachmentCount = 1,
.pAttachments = &image_view,
.width = extent.width,
@@ -308,9 +466,21 @@ void VKBlitScreen::CreateDynamicResources() {
CreateRenderPass();
CreateFramebuffers();
CreateGraphicsPipeline();
fsr.reset();
if (Settings::values.scaling_filter.GetValue() == Settings::ScalingFilter::Fsr) {
CreateFSR();
}
}
void VKBlitScreen::RefreshResources(const Tegra::FramebufferConfig& framebuffer) {
if (Settings::values.scaling_filter.GetValue() == Settings::ScalingFilter::Fsr) {
if (!fsr) {
CreateFSR();
}
} else {
fsr.reset();
}
if (framebuffer.width == raw_width && framebuffer.height == raw_height && !raw_images.empty()) {
return;
}
@@ -324,7 +494,16 @@ void VKBlitScreen::RefreshResources(const Tegra::FramebufferConfig& framebuffer)
void VKBlitScreen::CreateShaders() {
vertex_shader = BuildShader(device, VULKAN_PRESENT_VERT_SPV);
fragment_shader = BuildShader(device, VULKAN_PRESENT_FRAG_SPV);
fxaa_vertex_shader = BuildShader(device, FXAA_VERT_SPV);
fxaa_fragment_shader = BuildShader(device, FXAA_FRAG_SPV);
bilinear_fragment_shader = BuildShader(device, VULKAN_PRESENT_FRAG_SPV);
bicubic_fragment_shader = BuildShader(device, PRESENT_BICUBIC_FRAG_SPV);
gaussian_fragment_shader = BuildShader(device, PRESENT_GAUSSIAN_FRAG_SPV);
if (device.IsFloat16Supported()) {
scaleforce_fragment_shader = BuildShader(device, VULKAN_PRESENT_SCALEFORCE_FP16_FRAG_SPV);
} else {
scaleforce_fragment_shader = BuildShader(device, VULKAN_PRESENT_SCALEFORCE_FP32_FRAG_SPV);
}
}
void VKBlitScreen::CreateSemaphores() {
@@ -344,6 +523,13 @@ void VKBlitScreen::CreateDescriptorPool() {
},
}};
const std::array<VkDescriptorPoolSize, 1> pool_sizes_aa{{
{
.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = static_cast<u32>(image_count * 2),
},
}};
const VkDescriptorPoolCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = nullptr,
@@ -353,19 +539,33 @@ void VKBlitScreen::CreateDescriptorPool() {
.pPoolSizes = pool_sizes.data(),
};
descriptor_pool = device.GetLogical().CreateDescriptorPool(ci);
const VkDescriptorPoolCreateInfo ci_aa{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = nullptr,
.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,
.maxSets = static_cast<u32>(image_count),
.poolSizeCount = static_cast<u32>(pool_sizes_aa.size()),
.pPoolSizes = pool_sizes_aa.data(),
};
aa_descriptor_pool = device.GetLogical().CreateDescriptorPool(ci_aa);
}
void VKBlitScreen::CreateRenderPass() {
renderpass = CreateRenderPassImpl(swapchain.GetImageViewFormat());
}
vk::RenderPass VKBlitScreen::CreateRenderPassImpl(VkFormat format, bool is_present) {
const VkAttachmentDescription color_attachment{
.flags = 0,
.format = swapchain.GetImageViewFormat(),
.format = format,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
.finalLayout = is_present ? VK_IMAGE_LAYOUT_PRESENT_SRC_KHR : VK_IMAGE_LAYOUT_GENERAL,
};
const VkAttachmentReference color_attachment_ref{
@@ -408,7 +608,7 @@ void VKBlitScreen::CreateRenderPass() {
.pDependencies = &dependency,
};
renderpass = device.GetLogical().CreateRenderPass(renderpass_ci);
return device.GetLogical().CreateRenderPass(renderpass_ci);
}
void VKBlitScreen::CreateDescriptorSetLayout() {
@@ -429,6 +629,23 @@ void VKBlitScreen::CreateDescriptorSetLayout() {
},
}};
const std::array<VkDescriptorSetLayoutBinding, 2> layout_bindings_aa{{
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_VERTEX_BIT,
.pImmutableSamplers = nullptr,
},
{
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = nullptr,
},
}};
const VkDescriptorSetLayoutCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = nullptr,
@@ -437,11 +654,21 @@ void VKBlitScreen::CreateDescriptorSetLayout() {
.pBindings = layout_bindings.data(),
};
const VkDescriptorSetLayoutCreateInfo ci_aa{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.bindingCount = static_cast<u32>(layout_bindings_aa.size()),
.pBindings = layout_bindings_aa.data(),
};
descriptor_set_layout = device.GetLogical().CreateDescriptorSetLayout(ci);
aa_descriptor_set_layout = device.GetLogical().CreateDescriptorSetLayout(ci_aa);
}
void VKBlitScreen::CreateDescriptorSets() {
const std::vector layouts(image_count, *descriptor_set_layout);
const std::vector layouts_aa(image_count, *aa_descriptor_set_layout);
const VkDescriptorSetAllocateInfo ai{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
@@ -451,7 +678,16 @@ void VKBlitScreen::CreateDescriptorSets() {
.pSetLayouts = layouts.data(),
};
const VkDescriptorSetAllocateInfo ai_aa{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.pNext = nullptr,
.descriptorPool = *aa_descriptor_pool,
.descriptorSetCount = static_cast<u32>(image_count),
.pSetLayouts = layouts_aa.data(),
};
descriptor_sets = descriptor_pool.Allocate(ai);
aa_descriptor_sets = aa_descriptor_pool.Allocate(ai_aa);
}
void VKBlitScreen::CreatePipelineLayout() {
@@ -464,11 +700,21 @@ void VKBlitScreen::CreatePipelineLayout() {
.pushConstantRangeCount = 0,
.pPushConstantRanges = nullptr,
};
const VkPipelineLayoutCreateInfo ci_aa{
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.setLayoutCount = 1,
.pSetLayouts = aa_descriptor_set_layout.address(),
.pushConstantRangeCount = 0,
.pPushConstantRanges = nullptr,
};
pipeline_layout = device.GetLogical().CreatePipelineLayout(ci);
aa_pipeline_layout = device.GetLogical().CreatePipelineLayout(ci_aa);
}
void VKBlitScreen::CreateGraphicsPipeline() {
const std::array<VkPipelineShaderStageCreateInfo, 2> shader_stages{{
const std::array<VkPipelineShaderStageCreateInfo, 2> bilinear_shader_stages{{
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
@@ -483,7 +729,70 @@ void VKBlitScreen::CreateGraphicsPipeline() {
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = *fragment_shader,
.module = *bilinear_fragment_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
}};
const std::array<VkPipelineShaderStageCreateInfo, 2> bicubic_shader_stages{{
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = *vertex_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = *bicubic_fragment_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
}};
const std::array<VkPipelineShaderStageCreateInfo, 2> gaussian_shader_stages{{
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = *vertex_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = *gaussian_fragment_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
}};
const std::array<VkPipelineShaderStageCreateInfo, 2> scaleforce_shader_stages{{
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = *vertex_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = *scaleforce_fragment_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
@@ -583,12 +892,12 @@ void VKBlitScreen::CreateGraphicsPipeline() {
.pDynamicStates = dynamic_states.data(),
};
const VkGraphicsPipelineCreateInfo pipeline_ci{
const VkGraphicsPipelineCreateInfo bilinear_pipeline_ci{
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stageCount = static_cast<u32>(shader_stages.size()),
.pStages = shader_stages.data(),
.stageCount = static_cast<u32>(bilinear_shader_stages.size()),
.pStages = bilinear_shader_stages.data(),
.pVertexInputState = &vertex_input_ci,
.pInputAssemblyState = &input_assembly_ci,
.pTessellationState = nullptr,
@@ -605,7 +914,76 @@ void VKBlitScreen::CreateGraphicsPipeline() {
.basePipelineIndex = 0,
};
pipeline = device.GetLogical().CreateGraphicsPipeline(pipeline_ci);
const VkGraphicsPipelineCreateInfo bicubic_pipeline_ci{
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stageCount = static_cast<u32>(bicubic_shader_stages.size()),
.pStages = bicubic_shader_stages.data(),
.pVertexInputState = &vertex_input_ci,
.pInputAssemblyState = &input_assembly_ci,
.pTessellationState = nullptr,
.pViewportState = &viewport_state_ci,
.pRasterizationState = &rasterization_ci,
.pMultisampleState = &multisampling_ci,
.pDepthStencilState = nullptr,
.pColorBlendState = &color_blend_ci,
.pDynamicState = &dynamic_state_ci,
.layout = *pipeline_layout,
.renderPass = *renderpass,
.subpass = 0,
.basePipelineHandle = 0,
.basePipelineIndex = 0,
};
const VkGraphicsPipelineCreateInfo gaussian_pipeline_ci{
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stageCount = static_cast<u32>(gaussian_shader_stages.size()),
.pStages = gaussian_shader_stages.data(),
.pVertexInputState = &vertex_input_ci,
.pInputAssemblyState = &input_assembly_ci,
.pTessellationState = nullptr,
.pViewportState = &viewport_state_ci,
.pRasterizationState = &rasterization_ci,
.pMultisampleState = &multisampling_ci,
.pDepthStencilState = nullptr,
.pColorBlendState = &color_blend_ci,
.pDynamicState = &dynamic_state_ci,
.layout = *pipeline_layout,
.renderPass = *renderpass,
.subpass = 0,
.basePipelineHandle = 0,
.basePipelineIndex = 0,
};
const VkGraphicsPipelineCreateInfo scaleforce_pipeline_ci{
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stageCount = static_cast<u32>(scaleforce_shader_stages.size()),
.pStages = scaleforce_shader_stages.data(),
.pVertexInputState = &vertex_input_ci,
.pInputAssemblyState = &input_assembly_ci,
.pTessellationState = nullptr,
.pViewportState = &viewport_state_ci,
.pRasterizationState = &rasterization_ci,
.pMultisampleState = &multisampling_ci,
.pDepthStencilState = nullptr,
.pColorBlendState = &color_blend_ci,
.pDynamicState = &dynamic_state_ci,
.layout = *pipeline_layout,
.renderPass = *renderpass,
.subpass = 0,
.basePipelineHandle = 0,
.basePipelineIndex = 0,
};
bilinear_pipeline = device.GetLogical().CreateGraphicsPipeline(bilinear_pipeline_ci);
bicubic_pipeline = device.GetLogical().CreateGraphicsPipeline(bicubic_pipeline_ci);
gaussian_pipeline = device.GetLogical().CreateGraphicsPipeline(gaussian_pipeline_ci);
scaleforce_pipeline = device.GetLogical().CreateGraphicsPipeline(scaleforce_pipeline_ci);
}
void VKBlitScreen::CreateSampler() {
@@ -614,8 +992,29 @@ void VKBlitScreen::CreateSampler() {
.pNext = nullptr,
.flags = 0,
.magFilter = VK_FILTER_LINEAR,
.minFilter = VK_FILTER_LINEAR,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
.mipLodBias = 0.0f,
.anisotropyEnable = VK_FALSE,
.maxAnisotropy = 0.0f,
.compareEnable = VK_FALSE,
.compareOp = VK_COMPARE_OP_NEVER,
.minLod = 0.0f,
.maxLod = 0.0f,
.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK,
.unnormalizedCoordinates = VK_FALSE,
};
const VkSamplerCreateInfo ci_nn{
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.magFilter = VK_FILTER_NEAREST,
.minFilter = VK_FILTER_NEAREST,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
@@ -631,6 +1030,7 @@ void VKBlitScreen::CreateSampler() {
};
sampler = device.GetLogical().CreateSampler(ci);
nn_sampler = device.GetLogical().CreateSampler(ci_nn);
}
void VKBlitScreen::CreateFramebuffers() {
@@ -639,7 +1039,7 @@ void VKBlitScreen::CreateFramebuffers() {
for (std::size_t i = 0; i < image_count; ++i) {
const VkImageView image_view{swapchain.GetImageViewIndex(i)};
framebuffers[i] = CreateFramebuffer(image_view, size);
framebuffers[i] = CreateFramebuffer(image_view, size, renderpass);
}
}
@@ -649,6 +1049,11 @@ void VKBlitScreen::ReleaseRawImages() {
}
raw_images.clear();
raw_buffer_commits.clear();
aa_image_view.reset();
aa_image.reset();
aa_commit = MemoryCommit{};
buffer.reset();
buffer_commit = MemoryCommit{};
}
@@ -675,8 +1080,11 @@ void VKBlitScreen::CreateRawImages(const Tegra::FramebufferConfig& framebuffer)
raw_image_views.resize(image_count);
raw_buffer_commits.resize(image_count);
for (size_t i = 0; i < image_count; ++i) {
raw_images[i] = device.GetLogical().CreateImage(VkImageCreateInfo{
const auto create_image = [&](bool used_on_framebuffer = false, u32 up_scale = 1,
u32 down_shift = 0) {
u32 extra_usages = used_on_framebuffer ? VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
: VK_IMAGE_USAGE_TRANSFER_DST_BIT;
return device.GetLogical().CreateImage(VkImageCreateInfo{
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
@@ -684,26 +1092,30 @@ void VKBlitScreen::CreateRawImages(const Tegra::FramebufferConfig& framebuffer)
.format = GetFormat(framebuffer),
.extent =
{
.width = framebuffer.width,
.height = framebuffer.height,
.width = (up_scale * framebuffer.width) >> down_shift,
.height = (up_scale * framebuffer.height) >> down_shift,
.depth = 1,
},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_LINEAR,
.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT,
.tiling = used_on_framebuffer ? VK_IMAGE_TILING_OPTIMAL : VK_IMAGE_TILING_LINEAR,
.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | extra_usages,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
});
raw_buffer_commits[i] = memory_allocator.Commit(raw_images[i], MemoryUsage::DeviceLocal);
raw_image_views[i] = device.GetLogical().CreateImageView(VkImageViewCreateInfo{
};
const auto create_commit = [&](vk::Image& image) {
return memory_allocator.Commit(image, MemoryUsage::DeviceLocal);
};
const auto create_image_view = [&](vk::Image& image) {
return device.GetLogical().CreateImageView(VkImageViewCreateInfo{
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.image = *raw_images[i],
.image = *image,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = GetFormat(framebuffer),
.components =
@@ -722,10 +1134,211 @@ void VKBlitScreen::CreateRawImages(const Tegra::FramebufferConfig& framebuffer)
.layerCount = 1,
},
});
};
for (size_t i = 0; i < image_count; ++i) {
raw_images[i] = create_image();
raw_buffer_commits[i] = create_commit(raw_images[i]);
raw_image_views[i] = create_image_view(raw_images[i]);
}
// AA Resources
const u32 up_scale = Settings::values.resolution_info.up_scale;
const u32 down_shift = Settings::values.resolution_info.down_shift;
aa_image = create_image(true, up_scale, down_shift);
aa_commit = create_commit(aa_image);
aa_image_view = create_image_view(aa_image);
VkExtent2D size{
.width = (up_scale * framebuffer.width) >> down_shift,
.height = (up_scale * framebuffer.height) >> down_shift,
};
if (aa_renderpass) {
aa_framebuffer = CreateFramebuffer(*aa_image_view, size, aa_renderpass);
return;
}
aa_renderpass = CreateRenderPassImpl(GetFormat(framebuffer), false);
aa_framebuffer = CreateFramebuffer(*aa_image_view, size, aa_renderpass);
const std::array<VkPipelineShaderStageCreateInfo, 2> fxaa_shader_stages{{
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = *fxaa_vertex_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = *fxaa_fragment_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
}};
const auto vertex_binding_description = ScreenRectVertex::GetDescription();
const auto vertex_attrs_description = ScreenRectVertex::GetAttributes();
const VkPipelineVertexInputStateCreateInfo vertex_input_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.vertexBindingDescriptionCount = 1,
.pVertexBindingDescriptions = &vertex_binding_description,
.vertexAttributeDescriptionCount = u32{vertex_attrs_description.size()},
.pVertexAttributeDescriptions = vertex_attrs_description.data(),
};
const VkPipelineInputAssemblyStateCreateInfo input_assembly_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = VK_FALSE,
};
const VkPipelineViewportStateCreateInfo viewport_state_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.viewportCount = 1,
.pViewports = nullptr,
.scissorCount = 1,
.pScissors = nullptr,
};
const VkPipelineRasterizationStateCreateInfo rasterization_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.depthClampEnable = VK_FALSE,
.rasterizerDiscardEnable = VK_FALSE,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_CLOCKWISE,
.depthBiasEnable = VK_FALSE,
.depthBiasConstantFactor = 0.0f,
.depthBiasClamp = 0.0f,
.depthBiasSlopeFactor = 0.0f,
.lineWidth = 1.0f,
};
const VkPipelineMultisampleStateCreateInfo multisampling_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT,
.sampleShadingEnable = VK_FALSE,
.minSampleShading = 0.0f,
.pSampleMask = nullptr,
.alphaToCoverageEnable = VK_FALSE,
.alphaToOneEnable = VK_FALSE,
};
const VkPipelineColorBlendAttachmentState color_blend_attachment{
.blendEnable = VK_FALSE,
.srcColorBlendFactor = VK_BLEND_FACTOR_ZERO,
.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO,
.colorBlendOp = VK_BLEND_OP_ADD,
.srcAlphaBlendFactor = VK_BLEND_FACTOR_ZERO,
.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO,
.alphaBlendOp = VK_BLEND_OP_ADD,
.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
};
const VkPipelineColorBlendStateCreateInfo color_blend_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.logicOpEnable = VK_FALSE,
.logicOp = VK_LOGIC_OP_COPY,
.attachmentCount = 1,
.pAttachments = &color_blend_attachment,
.blendConstants = {0.0f, 0.0f, 0.0f, 0.0f},
};
static constexpr std::array dynamic_states{
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
};
const VkPipelineDynamicStateCreateInfo dynamic_state_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.dynamicStateCount = static_cast<u32>(dynamic_states.size()),
.pDynamicStates = dynamic_states.data(),
};
const VkGraphicsPipelineCreateInfo fxaa_pipeline_ci{
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stageCount = static_cast<u32>(fxaa_shader_stages.size()),
.pStages = fxaa_shader_stages.data(),
.pVertexInputState = &vertex_input_ci,
.pInputAssemblyState = &input_assembly_ci,
.pTessellationState = nullptr,
.pViewportState = &viewport_state_ci,
.pRasterizationState = &rasterization_ci,
.pMultisampleState = &multisampling_ci,
.pDepthStencilState = nullptr,
.pColorBlendState = &color_blend_ci,
.pDynamicState = &dynamic_state_ci,
.layout = *aa_pipeline_layout,
.renderPass = *aa_renderpass,
.subpass = 0,
.basePipelineHandle = 0,
.basePipelineIndex = 0,
};
// AA
aa_pipeline = device.GetLogical().CreateGraphicsPipeline(fxaa_pipeline_ci);
}
void VKBlitScreen::UpdateDescriptorSet(std::size_t image_index, VkImageView image_view) const {
void VKBlitScreen::UpdateAADescriptorSet(std::size_t image_index, VkImageView image_view,
bool nn) const {
const VkDescriptorImageInfo image_info{
.sampler = nn ? *nn_sampler : *sampler,
.imageView = image_view,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
const VkWriteDescriptorSet sampler_write{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = aa_descriptor_sets[image_index],
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = &image_info,
.pBufferInfo = nullptr,
.pTexelBufferView = nullptr,
};
const VkWriteDescriptorSet sampler_write_2{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = aa_descriptor_sets[image_index],
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = &image_info,
.pBufferInfo = nullptr,
.pTexelBufferView = nullptr,
};
device.GetLogical().UpdateDescriptorSets(std::array{sampler_write, sampler_write_2}, {});
}
void VKBlitScreen::UpdateDescriptorSet(std::size_t image_index, VkImageView image_view,
bool nn) const {
const VkDescriptorBufferInfo buffer_info{
.buffer = *buffer,
.offset = offsetof(BufferData, uniform),
@@ -746,7 +1359,7 @@ void VKBlitScreen::UpdateDescriptorSet(std::size_t image_index, VkImageView imag
};
const VkDescriptorImageInfo image_info{
.sampler = *sampler,
.sampler = nn ? *nn_sampler : *sampler,
.imageView = image_view,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
@@ -798,17 +1411,19 @@ void VKBlitScreen::SetVertexData(BufferData& data, const Tegra::FramebufferConfi
UNIMPLEMENTED_IF(framebuffer_crop_rect.top != 0);
UNIMPLEMENTED_IF(framebuffer_crop_rect.left != 0);
// Scale the output by the crop width/height. This is commonly used with 1280x720 rendering
// (e.g. handheld mode) on a 1920x1080 framebuffer.
f32 scale_u = 1.0f;
f32 scale_v = 1.0f;
if (framebuffer_crop_rect.GetWidth() > 0) {
scale_u = static_cast<f32>(framebuffer_crop_rect.GetWidth()) /
static_cast<f32>(screen_info.width);
}
if (framebuffer_crop_rect.GetHeight() > 0) {
scale_v = static_cast<f32>(framebuffer_crop_rect.GetHeight()) /
static_cast<f32>(screen_info.height);
// Scale the output by the crop width/height. This is commonly used with 1280x720 rendering
// (e.g. handheld mode) on a 1920x1080 framebuffer.
if (!fsr) {
if (framebuffer_crop_rect.GetWidth() > 0) {
scale_u = static_cast<f32>(framebuffer_crop_rect.GetWidth()) /
static_cast<f32>(screen_info.width);
}
if (framebuffer_crop_rect.GetHeight() > 0) {
scale_v = static_cast<f32>(framebuffer_crop_rect.GetHeight()) /
static_cast<f32>(screen_info.height);
}
}
const auto& screen = layout.screen;
@@ -822,6 +1437,15 @@ void VKBlitScreen::SetVertexData(BufferData& data, const Tegra::FramebufferConfi
data.vertices[3] = ScreenRectVertex(x + w, y + h, texcoords.bottom * scale_u, right * scale_v);
}
void VKBlitScreen::CreateFSR() {
const auto& layout = render_window.GetFramebufferLayout();
const VkExtent2D fsr_size{
.width = layout.screen.GetWidth(),
.height = layout.screen.GetHeight(),
};
fsr = std::make_unique<FSR>(device, memory_allocator, image_count, fsr_size);
}
u64 VKBlitScreen::CalculateBufferSize(const Tegra::FramebufferConfig& framebuffer) const {
return sizeof(BufferData) + GetSizeInBytes(framebuffer) * image_count;
}

View File

@@ -34,6 +34,7 @@ namespace Vulkan {
struct ScreenInfo;
class Device;
class FSR;
class RasterizerVulkan;
class VKScheduler;
class VKSwapchain;
@@ -66,6 +67,9 @@ public:
[[nodiscard]] vk::Framebuffer CreateFramebuffer(const VkImageView& image_view,
VkExtent2D extent);
[[nodiscard]] vk::Framebuffer CreateFramebuffer(const VkImageView& image_view,
VkExtent2D extent, vk::RenderPass& rd);
private:
struct BufferData;
@@ -74,6 +78,7 @@ private:
void CreateSemaphores();
void CreateDescriptorPool();
void CreateRenderPass();
vk::RenderPass CreateRenderPassImpl(VkFormat, bool is_present = true);
void CreateDescriptorSetLayout();
void CreateDescriptorSets();
void CreatePipelineLayout();
@@ -88,11 +93,14 @@ private:
void CreateStagingBuffer(const Tegra::FramebufferConfig& framebuffer);
void CreateRawImages(const Tegra::FramebufferConfig& framebuffer);
void UpdateDescriptorSet(std::size_t image_index, VkImageView image_view) const;
void UpdateDescriptorSet(std::size_t image_index, VkImageView image_view, bool nn) const;
void UpdateAADescriptorSet(std::size_t image_index, VkImageView image_view, bool nn) const;
void SetUniformData(BufferData& data, const Layout::FramebufferLayout layout) const;
void SetVertexData(BufferData& data, const Tegra::FramebufferConfig& framebuffer,
const Layout::FramebufferLayout layout) const;
void CreateFSR();
u64 CalculateBufferSize(const Tegra::FramebufferConfig& framebuffer) const;
u64 GetRawImageOffset(const Tegra::FramebufferConfig& framebuffer,
std::size_t image_index) const;
@@ -107,14 +115,24 @@ private:
const VKScreenInfo& screen_info;
vk::ShaderModule vertex_shader;
vk::ShaderModule fragment_shader;
vk::ShaderModule fxaa_vertex_shader;
vk::ShaderModule fxaa_fragment_shader;
vk::ShaderModule bilinear_fragment_shader;
vk::ShaderModule bicubic_fragment_shader;
vk::ShaderModule gaussian_fragment_shader;
vk::ShaderModule scaleforce_fragment_shader;
vk::DescriptorPool descriptor_pool;
vk::DescriptorSetLayout descriptor_set_layout;
vk::PipelineLayout pipeline_layout;
vk::Pipeline pipeline;
vk::Pipeline nearest_neightbor_pipeline;
vk::Pipeline bilinear_pipeline;
vk::Pipeline bicubic_pipeline;
vk::Pipeline gaussian_pipeline;
vk::Pipeline scaleforce_pipeline;
vk::RenderPass renderpass;
std::vector<vk::Framebuffer> framebuffers;
vk::DescriptorSets descriptor_sets;
vk::Sampler nn_sampler;
vk::Sampler sampler;
vk::Buffer buffer;
@@ -126,8 +144,22 @@ private:
std::vector<vk::Image> raw_images;
std::vector<vk::ImageView> raw_image_views;
std::vector<MemoryCommit> raw_buffer_commits;
vk::DescriptorPool aa_descriptor_pool;
vk::DescriptorSetLayout aa_descriptor_set_layout;
vk::PipelineLayout aa_pipeline_layout;
vk::Pipeline aa_pipeline;
vk::RenderPass aa_renderpass;
vk::Framebuffer aa_framebuffer;
vk::DescriptorSets aa_descriptor_sets;
vk::Image aa_image;
vk::ImageView aa_image_view;
MemoryCommit aa_commit;
u32 raw_width = 0;
u32 raw_height = 0;
std::unique_ptr<FSR> fsr;
};
} // namespace Vulkan

View File

@@ -146,7 +146,7 @@ void BufferCacheRuntime::Finish() {
}
void BufferCacheRuntime::CopyBuffer(VkBuffer dst_buffer, VkBuffer src_buffer,
std::span<const VideoCommon::BufferCopy> copies) {
std::span<const VideoCommon::BufferCopy> copies, bool barrier) {
static constexpr VkMemoryBarrier READ_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
@@ -163,10 +163,42 @@ void BufferCacheRuntime::CopyBuffer(VkBuffer dst_buffer, VkBuffer src_buffer,
boost::container::small_vector<VkBufferCopy, 3> vk_copies(copies.size());
std::ranges::transform(copies, vk_copies.begin(), MakeBufferCopy);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([src_buffer, dst_buffer, vk_copies](vk::CommandBuffer cmdbuf) {
scheduler.Record([src_buffer, dst_buffer, vk_copies, barrier](vk::CommandBuffer cmdbuf) {
if (barrier) {
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0, READ_BARRIER);
}
cmdbuf.CopyBuffer(src_buffer, dst_buffer, vk_copies);
if (barrier) {
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, WRITE_BARRIER);
}
});
}
void BufferCacheRuntime::PreCopyBarrier() {
static constexpr VkMemoryBarrier READ_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT,
};
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([](vk::CommandBuffer cmdbuf) {
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, READ_BARRIER);
cmdbuf.CopyBuffer(src_buffer, dst_buffer, vk_copies);
});
}
void BufferCacheRuntime::PostCopyBarrier() {
static constexpr VkMemoryBarrier WRITE_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
};
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([](vk::CommandBuffer cmdbuf) {
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, WRITE_BARRIER);
});

View File

@@ -69,8 +69,12 @@ public:
[[nodiscard]] StagingBufferRef DownloadStagingBuffer(size_t size);
void PreCopyBarrier();
void CopyBuffer(VkBuffer src_buffer, VkBuffer dst_buffer,
std::span<const VideoCommon::BufferCopy> copies);
std::span<const VideoCommon::BufferCopy> copies, bool barrier = true);
void PostCopyBarrier();
void ClearBuffer(VkBuffer dest_buffer, u32 offset, size_t size, u32 value);

View File

@@ -22,6 +22,7 @@
namespace Vulkan {
using Shader::ImageBufferDescriptor;
using Shader::Backend::SPIRV::RESCALING_LAYOUT_WORDS_OFFSET;
using Tegra::Texture::TexturePair;
ComputePipeline::ComputePipeline(const Device& device_, DescriptorPool& descriptor_pool,
@@ -108,8 +109,7 @@ void ComputePipeline::Configure(Tegra::Engines::KeplerCompute& kepler_compute,
texture_cache.SynchronizeComputeDescriptors();
static constexpr size_t max_elements = 64;
std::array<ImageId, max_elements> image_view_ids;
boost::container::static_vector<u32, max_elements> image_view_indices;
boost::container::static_vector<VideoCommon::ImageViewInOut, max_elements> views;
boost::container::static_vector<VkSampler, max_elements> samplers;
const auto& qmd{kepler_compute.launch_description};
@@ -134,30 +134,37 @@ void ComputePipeline::Configure(Tegra::Engines::KeplerCompute& kepler_compute,
}
return TexturePair(gpu_memory.Read<u32>(addr), via_header_index);
}};
const auto add_image{[&](const auto& desc) {
const auto add_image{[&](const auto& desc, bool blacklist) {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices.push_back(handle.first);
views.push_back({
.index = handle.first,
.blacklist = blacklist,
.id = {},
});
}
}};
std::ranges::for_each(info.texture_buffer_descriptors, add_image);
std::ranges::for_each(info.image_buffer_descriptors, add_image);
for (const auto& desc : info.texture_buffer_descriptors) {
add_image(desc, false);
}
for (const auto& desc : info.image_buffer_descriptors) {
add_image(desc, false);
}
for (const auto& desc : info.texture_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices.push_back(handle.first);
views.push_back({handle.first});
Sampler* const sampler = texture_cache.GetComputeSampler(handle.second);
samplers.push_back(sampler->Handle());
}
}
std::ranges::for_each(info.image_descriptors, add_image);
const std::span indices_span(image_view_indices.data(), image_view_indices.size());
texture_cache.FillComputeImageViews(indices_span, image_view_ids);
for (const auto& desc : info.image_descriptors) {
add_image(desc, desc.is_written);
}
texture_cache.FillComputeImageViews(std::span(views.data(), views.size()));
buffer_cache.UnbindComputeTextureBuffers();
ImageId* texture_buffer_ids{image_view_ids.data()};
size_t index{};
const auto add_buffer{[&](const auto& desc) {
constexpr bool is_image = std::is_same_v<decltype(desc), const ImageBufferDescriptor&>;
@@ -166,11 +173,10 @@ void ComputePipeline::Configure(Tegra::Engines::KeplerCompute& kepler_compute,
if constexpr (is_image) {
is_written = desc.is_written;
}
ImageView& image_view = texture_cache.GetImageView(*texture_buffer_ids);
ImageView& image_view = texture_cache.GetImageView(views[index].id);
buffer_cache.BindComputeTextureBuffer(index, image_view.GpuAddr(),
image_view.BufferSize(), image_view.format,
is_written, is_image);
++texture_buffer_ids;
++index;
}
}};
@@ -180,9 +186,11 @@ void ComputePipeline::Configure(Tegra::Engines::KeplerCompute& kepler_compute,
buffer_cache.UpdateComputeBuffers();
buffer_cache.BindHostComputeBuffers();
RescalingPushConstant rescaling;
const VkSampler* samplers_it{samplers.data()};
const ImageId* views_it{image_view_ids.data()};
PushImageDescriptors(info, samplers_it, views_it, texture_cache, update_descriptor_queue);
const VideoCommon::ImageViewInOut* views_it{views.data()};
PushImageDescriptors(texture_cache, update_descriptor_queue, info, rescaling, samplers_it,
views_it);
if (!is_built.load(std::memory_order::relaxed)) {
// Wait for the pipeline to be built
@@ -192,11 +200,18 @@ void ComputePipeline::Configure(Tegra::Engines::KeplerCompute& kepler_compute,
});
}
const void* const descriptor_data{update_descriptor_queue.UpdateData()};
scheduler.Record([this, descriptor_data](vk::CommandBuffer cmdbuf) {
const bool is_rescaling = !info.texture_descriptors.empty() || !info.image_descriptors.empty();
scheduler.Record([this, descriptor_data, is_rescaling,
rescaling_data = rescaling.Data()](vk::CommandBuffer cmdbuf) {
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
if (!descriptor_set_layout) {
return;
}
if (is_rescaling) {
cmdbuf.PushConstants(*pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT,
RESCALING_LAYOUT_WORDS_OFFSET, sizeof(rescaling_data),
rescaling_data.data());
}
const VkDescriptorSet descriptor_set{descriptor_allocator.Commit()};
const vk::Device& dev{device.GetLogical()};
dev.UpdateDescriptorSet(descriptor_set, *descriptor_update_template, descriptor_data);

View File

@@ -0,0 +1,553 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cmath>
#include "common/bit_cast.h"
#include "common/common_types.h"
#include "common/div_ceil.h"
#include "video_core/host_shaders/vulkan_fidelityfx_fsr_easu_fp16_comp_spv.h"
#include "video_core/host_shaders/vulkan_fidelityfx_fsr_easu_fp32_comp_spv.h"
#include "video_core/host_shaders/vulkan_fidelityfx_fsr_rcas_fp16_comp_spv.h"
#include "video_core/host_shaders/vulkan_fidelityfx_fsr_rcas_fp32_comp_spv.h"
#include "video_core/renderer_vulkan/vk_fsr.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_shader_util.h"
#include "video_core/vulkan_common/vulkan_device.h"
namespace Vulkan {
namespace {
// Reimplementations of the constant generating functions in ffx_fsr1.h
// GCC generated a lot of warnings when using the official header.
u32 AU1_AH1_AF1(f32 f) {
static constexpr u32 base[512]{
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040,
0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x0c00, 0x1000, 0x1400, 0x1800, 0x1c00, 0x2000,
0x2400, 0x2800, 0x2c00, 0x3000, 0x3400, 0x3800, 0x3c00, 0x4000, 0x4400, 0x4800, 0x4c00,
0x5000, 0x5400, 0x5800, 0x5c00, 0x6000, 0x6400, 0x6800, 0x6c00, 0x7000, 0x7400, 0x7800,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008,
0x8010, 0x8020, 0x8040, 0x8080, 0x8100, 0x8200, 0x8400, 0x8800, 0x8c00, 0x9000, 0x9400,
0x9800, 0x9c00, 0xa000, 0xa400, 0xa800, 0xac00, 0xb000, 0xb400, 0xb800, 0xbc00, 0xc000,
0xc400, 0xc800, 0xcc00, 0xd000, 0xd400, 0xd800, 0xdc00, 0xe000, 0xe400, 0xe800, 0xec00,
0xf000, 0xf400, 0xf800, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
};
static constexpr s8 shift[512]{
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x17, 0x16,
0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x17,
0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18,
};
const u32 u = Common::BitCast<u32>(f);
const u32 i = u >> 23;
return base[i] + ((u & 0x7fffff) >> shift[i]);
}
u32 AU1_AH2_AF2(f32 a[2]) {
return AU1_AH1_AF1(a[0]) + (AU1_AH1_AF1(a[1]) << 16);
}
void FsrEasuCon(u32 con0[4], u32 con1[4], u32 con2[4], u32 con3[4], f32 inputViewportInPixelsX,
f32 inputViewportInPixelsY, f32 inputSizeInPixelsX, f32 inputSizeInPixelsY,
f32 outputSizeInPixelsX, f32 outputSizeInPixelsY) {
con0[0] = Common::BitCast<u32>(inputViewportInPixelsX / outputSizeInPixelsX);
con0[1] = Common::BitCast<u32>(inputViewportInPixelsY / outputSizeInPixelsY);
con0[2] = Common::BitCast<u32>(0.5f * inputViewportInPixelsX / outputSizeInPixelsX - 0.5f);
con0[3] = Common::BitCast<u32>(0.5f * inputViewportInPixelsY / outputSizeInPixelsY - 0.5f);
con1[0] = Common::BitCast<u32>(1.0f / inputSizeInPixelsX);
con1[1] = Common::BitCast<u32>(1.0f / inputSizeInPixelsY);
con1[2] = Common::BitCast<u32>(1.0f / inputSizeInPixelsX);
con1[3] = Common::BitCast<u32>(-1.0f / inputSizeInPixelsY);
con2[0] = Common::BitCast<u32>(-1.0f / inputSizeInPixelsX);
con2[1] = Common::BitCast<u32>(2.0f / inputSizeInPixelsY);
con2[2] = Common::BitCast<u32>(1.0f / inputSizeInPixelsX);
con2[3] = Common::BitCast<u32>(2.0f / inputSizeInPixelsY);
con3[0] = Common::BitCast<u32>(0.0f / inputSizeInPixelsX);
con3[1] = Common::BitCast<u32>(4.0f / inputSizeInPixelsY);
con3[2] = con3[3] = 0;
}
void FsrEasuConOffset(u32 con0[4], u32 con1[4], u32 con2[4], u32 con3[4],
f32 inputViewportInPixelsX, f32 inputViewportInPixelsY,
f32 inputSizeInPixelsX, f32 inputSizeInPixelsY, f32 outputSizeInPixelsX,
f32 outputSizeInPixelsY, f32 inputOffsetInPixelsX, f32 inputOffsetInPixelsY) {
FsrEasuCon(con0, con1, con2, con3, inputViewportInPixelsX, inputViewportInPixelsY,
inputSizeInPixelsX, inputSizeInPixelsY, outputSizeInPixelsX, outputSizeInPixelsY);
con0[2] = Common::BitCast<u32>(0.5f * inputViewportInPixelsX / outputSizeInPixelsX - 0.5f +
inputOffsetInPixelsX);
con0[3] = Common::BitCast<u32>(0.5f * inputViewportInPixelsY / outputSizeInPixelsY - 0.5f +
inputOffsetInPixelsY);
}
void FsrRcasCon(u32* con, f32 sharpness) {
sharpness = std::exp2f(-sharpness);
f32 hSharp[2]{sharpness, sharpness};
con[0] = Common::BitCast<u32>(sharpness);
con[1] = AU1_AH2_AF2(hSharp);
con[2] = 0;
con[3] = 0;
}
} // Anonymous namespace
FSR::FSR(const Device& device_, MemoryAllocator& memory_allocator_, size_t image_count_,
VkExtent2D output_size_)
: device{device_}, memory_allocator{memory_allocator_}, image_count{image_count_},
output_size{output_size_} {
CreateImages();
CreateSampler();
CreateShaders();
CreateDescriptorPool();
CreateDescriptorSetLayout();
CreateDescriptorSets();
CreatePipelineLayout();
CreatePipeline();
}
VkImageView FSR::Draw(VKScheduler& scheduler, size_t image_index, VkImageView image_view,
VkExtent2D input_image_extent, const Common::Rectangle<int>& crop_rect) {
UpdateDescriptorSet(image_index, image_view);
scheduler.Record([this, image_index, input_image_extent, crop_rect](vk::CommandBuffer cmdbuf) {
const VkImageMemoryBarrier base_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = 0,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = {},
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, *easu_pipeline);
std::array<u32, 4 * 4> push_constants;
FsrEasuConOffset(
push_constants.data() + 0, push_constants.data() + 4, push_constants.data() + 8,
push_constants.data() + 12,
static_cast<f32>(crop_rect.GetWidth()), static_cast<f32>(crop_rect.GetHeight()),
static_cast<f32>(input_image_extent.width), static_cast<f32>(input_image_extent.height),
static_cast<f32>(output_size.width), static_cast<f32>(output_size.height),
static_cast<f32>(crop_rect.left), static_cast<f32>(crop_rect.top));
cmdbuf.PushConstants(*pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT, push_constants);
{
VkImageMemoryBarrier fsr_write_barrier = base_barrier;
fsr_write_barrier.image = *images[image_index],
fsr_write_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, fsr_write_barrier);
}
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline_layout, 0,
descriptor_sets[image_index * 2], {});
cmdbuf.Dispatch(Common::DivCeil(output_size.width, 16u),
Common::DivCeil(output_size.height, 16u), 1);
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, *rcas_pipeline);
FsrRcasCon(push_constants.data(), 0.25f);
cmdbuf.PushConstants(*pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT, push_constants);
{
std::array<VkImageMemoryBarrier, 2> barriers;
auto& fsr_read_barrier = barriers[0];
auto& blit_write_barrier = barriers[1];
fsr_read_barrier = base_barrier;
fsr_read_barrier.image = *images[image_index];
fsr_read_barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
fsr_read_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
blit_write_barrier = base_barrier;
blit_write_barrier.image = *images[image_count + image_index];
blit_write_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
blit_write_barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, {}, {}, barriers);
}
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline_layout, 0,
descriptor_sets[image_index * 2 + 1], {});
cmdbuf.Dispatch(Common::DivCeil(output_size.width, 16u),
Common::DivCeil(output_size.height, 16u), 1);
{
std::array<VkImageMemoryBarrier, 1> barriers;
auto& blit_read_barrier = barriers[0];
blit_read_barrier = base_barrier;
blit_read_barrier.image = *images[image_count + image_index];
blit_read_barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
blit_read_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, {}, {}, barriers);
}
});
return *image_views[image_count + image_index];
}
void FSR::CreateDescriptorPool() {
const std::array<VkDescriptorPoolSize, 2> pool_sizes{{
{
.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = static_cast<u32>(image_count * 2),
},
{
.type = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = static_cast<u32>(image_count * 2),
},
}};
const VkDescriptorPoolCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = nullptr,
.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,
.maxSets = static_cast<u32>(image_count * 2),
.poolSizeCount = static_cast<u32>(pool_sizes.size()),
.pPoolSizes = pool_sizes.data(),
};
descriptor_pool = device.GetLogical().CreateDescriptorPool(ci);
}
void FSR::CreateDescriptorSetLayout() {
const std::array<VkDescriptorSetLayoutBinding, 2> layout_bindings{{
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = sampler.address(),
},
{
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = sampler.address(),
},
}};
const VkDescriptorSetLayoutCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.bindingCount = static_cast<u32>(layout_bindings.size()),
.pBindings = layout_bindings.data(),
};
descriptor_set_layout = device.GetLogical().CreateDescriptorSetLayout(ci);
}
void FSR::CreateDescriptorSets() {
const u32 sets = static_cast<u32>(image_count * 2);
const std::vector layouts(sets, *descriptor_set_layout);
const VkDescriptorSetAllocateInfo ai{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.pNext = nullptr,
.descriptorPool = *descriptor_pool,
.descriptorSetCount = sets,
.pSetLayouts = layouts.data(),
};
descriptor_sets = descriptor_pool.Allocate(ai);
}
void FSR::CreateImages() {
images.resize(image_count * 2);
image_views.resize(image_count * 2);
buffer_commits.resize(image_count * 2);
for (size_t i = 0; i < image_count * 2; ++i) {
images[i] = device.GetLogical().CreateImage(VkImageCreateInfo{
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.imageType = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_R16G16B16A16_SFLOAT,
.extent =
{
.width = output_size.width,
.height = output_size.height,
.depth = 1,
},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
});
buffer_commits[i] = memory_allocator.Commit(images[i], MemoryUsage::DeviceLocal);
image_views[i] = device.GetLogical().CreateImageView(VkImageViewCreateInfo{
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.image = *images[i],
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = VK_FORMAT_R16G16B16A16_SFLOAT,
.components =
{
.r = VK_COMPONENT_SWIZZLE_IDENTITY,
.g = VK_COMPONENT_SWIZZLE_IDENTITY,
.b = VK_COMPONENT_SWIZZLE_IDENTITY,
.a = VK_COMPONENT_SWIZZLE_IDENTITY,
},
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
});
}
}
void FSR::CreatePipelineLayout() {
VkPushConstantRange push_const{
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.offset = 0,
.size = sizeof(std::array<u32, 4 * 4>),
};
VkPipelineLayoutCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.setLayoutCount = 1,
.pSetLayouts = descriptor_set_layout.address(),
.pushConstantRangeCount = 1,
.pPushConstantRanges = &push_const,
};
pipeline_layout = device.GetLogical().CreatePipelineLayout(ci);
}
void FSR::UpdateDescriptorSet(std::size_t image_index, VkImageView image_view) const {
const auto fsr_image_view = *image_views[image_index];
const auto blit_image_view = *image_views[image_count + image_index];
const VkDescriptorImageInfo image_info{
.sampler = VK_NULL_HANDLE,
.imageView = image_view,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
const VkDescriptorImageInfo fsr_image_info{
.sampler = VK_NULL_HANDLE,
.imageView = fsr_image_view,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
const VkDescriptorImageInfo blit_image_info{
.sampler = VK_NULL_HANDLE,
.imageView = blit_image_view,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
VkWriteDescriptorSet sampler_write{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = descriptor_sets[image_index * 2],
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = &image_info,
.pBufferInfo = nullptr,
.pTexelBufferView = nullptr,
};
VkWriteDescriptorSet output_write{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = descriptor_sets[image_index * 2],
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = &fsr_image_info,
.pBufferInfo = nullptr,
.pTexelBufferView = nullptr,
};
device.GetLogical().UpdateDescriptorSets(std::array{sampler_write, output_write}, {});
sampler_write.dstSet = descriptor_sets[image_index * 2 + 1];
sampler_write.pImageInfo = &fsr_image_info;
output_write.dstSet = descriptor_sets[image_index * 2 + 1];
output_write.pImageInfo = &blit_image_info;
device.GetLogical().UpdateDescriptorSets(std::array{sampler_write, output_write}, {});
}
void FSR::CreateSampler() {
const VkSamplerCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.magFilter = VK_FILTER_LINEAR,
.minFilter = VK_FILTER_LINEAR,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.mipLodBias = 0.0f,
.anisotropyEnable = VK_FALSE,
.maxAnisotropy = 0.0f,
.compareEnable = VK_FALSE,
.compareOp = VK_COMPARE_OP_NEVER,
.minLod = 0.0f,
.maxLod = 0.0f,
.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK,
.unnormalizedCoordinates = VK_FALSE,
};
sampler = device.GetLogical().CreateSampler(ci);
}
void FSR::CreateShaders() {
if (device.IsFloat16Supported()) {
easu_shader = BuildShader(device, VULKAN_FIDELITYFX_FSR_EASU_FP16_COMP_SPV);
rcas_shader = BuildShader(device, VULKAN_FIDELITYFX_FSR_RCAS_FP16_COMP_SPV);
} else {
easu_shader = BuildShader(device, VULKAN_FIDELITYFX_FSR_EASU_FP32_COMP_SPV);
rcas_shader = BuildShader(device, VULKAN_FIDELITYFX_FSR_RCAS_FP32_COMP_SPV);
}
}
void FSR::CreatePipeline() {
VkPipelineShaderStageCreateInfo shader_stage_easu{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = *easu_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
};
VkPipelineShaderStageCreateInfo shader_stage_rcas{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = *rcas_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
};
VkComputePipelineCreateInfo pipeline_ci_easu{
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = shader_stage_easu,
.layout = *pipeline_layout,
.basePipelineHandle = VK_NULL_HANDLE,
.basePipelineIndex = 0,
};
VkComputePipelineCreateInfo pipeline_ci_rcas{
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = shader_stage_rcas,
.layout = *pipeline_layout,
.basePipelineHandle = VK_NULL_HANDLE,
.basePipelineIndex = 0,
};
easu_pipeline = device.GetLogical().CreateComputePipeline(pipeline_ci_easu);
rcas_pipeline = device.GetLogical().CreateComputePipeline(pipeline_ci_rcas);
}
} // namespace Vulkan

View File

@@ -0,0 +1,54 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/math_util.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan {
class Device;
class VKScheduler;
class FSR {
public:
explicit FSR(const Device& device, MemoryAllocator& memory_allocator, size_t image_count,
VkExtent2D output_size);
VkImageView Draw(VKScheduler& scheduler, size_t image_index, VkImageView image_view,
VkExtent2D input_image_extent, const Common::Rectangle<int>& crop_rect);
private:
void CreateDescriptorPool();
void CreateDescriptorSetLayout();
void CreateDescriptorSets();
void CreateImages();
void CreateSampler();
void CreateShaders();
void CreatePipeline();
void CreatePipelineLayout();
void UpdateDescriptorSet(std::size_t image_index, VkImageView image_view) const;
const Device& device;
MemoryAllocator& memory_allocator;
size_t image_count;
VkExtent2D output_size;
vk::DescriptorPool descriptor_pool;
vk::DescriptorSetLayout descriptor_set_layout;
vk::DescriptorSets descriptor_sets;
vk::PipelineLayout pipeline_layout;
vk::ShaderModule easu_shader;
vk::ShaderModule rcas_shader;
vk::Pipeline easu_pipeline;
vk::Pipeline rcas_pipeline;
vk::Sampler sampler;
std::vector<vk::Image> images;
std::vector<vk::ImageView> image_views;
std::vector<MemoryCommit> buffer_commits;
};
} // namespace Vulkan

View File

@@ -32,6 +32,8 @@ namespace {
using boost::container::small_vector;
using boost::container::static_vector;
using Shader::ImageBufferDescriptor;
using Shader::Backend::SPIRV::RESCALING_LAYOUT_DOWN_FACTOR_OFFSET;
using Shader::Backend::SPIRV::RESCALING_LAYOUT_WORDS_OFFSET;
using Tegra::Texture::TexturePair;
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::PixelFormatFromDepthFormat;
@@ -235,6 +237,7 @@ GraphicsPipeline::GraphicsPipeline(
stage_infos[stage] = *info;
enabled_uniform_buffer_masks[stage] = info->constant_buffer_mask;
std::ranges::copy(info->constant_buffer_used_sizes, uniform_buffer_sizes[stage].begin());
num_textures += Shader::NumDescriptors(info->texture_descriptors);
}
auto func{[this, shader_notify, &render_pass_cache, &descriptor_pool, pipeline_statistics] {
DescriptorLayoutBuilder builder{MakeBuilder(device, stage_infos)};
@@ -277,11 +280,10 @@ void GraphicsPipeline::AddTransition(GraphicsPipeline* transition) {
template <typename Spec>
void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
std::array<ImageId, MAX_IMAGE_ELEMENTS> image_view_ids;
std::array<u32, MAX_IMAGE_ELEMENTS> image_view_indices;
std::array<VideoCommon::ImageViewInOut, MAX_IMAGE_ELEMENTS> views;
std::array<VkSampler, MAX_IMAGE_ELEMENTS> samplers;
size_t sampler_index{};
size_t image_index{};
size_t view_index{};
texture_cache.SynchronizeGraphicsDescriptors();
@@ -322,26 +324,30 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
}
return TexturePair(gpu_memory.Read<u32>(addr), via_header_index);
}};
const auto add_image{[&](const auto& desc) {
const auto add_image{[&](const auto& desc, bool blacklist) LAMBDA_FORCEINLINE {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices[image_index++] = handle.first;
views[view_index++] = {
.index = handle.first,
.blacklist = blacklist,
.id = {},
};
}
}};
if constexpr (Spec::has_texture_buffers) {
for (const auto& desc : info.texture_buffer_descriptors) {
add_image(desc);
add_image(desc, false);
}
}
if constexpr (Spec::has_image_buffers) {
for (const auto& desc : info.image_buffer_descriptors) {
add_image(desc);
add_image(desc, false);
}
}
for (const auto& desc : info.texture_descriptors) {
for (u32 index = 0; index < desc.count; ++index) {
const auto handle{read_handle(desc, index)};
image_view_indices[image_index++] = handle.first;
views[view_index++] = {handle.first};
Sampler* const sampler{texture_cache.GetGraphicsSampler(handle.second)};
samplers[sampler_index++] = sampler->Handle();
@@ -349,7 +355,7 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
}
if constexpr (Spec::has_images) {
for (const auto& desc : info.image_descriptors) {
add_image(desc);
add_image(desc, desc.is_written);
}
}
}};
@@ -368,10 +374,9 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
if constexpr (Spec::enabled_stages[4]) {
config_stage(4);
}
const std::span indices_span(image_view_indices.data(), image_index);
texture_cache.FillGraphicsImageViews(indices_span, image_view_ids);
texture_cache.FillGraphicsImageViews<Spec::has_images>(std::span(views.data(), view_index));
ImageId* texture_buffer_index{image_view_ids.data()};
VideoCommon::ImageViewInOut* texture_buffer_it{views.data()};
const auto bind_stage_info{[&](size_t stage) LAMBDA_FORCEINLINE {
size_t index{};
const auto add_buffer{[&](const auto& desc) {
@@ -381,12 +386,12 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
if constexpr (is_image) {
is_written = desc.is_written;
}
ImageView& image_view{texture_cache.GetImageView(*texture_buffer_index)};
ImageView& image_view{texture_cache.GetImageView(texture_buffer_it->id)};
buffer_cache.BindGraphicsTextureBuffer(stage, index, image_view.GpuAddr(),
image_view.BufferSize(), image_view.format,
is_written, is_image);
++index;
++texture_buffer_index;
++texture_buffer_it;
}
}};
buffer_cache.UnbindGraphicsTextureBuffers(stage);
@@ -402,13 +407,9 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
add_buffer(desc);
}
}
for (const auto& desc : info.texture_descriptors) {
texture_buffer_index += desc.count;
}
texture_buffer_it += Shader::NumDescriptors(info.texture_descriptors);
if constexpr (Spec::has_images) {
for (const auto& desc : info.image_descriptors) {
texture_buffer_index += desc.count;
}
texture_buffer_it += Shader::NumDescriptors(info.image_descriptors);
}
}};
if constexpr (Spec::enabled_stages[0]) {
@@ -432,12 +433,13 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
update_descriptor_queue.Acquire();
RescalingPushConstant rescaling;
const VkSampler* samplers_it{samplers.data()};
const ImageId* views_it{image_view_ids.data()};
const VideoCommon::ImageViewInOut* views_it{views.data()};
const auto prepare_stage{[&](size_t stage) LAMBDA_FORCEINLINE {
buffer_cache.BindHostStageBuffers(stage);
PushImageDescriptors(stage_infos[stage], samplers_it, views_it, texture_cache,
update_descriptor_queue);
PushImageDescriptors(texture_cache, update_descriptor_queue, stage_infos[stage], rescaling,
samplers_it, views_it);
}};
if constexpr (Spec::enabled_stages[0]) {
prepare_stage(0);
@@ -454,10 +456,10 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
if constexpr (Spec::enabled_stages[4]) {
prepare_stage(4);
}
ConfigureDraw();
ConfigureDraw(rescaling);
}
void GraphicsPipeline::ConfigureDraw() {
void GraphicsPipeline::ConfigureDraw(const RescalingPushConstant& rescaling) {
texture_cache.UpdateRenderTargets(false);
scheduler.RequestRenderpass(texture_cache.GetFramebuffer());
@@ -468,12 +470,25 @@ void GraphicsPipeline::ConfigureDraw() {
build_condvar.wait(lock, [this] { return is_built.load(std::memory_order::relaxed); });
});
}
const bool is_rescaling{texture_cache.IsRescaling()};
const bool update_rescaling{scheduler.UpdateRescaling(is_rescaling)};
const bool bind_pipeline{scheduler.UpdateGraphicsPipeline(this)};
const void* const descriptor_data{update_descriptor_queue.UpdateData()};
scheduler.Record([this, descriptor_data, bind_pipeline](vk::CommandBuffer cmdbuf) {
scheduler.Record([this, descriptor_data, bind_pipeline, rescaling_data = rescaling.Data(),
is_rescaling, update_rescaling](vk::CommandBuffer cmdbuf) {
if (bind_pipeline) {
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
}
cmdbuf.PushConstants(*pipeline_layout, VK_SHADER_STAGE_ALL_GRAPHICS,
RESCALING_LAYOUT_WORDS_OFFSET, sizeof(rescaling_data),
rescaling_data.data());
if (update_rescaling) {
const f32 config_down_factor{Settings::values.resolution_info.down_factor};
const f32 scale_down_factor{is_rescaling ? config_down_factor : 1.0f};
cmdbuf.PushConstants(*pipeline_layout, VK_SHADER_STAGE_ALL_GRAPHICS,
RESCALING_LAYOUT_DOWN_FACTOR_OFFSET, sizeof(scale_down_factor),
&scale_down_factor);
}
if (!descriptor_set_layout) {
return;
}
@@ -826,18 +841,10 @@ void GraphicsPipeline::MakePipeline(VkRenderPass render_pass) {
void GraphicsPipeline::Validate() {
size_t num_images{};
for (const auto& info : stage_infos) {
for (const auto& desc : info.texture_buffer_descriptors) {
num_images += desc.count;
}
for (const auto& desc : info.image_buffer_descriptors) {
num_images += desc.count;
}
for (const auto& desc : info.texture_descriptors) {
num_images += desc.count;
}
for (const auto& desc : info.image_descriptors) {
num_images += desc.count;
}
num_images += Shader::NumDescriptors(info.texture_buffer_descriptors);
num_images += Shader::NumDescriptors(info.image_buffer_descriptors);
num_images += Shader::NumDescriptors(info.texture_descriptors);
num_images += Shader::NumDescriptors(info.image_descriptors);
}
ASSERT(num_images <= MAX_IMAGE_ELEMENTS);
}

View File

@@ -62,6 +62,7 @@ namespace Vulkan {
class Device;
class PipelineStatistics;
class RenderPassCache;
class RescalingPushConstant;
class VKScheduler;
class VKUpdateDescriptorQueue;
@@ -113,7 +114,7 @@ private:
template <typename Spec>
void ConfigureImpl(bool is_indexed);
void ConfigureDraw();
void ConfigureDraw(const RescalingPushConstant& rescaling);
void MakePipeline(VkRenderPass render_pass);
@@ -138,6 +139,7 @@ private:
std::array<Shader::Info, NUM_STAGES> stage_infos;
std::array<u32, 5> enabled_uniform_buffer_masks{};
VideoCommon::UniformBufferSizes uniform_buffer_sizes{};
u32 num_textures{};
vk::DescriptorSetLayout descriptor_set_layout;
DescriptorAllocator descriptor_allocator;

View File

@@ -70,7 +70,9 @@ public:
return;
}
// If none of the above is hit, fallback to a regular wait
semaphore.Wait(tick);
while (!semaphore.Wait(tick)) {
}
Refresh();
}
private:

View File

@@ -58,18 +58,28 @@ struct DrawParams {
bool is_indexed;
};
VkViewport GetViewportState(const Device& device, const Maxwell& regs, size_t index) {
VkViewport GetViewportState(const Device& device, const Maxwell& regs, size_t index, float scale) {
const auto& src = regs.viewport_transform[index];
const float width = src.scale_x * 2.0f;
float y = src.translate_y - src.scale_y;
float height = src.scale_y * 2.0f;
const auto conv = [scale](float value) {
float new_value = value * scale;
if (scale < 1.0f) {
const bool sign = std::signbit(value);
new_value = std::round(std::abs(new_value));
new_value = sign ? -new_value : new_value;
}
return new_value;
};
const float x = conv(src.translate_x - src.scale_x);
const float width = conv(src.scale_x * 2.0f);
float y = conv(src.translate_y - src.scale_y);
float height = conv(src.scale_y * 2.0f);
if (regs.screen_y_control.y_negate) {
y += height;
height = -height;
}
const float reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne ? 1.0f : 0.0f;
VkViewport viewport{
.x = src.translate_x - src.scale_x,
.x = x,
.y = y,
.width = width != 0.0f ? width : 1.0f,
.height = height != 0.0f ? height : 1.0f,
@@ -83,14 +93,27 @@ VkViewport GetViewportState(const Device& device, const Maxwell& regs, size_t in
return viewport;
}
VkRect2D GetScissorState(const Maxwell& regs, size_t index) {
VkRect2D GetScissorState(const Maxwell& regs, size_t index, u32 up_scale = 1, u32 down_shift = 0) {
const auto& src = regs.scissor_test[index];
VkRect2D scissor;
const auto scale_up = [&](s32 value) -> s32 {
if (value == 0) {
return 0U;
}
const s32 upset = value * up_scale;
s32 acumm = 0;
if ((up_scale >> down_shift) == 0) {
acumm = upset % 2;
}
const s32 converted_value = (value * up_scale) >> down_shift;
return value < 0 ? std::min<s32>(converted_value - acumm, -1)
: std::max<s32>(converted_value + acumm, 1);
};
if (src.enable) {
scissor.offset.x = static_cast<s32>(src.min_x);
scissor.offset.y = static_cast<s32>(src.min_y);
scissor.extent.width = src.max_x - src.min_x;
scissor.extent.height = src.max_y - src.min_y;
scissor.offset.x = scale_up(static_cast<s32>(src.min_x));
scissor.offset.y = scale_up(static_cast<s32>(src.min_y));
scissor.extent.width = scale_up(src.max_x - src.min_x);
scissor.extent.height = scale_up(src.max_y - src.min_y);
} else {
scissor.offset.x = 0;
scissor.offset.y = 0;
@@ -199,7 +222,7 @@ void RasterizerVulkan::Clear() {
query_cache.UpdateCounters();
const auto& regs = maxwell3d.regs;
auto& regs = maxwell3d.regs;
const bool use_color = regs.clear_buffers.R || regs.clear_buffers.G || regs.clear_buffers.B ||
regs.clear_buffers.A;
const bool use_depth = regs.clear_buffers.Z;
@@ -214,8 +237,16 @@ void RasterizerVulkan::Clear() {
const VkExtent2D render_area = framebuffer->RenderArea();
scheduler.RequestRenderpass(framebuffer);
u32 up_scale = 1;
u32 down_shift = 0;
if (texture_cache.IsRescaling()) {
up_scale = Settings::values.resolution_info.up_scale;
down_shift = Settings::values.resolution_info.down_shift;
}
UpdateViewportsState(regs);
VkClearRect clear_rect{
.rect = GetScissorState(regs, 0),
.rect = GetScissorState(regs, 0, up_scale, down_shift),
.baseArrayLayer = regs.clear_buffers.layer,
.layerCount = 1,
};
@@ -230,7 +261,38 @@ void RasterizerVulkan::Clear() {
const u32 color_attachment = regs.clear_buffers.RT;
if (use_color && framebuffer->HasAspectColorBit(color_attachment)) {
VkClearValue clear_value;
std::memcpy(clear_value.color.float32, regs.clear_color, sizeof(regs.clear_color));
bool is_integer = false;
bool is_signed = false;
size_t int_size = 8;
for (std::size_t i = 0; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; ++i) {
const auto& this_rt = regs.rt[i];
if (this_rt.Address() == 0) {
continue;
}
if (this_rt.format == Tegra::RenderTargetFormat::NONE) {
continue;
}
const auto format =
VideoCore::Surface::PixelFormatFromRenderTargetFormat(this_rt.format);
is_integer = IsPixelFormatInteger(format);
is_signed = IsPixelFormatSignedInteger(format);
int_size = PixelComponentSizeBitsInteger(format);
break;
}
if (!is_integer) {
std::memcpy(clear_value.color.float32, regs.clear_color, sizeof(regs.clear_color));
} else if (!is_signed) {
for (size_t i = 0; i < 4; i++) {
clear_value.color.uint32[i] = static_cast<u32>(
static_cast<f32>(static_cast<u64>(int_size) << 1U) * regs.clear_color[i]);
}
} else {
for (size_t i = 0; i < 4; i++) {
clear_value.color.int32[i] =
static_cast<s32>(static_cast<f32>(static_cast<s64>(int_size - 1) << 1) *
(regs.clear_color[i] - 0.5f));
}
}
scheduler.Record([color_attachment, clear_value, clear_rect](vk::CommandBuffer cmdbuf) {
const VkClearAttachment attachment{
@@ -595,15 +657,17 @@ void RasterizerVulkan::UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& reg
if (!state_tracker.TouchViewports()) {
return;
}
const bool is_rescaling{texture_cache.IsRescaling()};
const float scale = is_rescaling ? Settings::values.resolution_info.up_factor : 1.0f;
const std::array viewports{
GetViewportState(device, regs, 0), GetViewportState(device, regs, 1),
GetViewportState(device, regs, 2), GetViewportState(device, regs, 3),
GetViewportState(device, regs, 4), GetViewportState(device, regs, 5),
GetViewportState(device, regs, 6), GetViewportState(device, regs, 7),
GetViewportState(device, regs, 8), GetViewportState(device, regs, 9),
GetViewportState(device, regs, 10), GetViewportState(device, regs, 11),
GetViewportState(device, regs, 12), GetViewportState(device, regs, 13),
GetViewportState(device, regs, 14), GetViewportState(device, regs, 15),
GetViewportState(device, regs, 0, scale), GetViewportState(device, regs, 1, scale),
GetViewportState(device, regs, 2, scale), GetViewportState(device, regs, 3, scale),
GetViewportState(device, regs, 4, scale), GetViewportState(device, regs, 5, scale),
GetViewportState(device, regs, 6, scale), GetViewportState(device, regs, 7, scale),
GetViewportState(device, regs, 8, scale), GetViewportState(device, regs, 9, scale),
GetViewportState(device, regs, 10, scale), GetViewportState(device, regs, 11, scale),
GetViewportState(device, regs, 12, scale), GetViewportState(device, regs, 13, scale),
GetViewportState(device, regs, 14, scale), GetViewportState(device, regs, 15, scale),
};
scheduler.Record([viewports](vk::CommandBuffer cmdbuf) { cmdbuf.SetViewport(0, viewports); });
}
@@ -612,13 +676,29 @@ void RasterizerVulkan::UpdateScissorsState(Tegra::Engines::Maxwell3D::Regs& regs
if (!state_tracker.TouchScissors()) {
return;
}
u32 up_scale = 1;
u32 down_shift = 0;
if (texture_cache.IsRescaling()) {
up_scale = Settings::values.resolution_info.up_scale;
down_shift = Settings::values.resolution_info.down_shift;
}
const std::array scissors{
GetScissorState(regs, 0), GetScissorState(regs, 1), GetScissorState(regs, 2),
GetScissorState(regs, 3), GetScissorState(regs, 4), GetScissorState(regs, 5),
GetScissorState(regs, 6), GetScissorState(regs, 7), GetScissorState(regs, 8),
GetScissorState(regs, 9), GetScissorState(regs, 10), GetScissorState(regs, 11),
GetScissorState(regs, 12), GetScissorState(regs, 13), GetScissorState(regs, 14),
GetScissorState(regs, 15),
GetScissorState(regs, 0, up_scale, down_shift),
GetScissorState(regs, 1, up_scale, down_shift),
GetScissorState(regs, 2, up_scale, down_shift),
GetScissorState(regs, 3, up_scale, down_shift),
GetScissorState(regs, 4, up_scale, down_shift),
GetScissorState(regs, 5, up_scale, down_shift),
GetScissorState(regs, 6, up_scale, down_shift),
GetScissorState(regs, 7, up_scale, down_shift),
GetScissorState(regs, 8, up_scale, down_shift),
GetScissorState(regs, 9, up_scale, down_shift),
GetScissorState(regs, 10, up_scale, down_shift),
GetScissorState(regs, 11, up_scale, down_shift),
GetScissorState(regs, 12, up_scale, down_shift),
GetScissorState(regs, 13, up_scale, down_shift),
GetScissorState(regs, 14, up_scale, down_shift),
GetScissorState(regs, 15, up_scale, down_shift),
};
scheduler.Record([scissors](vk::CommandBuffer cmdbuf) { cmdbuf.SetScissor(0, scissors); });
}

View File

@@ -128,6 +128,15 @@ bool VKScheduler::UpdateGraphicsPipeline(GraphicsPipeline* pipeline) {
return true;
}
bool VKScheduler::UpdateRescaling(bool is_rescaling) {
if (state.rescaling_defined && is_rescaling == state.is_rescaling) {
return false;
}
state.rescaling_defined = true;
state.is_rescaling = is_rescaling;
return true;
}
void VKScheduler::WorkerThread(std::stop_token stop_token) {
Common::SetCurrentThreadName("yuzu:VulkanWorker");
do {
@@ -227,6 +236,7 @@ void VKScheduler::AllocateNewContext() {
void VKScheduler::InvalidateState() {
state.graphics_pipeline = nullptr;
state.rescaling_defined = false;
state_tracker.InvalidateCommandBufferState();
}

View File

@@ -56,6 +56,9 @@ public:
/// Update the pipeline to the current execution context.
bool UpdateGraphicsPipeline(GraphicsPipeline* pipeline);
/// Update the rescaling state. Returns true if the state has to be updated.
bool UpdateRescaling(bool is_rescaling);
/// Invalidates current command buffer state except for render passes
void InvalidateState();
@@ -185,6 +188,8 @@ private:
VkFramebuffer framebuffer = nullptr;
VkExtent2D render_area = {0, 0};
GraphicsPipeline* graphics_pipeline = nullptr;
bool is_rescaling = false;
bool rescaling_defined = false;
};
void WorkerThread(std::stop_token stop_token);

View File

@@ -71,11 +71,15 @@ public:
}
bool TouchViewports() {
return Exchange(Dirty::Viewports, false);
const bool dirty_viewports = Exchange(Dirty::Viewports, false);
const bool rescale_viewports = Exchange(VideoCommon::Dirty::RescaleViewports, false);
return dirty_viewports || rescale_viewports;
}
bool TouchScissors() {
return Exchange(Dirty::Scissors, false);
const bool dirty_scissors = Exchange(Dirty::Scissors, false);
const bool rescale_scissors = Exchange(VideoCommon::Dirty::RescaleScissors, false);
return dirty_scissors || rescale_scissors;
}
bool TouchDepthBias() {

View File

@@ -32,10 +32,12 @@ using Tegra::Engines::Fermi2D;
using Tegra::Texture::SwizzleSource;
using Tegra::Texture::TextureMipmapFilter;
using VideoCommon::BufferImageCopy;
using VideoCommon::ImageFlagBits;
using VideoCommon::ImageInfo;
using VideoCommon::ImageType;
using VideoCommon::SubresourceRange;
using VideoCore::Surface::IsPixelFormatASTC;
using VideoCore::Surface::IsPixelFormatInteger;
namespace {
constexpr VkBorderColor ConvertBorderColor(const std::array<float, 4>& color) {
@@ -588,8 +590,158 @@ struct RangedBarrierRange {
UNREACHABLE_MSG("Invalid image format={}", format);
return VK_FORMAT_R32_UINT;
}
void BlitScale(VKScheduler& scheduler, VkImage src_image, VkImage dst_image, const ImageInfo& info,
VkImageAspectFlags aspect_mask, const Settings::ResolutionScalingInfo& resolution,
bool up_scaling = true) {
const bool is_2d = info.type == ImageType::e2D;
const auto resources = info.resources;
const VkExtent2D extent{
.width = info.size.width,
.height = info.size.height,
};
// Depth and integer formats must use NEAREST filter for blits.
const bool is_color{aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT};
const bool is_bilinear{is_color && !IsPixelFormatInteger(info.format)};
const VkFilter vk_filter = is_bilinear ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([dst_image, src_image, extent, resources, aspect_mask, resolution, is_2d,
vk_filter, up_scaling](vk::CommandBuffer cmdbuf) {
const VkOffset2D src_size{
.x = static_cast<s32>(up_scaling ? extent.width : resolution.ScaleUp(extent.width)),
.y = static_cast<s32>(is_2d && up_scaling ? extent.height
: resolution.ScaleUp(extent.height)),
};
const VkOffset2D dst_size{
.x = static_cast<s32>(up_scaling ? resolution.ScaleUp(extent.width) : extent.width),
.y = static_cast<s32>(is_2d && up_scaling ? resolution.ScaleUp(extent.height)
: extent.height),
};
boost::container::small_vector<VkImageBlit, 4> regions;
regions.reserve(resources.levels);
for (s32 level = 0; level < resources.levels; level++) {
regions.push_back({
.srcSubresource{
.aspectMask = aspect_mask,
.mipLevel = static_cast<u32>(level),
.baseArrayLayer = 0,
.layerCount = static_cast<u32>(resources.layers),
},
.srcOffsets{
{
.x = 0,
.y = 0,
.z = 0,
},
{
.x = std::max(1, src_size.x >> level),
.y = std::max(1, src_size.y >> level),
.z = 1,
},
},
.dstSubresource{
.aspectMask = aspect_mask,
.mipLevel = static_cast<u32>(level),
.baseArrayLayer = 0,
.layerCount = static_cast<u32>(resources.layers),
},
.dstOffsets{
{
.x = 0,
.y = 0,
.z = 0,
},
{
.x = std::max(1, dst_size.x >> level),
.y = std::max(1, dst_size.y >> level),
.z = 1,
},
},
});
}
const VkImageSubresourceRange subresource_range{
.aspectMask = aspect_mask,
.baseMipLevel = 0,
.levelCount = VK_REMAINING_MIP_LEVELS,
.baseArrayLayer = 0,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
};
const std::array read_barriers{
VkImageMemoryBarrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = src_image,
.subresourceRange = subresource_range,
},
VkImageMemoryBarrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED, // Discard contents
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = dst_image,
.subresourceRange = subresource_range,
},
};
const std::array write_barriers{
VkImageMemoryBarrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_MEMORY_WRITE_BIT | VK_ACCESS_MEMORY_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = src_image,
.subresourceRange = subresource_range,
},
VkImageMemoryBarrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_WRITE_BIT | VK_ACCESS_MEMORY_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = dst_image,
.subresourceRange = subresource_range,
},
};
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, nullptr, nullptr, read_barriers);
cmdbuf.BlitImage(src_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dst_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, regions, vk_filter);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, nullptr, nullptr, write_barriers);
});
}
} // Anonymous namespace
TextureCacheRuntime::TextureCacheRuntime(const Device& device_, VKScheduler& scheduler_,
MemoryAllocator& memory_allocator_,
StagingBufferPool& staging_buffer_pool_,
BlitImageHelper& blit_image_helper_,
ASTCDecoderPass& astc_decoder_pass_,
RenderPassCache& render_pass_cache_)
: device{device_}, scheduler{scheduler_}, memory_allocator{memory_allocator_},
staging_buffer_pool{staging_buffer_pool_}, blit_image_helper{blit_image_helper_},
astc_decoder_pass{astc_decoder_pass_}, render_pass_cache{render_pass_cache_},
resolution{Settings::values.resolution_info} {}
void TextureCacheRuntime::Finish() {
scheduler.Finish();
}
@@ -614,8 +766,8 @@ void TextureCacheRuntime::BlitImage(Framebuffer* dst_framebuffer, ImageView& dst
return;
}
if (aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT && !is_src_msaa && !is_dst_msaa) {
blit_image_helper.BlitColor(dst_framebuffer, src, dst_region, src_region, filter,
operation);
blit_image_helper.BlitColor(dst_framebuffer, src.Handle(Shader::TextureType::Color2D),
dst_region, src_region, filter, operation);
return;
}
if (aspect_mask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
@@ -719,26 +871,29 @@ void TextureCacheRuntime::BlitImage(Framebuffer* dst_framebuffer, ImageView& dst
});
}
void TextureCacheRuntime::ConvertImage(Framebuffer* dst, ImageView& dst_view, ImageView& src_view) {
void TextureCacheRuntime::ConvertImage(Framebuffer* dst, ImageView& dst_view, ImageView& src_view,
bool rescaled) {
const u32 up_scale = rescaled ? resolution.up_scale : 1;
const u32 down_shift = rescaled ? resolution.down_shift : 0;
switch (dst_view.format) {
case PixelFormat::R16_UNORM:
if (src_view.format == PixelFormat::D16_UNORM) {
return blit_image_helper.ConvertD16ToR16(dst, src_view);
return blit_image_helper.ConvertD16ToR16(dst, src_view, up_scale, down_shift);
}
break;
case PixelFormat::R32_FLOAT:
if (src_view.format == PixelFormat::D32_FLOAT) {
return blit_image_helper.ConvertD32ToR32(dst, src_view);
return blit_image_helper.ConvertD32ToR32(dst, src_view, up_scale, down_shift);
}
break;
case PixelFormat::D16_UNORM:
if (src_view.format == PixelFormat::R16_UNORM) {
return blit_image_helper.ConvertR16ToD16(dst, src_view);
return blit_image_helper.ConvertR16ToD16(dst, src_view, up_scale, down_shift);
}
break;
case PixelFormat::D32_FLOAT:
if (src_view.format == PixelFormat::R32_FLOAT) {
return blit_image_helper.ConvertR32ToD32(dst, src_view);
return blit_image_helper.ConvertR32ToD32(dst, src_view, up_scale, down_shift);
}
break;
default:
@@ -840,36 +995,39 @@ u64 TextureCacheRuntime::GetDeviceLocalMemory() const {
return device.GetDeviceLocalMemory();
}
Image::Image(TextureCacheRuntime& runtime, const ImageInfo& info_, GPUVAddr gpu_addr_,
void TextureCacheRuntime::TickFrame() {}
Image::Image(TextureCacheRuntime& runtime_, const ImageInfo& info_, GPUVAddr gpu_addr_,
VAddr cpu_addr_)
: VideoCommon::ImageBase(info_, gpu_addr_, cpu_addr_), scheduler{&runtime.scheduler},
image(MakeImage(runtime.device, info)),
commit(runtime.memory_allocator.Commit(image, MemoryUsage::DeviceLocal)),
: VideoCommon::ImageBase(info_, gpu_addr_, cpu_addr_), scheduler{&runtime_.scheduler},
runtime{&runtime_}, original_image(MakeImage(runtime_.device, info)),
commit(runtime_.memory_allocator.Commit(original_image, MemoryUsage::DeviceLocal)),
aspect_mask(ImageAspectMask(info.format)) {
if (IsPixelFormatASTC(info.format) && !runtime.device.IsOptimalAstcSupported()) {
if (IsPixelFormatASTC(info.format) && !runtime->device.IsOptimalAstcSupported()) {
if (Settings::values.accelerate_astc.GetValue()) {
flags |= VideoCommon::ImageFlagBits::AcceleratedUpload;
} else {
flags |= VideoCommon::ImageFlagBits::Converted;
}
}
if (runtime.device.HasDebuggingToolAttached()) {
image.SetObjectNameEXT(VideoCommon::Name(*this).c_str());
if (runtime->device.HasDebuggingToolAttached()) {
original_image.SetObjectNameEXT(VideoCommon::Name(*this).c_str());
}
static constexpr VkImageViewUsageCreateInfo storage_image_view_usage_create_info{
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO,
.pNext = nullptr,
.usage = VK_IMAGE_USAGE_STORAGE_BIT,
};
if (IsPixelFormatASTC(info.format) && !runtime.device.IsOptimalAstcSupported()) {
const auto& device = runtime.device.GetLogical();
current_image = *original_image;
if (IsPixelFormatASTC(info.format) && !runtime->device.IsOptimalAstcSupported()) {
const auto& device = runtime->device.GetLogical();
storage_image_views.reserve(info.resources.levels);
for (s32 level = 0; level < info.resources.levels; ++level) {
storage_image_views.push_back(device.CreateImageView(VkImageViewCreateInfo{
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = &storage_image_view_usage_create_info,
.flags = 0,
.image = *image,
.image = *original_image,
.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_A8B8G8R8_UNORM_PACK32,
.components{
@@ -890,26 +1048,39 @@ Image::Image(TextureCacheRuntime& runtime, const ImageInfo& info_, GPUVAddr gpu_
}
}
Image::Image(const VideoCommon::NullImageParams& params) : VideoCommon::ImageBase{params} {}
Image::~Image() = default;
void Image::UploadMemory(const StagingBufferRef& map, std::span<const BufferImageCopy> copies) {
// TODO: Move this to another API
const bool is_rescaled = True(flags & ImageFlagBits::Rescaled);
if (is_rescaled) {
ScaleDown(true);
}
scheduler->RequestOutsideRenderPassOperationContext();
std::vector vk_copies = TransformBufferImageCopies(copies, map.offset, aspect_mask);
const VkBuffer src_buffer = map.buffer;
const VkImage vk_image = *image;
const VkImage vk_image = *original_image;
const VkImageAspectFlags vk_aspect_mask = aspect_mask;
const bool is_initialized = std::exchange(initialized, true);
scheduler->Record([src_buffer, vk_image, vk_aspect_mask, is_initialized,
vk_copies](vk::CommandBuffer cmdbuf) {
CopyBufferToImage(cmdbuf, src_buffer, vk_image, vk_aspect_mask, is_initialized, vk_copies);
});
if (is_rescaled) {
ScaleUp();
}
}
void Image::DownloadMemory(const StagingBufferRef& map, std::span<const BufferImageCopy> copies) {
const bool is_rescaled = True(flags & ImageFlagBits::Rescaled);
if (is_rescaled) {
ScaleDown();
}
std::vector vk_copies = TransformBufferImageCopies(copies, map.offset, aspect_mask);
scheduler->RequestOutsideRenderPassOperationContext();
scheduler->Record([buffer = map.buffer, image = *image, aspect_mask = aspect_mask,
scheduler->Record([buffer = map.buffer, image = *original_image, aspect_mask = aspect_mask,
vk_copies](vk::CommandBuffer cmdbuf) {
const VkImageMemoryBarrier read_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
@@ -959,6 +1130,146 @@ void Image::DownloadMemory(const StagingBufferRef& map, std::span<const BufferIm
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, memory_write_barrier, nullptr, image_write_barrier);
});
if (is_rescaled) {
ScaleUp(true);
}
}
bool Image::ScaleUp(bool ignore) {
if (True(flags & ImageFlagBits::Rescaled)) {
return false;
}
ASSERT(info.type != ImageType::Linear);
flags |= ImageFlagBits::Rescaled;
const auto& resolution = runtime->resolution;
if (!resolution.active) {
return false;
}
has_scaled = true;
const auto& device = runtime->device;
if (!scaled_image) {
const bool is_2d = info.type == ImageType::e2D;
const u32 scaled_width = resolution.ScaleUp(info.size.width);
const u32 scaled_height = is_2d ? resolution.ScaleUp(info.size.height) : info.size.height;
auto scaled_info = info;
scaled_info.size.width = scaled_width;
scaled_info.size.height = scaled_height;
scaled_image = MakeImage(device, scaled_info);
auto& allocator = runtime->memory_allocator;
scaled_commit = MemoryCommit(allocator.Commit(scaled_image, MemoryUsage::DeviceLocal));
ignore = false;
}
current_image = *scaled_image;
if (ignore) {
return true;
}
if (aspect_mask == 0) {
aspect_mask = ImageAspectMask(info.format);
}
static constexpr auto OPTIMAL_FORMAT = FormatType::Optimal;
const PixelFormat format = StorageFormat(info.format);
const auto vk_format = MaxwellToVK::SurfaceFormat(device, OPTIMAL_FORMAT, false, format).format;
const auto blit_usage = VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT;
if (device.IsFormatSupported(vk_format, blit_usage, OPTIMAL_FORMAT)) {
BlitScale(*scheduler, *original_image, *scaled_image, info, aspect_mask, resolution);
} else {
return BlitScaleHelper(true);
}
return true;
}
bool Image::ScaleDown(bool ignore) {
if (False(flags & ImageFlagBits::Rescaled)) {
return false;
}
ASSERT(info.type != ImageType::Linear);
flags &= ~ImageFlagBits::Rescaled;
const auto& resolution = runtime->resolution;
if (!resolution.active) {
return false;
}
current_image = *original_image;
if (ignore) {
return true;
}
if (aspect_mask == 0) {
aspect_mask = ImageAspectMask(info.format);
}
static constexpr auto OPTIMAL_FORMAT = FormatType::Optimal;
const PixelFormat format = StorageFormat(info.format);
const auto& device = runtime->device;
const auto vk_format = MaxwellToVK::SurfaceFormat(device, OPTIMAL_FORMAT, false, format).format;
const auto blit_usage = VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT;
if (device.IsFormatSupported(vk_format, blit_usage, OPTIMAL_FORMAT)) {
BlitScale(*scheduler, *scaled_image, *original_image, info, aspect_mask, resolution, false);
} else {
return BlitScaleHelper(false);
}
return true;
}
bool Image::BlitScaleHelper(bool scale_up) {
using namespace VideoCommon;
static constexpr auto BLIT_OPERATION = Tegra::Engines::Fermi2D::Operation::SrcCopy;
const bool is_color{aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT};
const bool is_bilinear{is_color && !IsPixelFormatInteger(info.format)};
const auto operation = is_bilinear ? Tegra::Engines::Fermi2D::Filter::Bilinear
: Tegra::Engines::Fermi2D::Filter::Point;
const bool is_2d = info.type == ImageType::e2D;
const auto& resolution = runtime->resolution;
const u32 scaled_width = resolution.ScaleUp(info.size.width);
const u32 scaled_height = is_2d ? resolution.ScaleUp(info.size.height) : info.size.height;
std::unique_ptr<ImageView>& blit_view = scale_up ? scale_view : normal_view;
std::unique_ptr<Framebuffer>& blit_framebuffer =
scale_up ? scale_framebuffer : normal_framebuffer;
if (!blit_view) {
const auto view_info = ImageViewInfo(ImageViewType::e2D, info.format);
blit_view = std::make_unique<ImageView>(*runtime, view_info, NULL_IMAGE_ID, *this);
}
const u32 src_width = scale_up ? info.size.width : scaled_width;
const u32 src_height = scale_up ? info.size.height : scaled_height;
const u32 dst_width = scale_up ? scaled_width : info.size.width;
const u32 dst_height = scale_up ? scaled_height : info.size.height;
const Region2D src_region{
.start = {0, 0},
.end = {static_cast<s32>(src_width), static_cast<s32>(src_height)},
};
const Region2D dst_region{
.start = {0, 0},
.end = {static_cast<s32>(dst_width), static_cast<s32>(dst_height)},
};
const VkExtent2D extent{
.width = std::max(scaled_width, info.size.width),
.height = std::max(scaled_height, info.size.width),
};
auto* view_ptr = blit_view.get();
if (aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT) {
if (!blit_framebuffer) {
blit_framebuffer = std::make_unique<Framebuffer>(*runtime, view_ptr, nullptr, extent);
}
const auto color_view = blit_view->Handle(Shader::TextureType::Color2D);
runtime->blit_image_helper.BlitColor(blit_framebuffer.get(), color_view, dst_region,
src_region, operation, BLIT_OPERATION);
} else if (!runtime->device.IsBlitDepthStencilSupported() &&
aspect_mask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (!blit_framebuffer) {
blit_framebuffer = std::make_unique<Framebuffer>(*runtime, nullptr, view_ptr, extent);
}
runtime->blit_image_helper.BlitDepthStencil(blit_framebuffer.get(), blit_view->DepthView(),
blit_view->StencilView(), dst_region,
src_region, operation, BLIT_OPERATION);
} else {
// TODO: Use helper blits where applicable
flags &= ~ImageFlagBits::Rescaled;
LOG_ERROR(Render_Vulkan, "Device does not support scaling format {}", info.format);
return false;
}
return true;
}
ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::ImageViewInfo& info,
@@ -1052,7 +1363,7 @@ ImageView::ImageView(TextureCacheRuntime&, const VideoCommon::ImageInfo& info,
: VideoCommon::ImageViewBase{info, view_info}, gpu_addr{gpu_addr_},
buffer_size{VideoCommon::CalculateGuestSizeInBytes(info)} {}
ImageView::ImageView(TextureCacheRuntime&, const VideoCommon::NullImageParams& params)
ImageView::ImageView(TextureCacheRuntime&, const VideoCommon::NullImageViewParams& params)
: VideoCommon::ImageViewBase{params} {}
VkImageView ImageView::DepthView() {
@@ -1162,7 +1473,27 @@ Sampler::Sampler(TextureCacheRuntime& runtime, const Tegra::Texture::TSCEntry& t
}
Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM_RT> color_buffers,
ImageView* depth_buffer, const VideoCommon::RenderTargets& key) {
ImageView* depth_buffer, const VideoCommon::RenderTargets& key)
: render_area{VkExtent2D{
.width = key.size.width,
.height = key.size.height,
}} {
CreateFramebuffer(runtime, color_buffers, depth_buffer);
if (runtime.device.HasDebuggingToolAttached()) {
framebuffer.SetObjectNameEXT(VideoCommon::Name(key).c_str());
}
}
Framebuffer::Framebuffer(TextureCacheRuntime& runtime, ImageView* color_buffer,
ImageView* depth_buffer, VkExtent2D extent)
: render_area{extent} {
std::array<ImageView*, NUM_RT> color_buffers{color_buffer};
CreateFramebuffer(runtime, color_buffers, depth_buffer);
}
void Framebuffer::CreateFramebuffer(TextureCacheRuntime& runtime,
std::span<ImageView*, NUM_RT> color_buffers,
ImageView* depth_buffer) {
std::vector<VkImageView> attachments;
RenderPassKey renderpass_key{};
s32 num_layers = 1;
@@ -1200,10 +1531,6 @@ Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM
renderpass = runtime.render_pass_cache.Get(renderpass_key);
render_area = VkExtent2D{
.width = key.size.width,
.height = key.size.height,
};
num_color_buffers = static_cast<u32>(num_colors);
framebuffer = runtime.device.GetLogical().CreateFramebuffer({
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
@@ -1212,13 +1539,10 @@ Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM
.renderPass = renderpass,
.attachmentCount = static_cast<u32>(attachments.size()),
.pAttachments = attachments.data(),
.width = key.size.width,
.height = key.size.height,
.width = render_area.width,
.height = render_area.height,
.layers = static_cast<u32>(std::max(num_layers, 1)),
});
if (runtime.device.HasDebuggingToolAttached()) {
framebuffer.SetObjectNameEXT(VideoCommon::Name(key).c_str());
}
}
void TextureCacheRuntime::AccelerateImageUpload(

View File

@@ -13,6 +13,10 @@
#include "video_core/vulkan_common/vulkan_memory_allocator.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Settings {
struct ResolutionScalingInfo;
}
namespace Vulkan {
using VideoCommon::ImageId;
@@ -31,14 +35,14 @@ class RenderPassCache;
class StagingBufferPool;
class VKScheduler;
struct TextureCacheRuntime {
const Device& device;
VKScheduler& scheduler;
MemoryAllocator& memory_allocator;
StagingBufferPool& staging_buffer_pool;
BlitImageHelper& blit_image_helper;
ASTCDecoderPass& astc_decoder_pass;
RenderPassCache& render_pass_cache;
class TextureCacheRuntime {
public:
explicit TextureCacheRuntime(const Device& device_, VKScheduler& scheduler_,
MemoryAllocator& memory_allocator_,
StagingBufferPool& staging_buffer_pool_,
BlitImageHelper& blit_image_helper_,
ASTCDecoderPass& astc_decoder_pass_,
RenderPassCache& render_pass_cache_);
void Finish();
@@ -46,6 +50,10 @@ struct TextureCacheRuntime {
StagingBufferRef DownloadStagingBuffer(size_t size);
void TickFrame();
u64 GetDeviceLocalMemory() const;
void BlitImage(Framebuffer* dst_framebuffer, ImageView& dst, ImageView& src,
const Region2D& dst_region, const Region2D& src_region,
Tegra::Engines::Fermi2D::Filter filter,
@@ -53,7 +61,7 @@ struct TextureCacheRuntime {
void CopyImage(Image& dst, Image& src, std::span<const VideoCommon::ImageCopy> copies);
void ConvertImage(Framebuffer* dst, ImageView& dst_view, ImageView& src_view);
void ConvertImage(Framebuffer* dst, ImageView& dst_view, ImageView& src_view, bool rescaled);
bool CanAccelerateImageUpload(Image&) const noexcept {
return false;
@@ -74,13 +82,21 @@ struct TextureCacheRuntime {
return true;
}
u64 GetDeviceLocalMemory() const;
const Device& device;
VKScheduler& scheduler;
MemoryAllocator& memory_allocator;
StagingBufferPool& staging_buffer_pool;
BlitImageHelper& blit_image_helper;
ASTCDecoderPass& astc_decoder_pass;
RenderPassCache& render_pass_cache;
const Settings::ResolutionScalingInfo& resolution;
};
class Image : public VideoCommon::ImageBase {
public:
explicit Image(TextureCacheRuntime&, const VideoCommon::ImageInfo& info, GPUVAddr gpu_addr,
VAddr cpu_addr);
explicit Image(const VideoCommon::NullImageParams&);
~Image();
@@ -97,7 +113,7 @@ public:
std::span<const VideoCommon::BufferImageCopy> copies);
[[nodiscard]] VkImage Handle() const noexcept {
return *image;
return current_image;
}
[[nodiscard]] VkImageAspectFlags AspectMask() const noexcept {
@@ -113,14 +129,30 @@ public:
return std::exchange(initialized, true);
}
bool ScaleUp(bool ignore = false);
bool ScaleDown(bool ignore = false);
private:
VKScheduler* scheduler;
vk::Image image;
bool BlitScaleHelper(bool scale_up);
VKScheduler* scheduler{};
TextureCacheRuntime* runtime{};
vk::Image original_image;
MemoryCommit commit;
vk::ImageView image_view;
std::vector<vk::ImageView> storage_image_views;
VkImageAspectFlags aspect_mask = 0;
bool initialized = false;
vk::Image scaled_image{};
MemoryCommit scaled_commit{};
VkImage current_image{};
std::unique_ptr<Framebuffer> scale_framebuffer;
std::unique_ptr<ImageView> scale_view;
std::unique_ptr<Framebuffer> normal_framebuffer;
std::unique_ptr<ImageView> normal_view;
};
class ImageView : public VideoCommon::ImageViewBase {
@@ -128,7 +160,7 @@ public:
explicit ImageView(TextureCacheRuntime&, const VideoCommon::ImageViewInfo&, ImageId, Image&);
explicit ImageView(TextureCacheRuntime&, const VideoCommon::ImageInfo&,
const VideoCommon::ImageViewInfo&, GPUVAddr);
explicit ImageView(TextureCacheRuntime&, const VideoCommon::NullImageParams&);
explicit ImageView(TextureCacheRuntime&, const VideoCommon::NullImageViewParams&);
[[nodiscard]] VkImageView DepthView();
@@ -197,9 +229,15 @@ private:
class Framebuffer {
public:
explicit Framebuffer(TextureCacheRuntime&, std::span<ImageView*, NUM_RT> color_buffers,
explicit Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM_RT> color_buffers,
ImageView* depth_buffer, const VideoCommon::RenderTargets& key);
explicit Framebuffer(TextureCacheRuntime& runtime, ImageView* color_buffer,
ImageView* depth_buffer, VkExtent2D extent);
void CreateFramebuffer(TextureCacheRuntime& runtime,
std::span<ImageView*, NUM_RT> color_buffers, ImageView* depth_buffer);
[[nodiscard]] VkFramebuffer Handle() const noexcept {
return *framebuffer;
}

View File

@@ -279,6 +279,80 @@ bool IsPixelFormatSRGB(PixelFormat format) {
}
}
bool IsPixelFormatInteger(PixelFormat format) {
switch (format) {
case PixelFormat::A8B8G8R8_SINT:
case PixelFormat::A8B8G8R8_UINT:
case PixelFormat::A2B10G10R10_UINT:
case PixelFormat::R8_SINT:
case PixelFormat::R8_UINT:
case PixelFormat::R16G16B16A16_SINT:
case PixelFormat::R16G16B16A16_UINT:
case PixelFormat::R32G32B32A32_UINT:
case PixelFormat::R32G32B32A32_SINT:
case PixelFormat::R32G32_SINT:
case PixelFormat::R16_UINT:
case PixelFormat::R16_SINT:
case PixelFormat::R16G16_UINT:
case PixelFormat::R16G16_SINT:
case PixelFormat::R8G8_SINT:
case PixelFormat::R8G8_UINT:
case PixelFormat::R32G32_UINT:
case PixelFormat::R32_UINT:
case PixelFormat::R32_SINT:
return true;
default:
return false;
}
}
bool IsPixelFormatSignedInteger(PixelFormat format) {
switch (format) {
case PixelFormat::A8B8G8R8_SINT:
case PixelFormat::R8_SINT:
case PixelFormat::R16G16B16A16_SINT:
case PixelFormat::R32G32B32A32_SINT:
case PixelFormat::R32G32_SINT:
case PixelFormat::R16_SINT:
case PixelFormat::R16G16_SINT:
case PixelFormat::R8G8_SINT:
case PixelFormat::R32_SINT:
return true;
default:
return false;
}
}
size_t PixelComponentSizeBitsInteger(PixelFormat format) {
switch (format) {
case PixelFormat::A8B8G8R8_SINT:
case PixelFormat::A8B8G8R8_UINT:
case PixelFormat::R8_SINT:
case PixelFormat::R8_UINT:
case PixelFormat::R8G8_SINT:
case PixelFormat::R8G8_UINT:
return 8;
case PixelFormat::A2B10G10R10_UINT:
return 10;
case PixelFormat::R16G16B16A16_SINT:
case PixelFormat::R16G16B16A16_UINT:
case PixelFormat::R16_UINT:
case PixelFormat::R16_SINT:
case PixelFormat::R16G16_UINT:
case PixelFormat::R16G16_SINT:
return 16;
case PixelFormat::R32G32B32A32_UINT:
case PixelFormat::R32G32B32A32_SINT:
case PixelFormat::R32G32_SINT:
case PixelFormat::R32G32_UINT:
case PixelFormat::R32_UINT:
case PixelFormat::R32_SINT:
return 32;
default:
return 0;
}
}
std::pair<u32, u32> GetASTCBlockSize(PixelFormat format) {
return {DefaultBlockWidth(format), DefaultBlockHeight(format)};
}

View File

@@ -460,6 +460,12 @@ bool IsPixelFormatASTC(PixelFormat format);
bool IsPixelFormatSRGB(PixelFormat format);
bool IsPixelFormatInteger(PixelFormat format);
bool IsPixelFormatSignedInteger(PixelFormat format);
size_t PixelComponentSizeBitsInteger(PixelFormat format);
std::pair<u32, u32> GetASTCBlockSize(PixelFormat format);
u64 EstimatedDecompressedSize(u64 base_size, PixelFormat format);

View File

@@ -60,15 +60,17 @@ namespace {
ImageBase::ImageBase(const ImageInfo& info_, GPUVAddr gpu_addr_, VAddr cpu_addr_)
: info{info_}, guest_size_bytes{CalculateGuestSizeInBytes(info)},
unswizzled_size_bytes{CalculateUnswizzledSizeBytes(info)},
converted_size_bytes{CalculateConvertedSizeBytes(info)}, gpu_addr{gpu_addr_},
cpu_addr{cpu_addr_}, cpu_addr_end{cpu_addr + guest_size_bytes},
mip_level_offsets{CalculateMipLevelOffsets(info)} {
converted_size_bytes{CalculateConvertedSizeBytes(info)}, scale_rating{}, scale_tick{},
has_scaled{}, gpu_addr{gpu_addr_}, cpu_addr{cpu_addr_},
cpu_addr_end{cpu_addr + guest_size_bytes}, mip_level_offsets{CalculateMipLevelOffsets(info)} {
if (info.type == ImageType::e3D) {
slice_offsets = CalculateSliceOffsets(info);
slice_subresources = CalculateSliceSubresources(info);
}
}
ImageBase::ImageBase(const NullImageParams&) {}
ImageMapView::ImageMapView(GPUVAddr gpu_addr_, VAddr cpu_addr_, size_t size_, ImageId image_id_)
: gpu_addr{gpu_addr_}, cpu_addr{cpu_addr_}, size{size_}, image_id{image_id_} {}
@@ -254,6 +256,8 @@ void AddImageAlias(ImageBase& lhs, ImageBase& rhs, ImageId lhs_id, ImageId rhs_i
}
lhs.aliased_images.push_back(std::move(lhs_alias));
rhs.aliased_images.push_back(std::move(rhs_alias));
lhs.flags &= ~ImageFlagBits::IsRescalable;
rhs.flags &= ~ImageFlagBits::IsRescalable;
}
} // namespace VideoCommon

View File

@@ -33,6 +33,12 @@ enum class ImageFlagBits : u32 {
///< garbage collection priority
Alias = 1 << 11, ///< This image has aliases and has priority on garbage
///< collection
// Rescaler
Rescaled = 1 << 12,
CheckingRescalable = 1 << 13,
IsRescalable = 1 << 14,
Blacklisted = 1 << 15,
};
DECLARE_ENUM_FLAG_OPERATORS(ImageFlagBits)
@@ -43,8 +49,11 @@ struct AliasedImage {
ImageId id;
};
struct NullImageParams {};
struct ImageBase {
explicit ImageBase(const ImageInfo& info, GPUVAddr gpu_addr, VAddr cpu_addr);
explicit ImageBase(const NullImageParams&);
[[nodiscard]] std::optional<SubresourceBase> TryFindBase(GPUVAddr other_addr) const noexcept;
@@ -68,11 +77,18 @@ struct ImageBase {
void CheckBadOverlapState();
void CheckAliasState();
bool HasScaled() {
return has_scaled;
}
ImageInfo info;
u32 guest_size_bytes = 0;
u32 unswizzled_size_bytes = 0;
u32 converted_size_bytes = 0;
u32 scale_rating = 0;
u64 scale_tick = 0;
bool has_scaled = false;
ImageFlagBits flags = ImageFlagBits::CpuModified;
GPUVAddr gpu_addr = 0;

View File

@@ -31,6 +31,7 @@ ImageInfo::ImageInfo(const TICEntry& config) noexcept {
.depth = config.block_depth,
};
}
rescaleable = false;
tile_width_spacing = config.tile_width_spacing;
if (config.texture_type != TextureType::Texture2D &&
config.texture_type != TextureType::Texture2DNoMipmap) {
@@ -41,6 +42,7 @@ ImageInfo::ImageInfo(const TICEntry& config) noexcept {
ASSERT(config.BaseLayer() == 0);
type = ImageType::e1D;
size.width = config.Width();
resources.layers = 1;
break;
case TextureType::Texture1DArray:
UNIMPLEMENTED_IF(config.BaseLayer() != 0);
@@ -52,12 +54,14 @@ ImageInfo::ImageInfo(const TICEntry& config) noexcept {
case TextureType::Texture2DNoMipmap:
ASSERT(config.Depth() == 1);
type = config.IsPitchLinear() ? ImageType::Linear : ImageType::e2D;
rescaleable = !config.IsPitchLinear();
size.width = config.Width();
size.height = config.Height();
resources.layers = config.BaseLayer() + 1;
break;
case TextureType::Texture2DArray:
type = ImageType::e2D;
rescaleable = true;
size.width = config.Width();
size.height = config.Height();
resources.layers = config.BaseLayer() + config.Depth();
@@ -82,10 +86,12 @@ ImageInfo::ImageInfo(const TICEntry& config) noexcept {
size.width = config.Width();
size.height = config.Height();
size.depth = config.Depth();
resources.layers = 1;
break;
case TextureType::Texture1DBuffer:
type = ImageType::Buffer;
size.width = config.Width();
resources.layers = 1;
break;
default:
UNREACHABLE_MSG("Invalid texture_type={}", static_cast<int>(config.texture_type.Value()));
@@ -95,12 +101,15 @@ ImageInfo::ImageInfo(const TICEntry& config) noexcept {
// FIXME: Call this without passing *this
layer_stride = CalculateLayerStride(*this);
maybe_unaligned_layer_stride = CalculateLayerSize(*this);
rescaleable &= (block.depth == 0) && resources.levels == 1;
downscaleable = size.height > 512;
}
}
ImageInfo::ImageInfo(const Tegra::Engines::Maxwell3D::Regs& regs, size_t index) noexcept {
const auto& rt = regs.rt[index];
format = VideoCore::Surface::PixelFormatFromRenderTargetFormat(rt.format);
rescaleable = false;
if (rt.tile_mode.is_pitch_linear) {
ASSERT(rt.tile_mode.is_3d == 0);
type = ImageType::Linear;
@@ -126,6 +135,8 @@ ImageInfo::ImageInfo(const Tegra::Engines::Maxwell3D::Regs& regs, size_t index)
type = ImageType::e3D;
size.depth = rt.depth;
} else {
rescaleable = block.depth == 0 && size.height > 256;
downscaleable = size.height > 512;
type = ImageType::e2D;
resources.layers = rt.depth;
}
@@ -135,6 +146,7 @@ ImageInfo::ImageInfo(const Tegra::Engines::Maxwell3D::Regs& regs) noexcept {
format = VideoCore::Surface::PixelFormatFromDepthFormat(regs.zeta.format);
size.width = regs.zeta_width;
size.height = regs.zeta_height;
rescaleable = false;
resources.levels = 1;
layer_stride = regs.zeta.layer_stride * 4;
maybe_unaligned_layer_stride = layer_stride;
@@ -153,6 +165,8 @@ ImageInfo::ImageInfo(const Tegra::Engines::Maxwell3D::Regs& regs) noexcept {
type = ImageType::e3D;
size.depth = regs.zeta_depth;
} else {
rescaleable = block.depth == 0 && size.height > 256;
downscaleable = size.height > 512;
type = ImageType::e2D;
resources.layers = regs.zeta_depth;
}
@@ -161,6 +175,7 @@ ImageInfo::ImageInfo(const Tegra::Engines::Maxwell3D::Regs& regs) noexcept {
ImageInfo::ImageInfo(const Tegra::Engines::Fermi2D::Surface& config) noexcept {
UNIMPLEMENTED_IF_MSG(config.layer != 0, "Surface layer is not zero");
format = VideoCore::Surface::PixelFormatFromRenderTargetFormat(config.format);
rescaleable = false;
if (config.linear == Tegra::Engines::Fermi2D::MemoryLayout::Pitch) {
type = ImageType::Linear;
size = Extent3D{
@@ -171,6 +186,7 @@ ImageInfo::ImageInfo(const Tegra::Engines::Fermi2D::Surface& config) noexcept {
pitch = config.pitch;
} else {
type = config.block_depth > 0 ? ImageType::e3D : ImageType::e2D;
block = Extent3D{
.width = config.block_width,
.height = config.block_height,
@@ -183,6 +199,8 @@ ImageInfo::ImageInfo(const Tegra::Engines::Fermi2D::Surface& config) noexcept {
.height = config.height,
.depth = 1,
};
rescaleable = block.depth == 0 && size.height > 256;
downscaleable = size.height > 512;
}
}

View File

@@ -15,7 +15,7 @@ using Tegra::Texture::TICEntry;
using VideoCore::Surface::PixelFormat;
struct ImageInfo {
explicit ImageInfo() = default;
ImageInfo() = default;
explicit ImageInfo(const TICEntry& config) noexcept;
explicit ImageInfo(const Tegra::Engines::Maxwell3D::Regs& regs, size_t index) noexcept;
explicit ImageInfo(const Tegra::Engines::Maxwell3D::Regs& regs) noexcept;
@@ -33,6 +33,8 @@ struct ImageInfo {
u32 maybe_unaligned_layer_stride = 0;
u32 num_samples = 1;
u32 tile_width_spacing = 0;
bool rescaleable = false;
bool downscaleable = false;
};
} // namespace VideoCommon

View File

@@ -37,14 +37,15 @@ ImageViewBase::ImageViewBase(const ImageViewInfo& info, const ImageInfo& image_i
}
ImageViewBase::ImageViewBase(const ImageInfo& info, const ImageViewInfo& view_info)
: format{info.format}, type{ImageViewType::Buffer}, size{
.width = info.size.width,
.height = 1,
.depth = 1,
} {
: image_id{NULL_IMAGE_ID}, format{info.format}, type{ImageViewType::Buffer},
size{
.width = info.size.width,
.height = 1,
.depth = 1,
} {
ASSERT_MSG(view_info.type == ImageViewType::Buffer, "Expected texture buffer");
}
ImageViewBase::ImageViewBase(const NullImageParams&) {}
ImageViewBase::ImageViewBase(const NullImageViewParams&) : image_id{NULL_IMAGE_ID} {}
} // namespace VideoCommon

View File

@@ -15,7 +15,7 @@ using VideoCore::Surface::PixelFormat;
struct ImageViewInfo;
struct ImageInfo;
struct NullImageParams {};
struct NullImageViewParams {};
enum class ImageViewFlagBits : u16 {
PreemtiveDownload = 1 << 0,
@@ -28,7 +28,7 @@ struct ImageViewBase {
explicit ImageViewBase(const ImageViewInfo& info, const ImageInfo& image_info,
ImageId image_id);
explicit ImageViewBase(const ImageInfo& info, const ImageViewInfo& view_info);
explicit ImageViewBase(const NullImageParams&);
explicit ImageViewBase(const NullImageViewParams&);
[[nodiscard]] bool IsBuffer() const noexcept {
return type == ImageViewType::Buffer;

View File

@@ -7,6 +7,7 @@
#include <unordered_set>
#include "common/alignment.h"
#include "common/settings.h"
#include "video_core/dirty_flags.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/texture_cache/image_view_base.h"
@@ -44,21 +45,22 @@ TextureCache<P>::TextureCache(Runtime& runtime_, VideoCore::RasterizerInterface&
// Make sure the first index is reserved for the null resources
// This way the null resource becomes a compile time constant
void(slot_image_views.insert(runtime, NullImageParams{}));
void(slot_images.insert(NullImageParams{}));
void(slot_image_views.insert(runtime, NullImageViewParams{}));
void(slot_samplers.insert(runtime, sampler_descriptor));
if constexpr (HAS_DEVICE_MEMORY_INFO) {
const auto device_memory = runtime.GetDeviceLocalMemory();
const u64 possible_expected_memory = (device_memory * 3) / 10;
const u64 possible_critical_memory = (device_memory * 6) / 10;
const u64 possible_expected_memory = (device_memory * 4) / 10;
const u64 possible_critical_memory = (device_memory * 7) / 10;
expected_memory = std::max(possible_expected_memory, DEFAULT_EXPECTED_MEMORY);
critical_memory = std::max(possible_critical_memory, DEFAULT_CRITICAL_MEMORY);
minimum_memory = 0;
} else {
// on OGL we can be more conservatives as the driver takes care.
// On OpenGL we can be more conservatives as the driver takes care.
expected_memory = DEFAULT_EXPECTED_MEMORY + 512_MiB;
critical_memory = DEFAULT_CRITICAL_MEMORY + 1_GiB;
minimum_memory = expected_memory;
minimum_memory = 0;
}
}
@@ -67,7 +69,7 @@ void TextureCache<P>::RunGarbageCollector() {
const bool high_priority_mode = total_used_memory >= expected_memory;
const bool aggressive_mode = total_used_memory >= critical_memory;
const u64 ticks_to_destroy = aggressive_mode ? 10ULL : high_priority_mode ? 25ULL : 100ULL;
size_t num_iterations = aggressive_mode ? 10000 : (high_priority_mode ? 100 : 5);
size_t num_iterations = aggressive_mode ? 300 : (high_priority_mode ? 50 : 10);
const auto clean_up = [this, &num_iterations, high_priority_mode](ImageId image_id) {
if (num_iterations == 0) {
return true;
@@ -89,7 +91,7 @@ void TextureCache<P>::RunGarbageCollector() {
UntrackImage(image, image_id);
}
UnregisterImage(image_id);
DeleteImage(image_id);
DeleteImage(image_id, image.scale_tick > frame_tick + 5);
return false;
};
lru_cache.ForEachItemBelow(frame_tick - ticks_to_destroy, clean_up);
@@ -103,6 +105,7 @@ void TextureCache<P>::TickFrame() {
sentenced_images.Tick();
sentenced_framebuffers.Tick();
sentenced_image_view.Tick();
runtime.TickFrame();
++frame_tick;
}
@@ -122,15 +125,14 @@ void TextureCache<P>::MarkModification(ImageId id) noexcept {
}
template <class P>
void TextureCache<P>::FillGraphicsImageViews(std::span<const u32> indices,
std::span<ImageViewId> image_view_ids) {
FillImageViews(graphics_image_table, graphics_image_view_ids, indices, image_view_ids);
template <bool has_blacklists>
void TextureCache<P>::FillGraphicsImageViews(std::span<ImageViewInOut> views) {
FillImageViews<has_blacklists>(graphics_image_table, graphics_image_view_ids, views);
}
template <class P>
void TextureCache<P>::FillComputeImageViews(std::span<const u32> indices,
std::span<ImageViewId> image_view_ids) {
FillImageViews(compute_image_table, compute_image_view_ids, indices, image_view_ids);
void TextureCache<P>::FillComputeImageViews(std::span<ImageViewInOut> views) {
FillImageViews<true>(compute_image_table, compute_image_view_ids, views);
}
template <class P>
@@ -202,24 +204,109 @@ void TextureCache<P>::UpdateRenderTargets(bool is_clear) {
PrepareImageView(depth_buffer_id, true, is_clear && IsFullClear(depth_buffer_id));
return;
}
flags[Dirty::RenderTargets] = false;
// Render target control is used on all render targets, so force look ups when this one is up
const bool force = flags[Dirty::RenderTargetControl];
flags[Dirty::RenderTargetControl] = false;
u32 scale_rating = 0;
bool rescaled = false;
std::array<ImageId, NUM_RT> tmp_color_images{};
ImageId tmp_depth_image{};
do {
flags[Dirty::RenderTargets] = false;
has_deleted_images = false;
// Render target control is used on all render targets, so force look ups when this one is
// up
const bool force = flags[Dirty::RenderTargetControl];
flags[Dirty::RenderTargetControl] = false;
scale_rating = 0;
bool any_rescaled = false;
bool can_rescale = true;
const auto check_rescale = [&](ImageViewId view_id, ImageId& id_save) {
if (view_id != NULL_IMAGE_VIEW_ID && view_id != ImageViewId{}) {
const auto& view = slot_image_views[view_id];
const auto image_id = view.image_id;
id_save = image_id;
auto& image = slot_images[image_id];
can_rescale &= ImageCanRescale(image);
any_rescaled |= True(image.flags & ImageFlagBits::Rescaled) ||
GetFormatType(image.info.format) != SurfaceType::ColorTexture;
scale_rating = std::max<u32>(scale_rating, image.scale_tick <= frame_tick
? image.scale_rating + 1U
: image.scale_rating);
} else {
id_save = CORRUPT_ID;
}
};
for (size_t index = 0; index < NUM_RT; ++index) {
ImageViewId& color_buffer_id = render_targets.color_buffer_ids[index];
if (flags[Dirty::ColorBuffer0 + index] || force) {
flags[Dirty::ColorBuffer0 + index] = false;
BindRenderTarget(&color_buffer_id, FindColorBuffer(index, is_clear));
}
check_rescale(color_buffer_id, tmp_color_images[index]);
}
if (flags[Dirty::ZetaBuffer] || force) {
flags[Dirty::ZetaBuffer] = false;
BindRenderTarget(&render_targets.depth_buffer_id, FindDepthBuffer(is_clear));
}
check_rescale(render_targets.depth_buffer_id, tmp_depth_image);
if (can_rescale) {
rescaled = any_rescaled || scale_rating >= 2;
const auto scale_up = [this](ImageId image_id) {
if (image_id != CORRUPT_ID) {
Image& image = slot_images[image_id];
ScaleUp(image);
}
};
if (rescaled) {
for (size_t index = 0; index < NUM_RT; ++index) {
scale_up(tmp_color_images[index]);
}
scale_up(tmp_depth_image);
scale_rating = 2;
}
} else {
rescaled = false;
const auto scale_down = [this](ImageId image_id) {
if (image_id != CORRUPT_ID) {
Image& image = slot_images[image_id];
ScaleDown(image);
}
};
for (size_t index = 0; index < NUM_RT; ++index) {
scale_down(tmp_color_images[index]);
}
scale_down(tmp_depth_image);
scale_rating = 1;
}
} while (has_deleted_images);
// Rescale End
const auto set_rating = [this, scale_rating](ImageId image_id) {
if (image_id != CORRUPT_ID) {
Image& image = slot_images[image_id];
image.scale_rating = scale_rating;
if (image.scale_tick <= frame_tick) {
image.scale_tick = frame_tick + 1;
}
}
};
for (size_t index = 0; index < NUM_RT; ++index) {
set_rating(tmp_color_images[index]);
}
set_rating(tmp_depth_image);
if (is_rescaling != rescaled) {
flags[Dirty::RescaleViewports] = true;
flags[Dirty::RescaleScissors] = true;
is_rescaling = rescaled;
}
for (size_t index = 0; index < NUM_RT; ++index) {
ImageViewId& color_buffer_id = render_targets.color_buffer_ids[index];
if (flags[Dirty::ColorBuffer0 + index] || force) {
flags[Dirty::ColorBuffer0 + index] = false;
BindRenderTarget(&color_buffer_id, FindColorBuffer(index, is_clear));
}
PrepareImageView(color_buffer_id, true, is_clear && IsFullClear(color_buffer_id));
}
if (flags[Dirty::ZetaBuffer] || force) {
flags[Dirty::ZetaBuffer] = false;
BindRenderTarget(&render_targets.depth_buffer_id, FindDepthBuffer(is_clear));
}
const ImageViewId depth_buffer_id = render_targets.depth_buffer_id;
PrepareImageView(depth_buffer_id, true, is_clear && IsFullClear(depth_buffer_id));
@@ -227,9 +314,15 @@ void TextureCache<P>::UpdateRenderTargets(bool is_clear) {
for (size_t index = 0; index < NUM_RT; ++index) {
render_targets.draw_buffers[index] = static_cast<u8>(maxwell3d.regs.rt_control.Map(index));
}
u32 up_scale = 1;
u32 down_shift = 0;
if (is_rescaling) {
up_scale = Settings::values.resolution_info.up_scale;
down_shift = Settings::values.resolution_info.down_shift;
}
render_targets.size = Extent2D{
maxwell3d.regs.render_area.width,
maxwell3d.regs.render_area.height,
(maxwell3d.regs.render_area.width * up_scale) >> down_shift,
(maxwell3d.regs.render_area.height * up_scale) >> down_shift,
};
flags[Dirty::DepthBiasGlobal] = true;
@@ -241,17 +334,29 @@ typename P::Framebuffer* TextureCache<P>::GetFramebuffer() {
}
template <class P>
template <bool has_blacklists>
void TextureCache<P>::FillImageViews(DescriptorTable<TICEntry>& table,
std::span<ImageViewId> cached_image_view_ids,
std::span<const u32> indices,
std::span<ImageViewId> image_view_ids) {
ASSERT(indices.size() <= image_view_ids.size());
std::span<ImageViewInOut> views) {
bool has_blacklisted;
do {
has_deleted_images = false;
std::ranges::transform(indices, image_view_ids.begin(), [&](u32 index) {
return VisitImageView(table, cached_image_view_ids, index);
});
} while (has_deleted_images);
if constexpr (has_blacklists) {
has_blacklisted = false;
}
for (ImageViewInOut& view : views) {
view.id = VisitImageView(table, cached_image_view_ids, view.index);
if constexpr (has_blacklists) {
if (view.blacklist && view.id != NULL_IMAGE_VIEW_ID) {
const ImageViewBase& image_view{slot_image_views[view.id]};
auto& image = slot_images[image_view.image_id];
image.flags |= ImageFlagBits::Blacklisted;
has_blacklisted |= ScaleDown(image);
image.scale_rating = 0;
}
}
}
} while (has_deleted_images || (has_blacklists && has_blacklisted));
}
template <class P>
@@ -369,8 +474,43 @@ void TextureCache<P>::BlitImage(const Tegra::Engines::Fermi2D::Surface& dst,
PrepareImage(src_id, false, false);
PrepareImage(dst_id, true, false);
ImageBase& dst_image = slot_images[dst_id];
const ImageBase& src_image = slot_images[src_id];
Image& dst_image = slot_images[dst_id];
Image& src_image = slot_images[src_id];
bool is_src_rescaled = True(src_image.flags & ImageFlagBits::Rescaled);
bool is_dst_rescaled = True(dst_image.flags & ImageFlagBits::Rescaled);
const bool is_resolve = src_image.info.num_samples != 1 && dst_image.info.num_samples == 1;
if (is_src_rescaled != is_dst_rescaled) {
if (ImageCanRescale(src_image)) {
ScaleUp(src_image);
is_src_rescaled = True(src_image.flags & ImageFlagBits::Rescaled);
if (is_resolve) {
dst_image.info.rescaleable = true;
for (const auto& alias : dst_image.aliased_images) {
Image& other_image = slot_images[alias.id];
other_image.info.rescaleable = true;
}
}
}
if (ImageCanRescale(dst_image)) {
ScaleUp(dst_image);
is_dst_rescaled = True(dst_image.flags & ImageFlagBits::Rescaled);
}
}
if (is_resolve && (is_src_rescaled != is_dst_rescaled)) {
// A resolve requires both images to be the same dimensions. Resize down if needed.
ScaleDown(src_image);
ScaleDown(dst_image);
is_src_rescaled = True(src_image.flags & ImageFlagBits::Rescaled);
is_dst_rescaled = True(dst_image.flags & ImageFlagBits::Rescaled);
}
const auto& resolution = Settings::values.resolution_info;
const auto scale_region = [&](Region2D& region) {
region.start.x = resolution.ScaleUp(region.start.x);
region.start.y = resolution.ScaleUp(region.start.y);
region.end.x = resolution.ScaleUp(region.end.x);
region.end.y = resolution.ScaleUp(region.end.y);
};
// TODO: Deduplicate
const std::optional src_base = src_image.TryFindBase(src.Address());
@@ -378,20 +518,26 @@ void TextureCache<P>::BlitImage(const Tegra::Engines::Fermi2D::Surface& dst,
const ImageViewInfo src_view_info(ImageViewType::e2D, images.src_format, src_range);
const auto [src_framebuffer_id, src_view_id] = RenderTargetFromImage(src_id, src_view_info);
const auto [src_samples_x, src_samples_y] = SamplesLog2(src_image.info.num_samples);
const Region2D src_region{
Region2D src_region{
Offset2D{.x = copy.src_x0 >> src_samples_x, .y = copy.src_y0 >> src_samples_y},
Offset2D{.x = copy.src_x1 >> src_samples_x, .y = copy.src_y1 >> src_samples_y},
};
if (is_src_rescaled) {
scale_region(src_region);
}
const std::optional dst_base = dst_image.TryFindBase(dst.Address());
const SubresourceRange dst_range{.base = dst_base.value(), .extent = {1, 1}};
const ImageViewInfo dst_view_info(ImageViewType::e2D, images.dst_format, dst_range);
const auto [dst_framebuffer_id, dst_view_id] = RenderTargetFromImage(dst_id, dst_view_info);
const auto [dst_samples_x, dst_samples_y] = SamplesLog2(dst_image.info.num_samples);
const Region2D dst_region{
Region2D dst_region{
Offset2D{.x = copy.dst_x0 >> dst_samples_x, .y = copy.dst_y0 >> dst_samples_y},
Offset2D{.x = copy.dst_x1 >> dst_samples_x, .y = copy.dst_y1 >> dst_samples_y},
};
if (is_dst_rescaled) {
scale_region(dst_region);
}
// Always call this after src_framebuffer_id was queried, as the address might be invalidated.
Framebuffer* const dst_framebuffer = &slot_framebuffers[dst_framebuffer_id];
@@ -486,6 +632,20 @@ void TextureCache<P>::PopAsyncFlushes() {
committed_downloads.pop();
}
template <class P>
bool TextureCache<P>::IsRescaling() const noexcept {
return is_rescaling;
}
template <class P>
bool TextureCache<P>::IsRescaling(const ImageViewBase& image_view) const noexcept {
if (image_view.type == ImageViewType::Buffer) {
return false;
}
const ImageBase& image = slot_images[image_view.image_id];
return True(image.flags & ImageFlagBits::Rescaled);
}
template <class P>
bool TextureCache<P>::IsRegionGpuModified(VAddr addr, size_t size) {
bool is_modified = false;
@@ -623,6 +783,105 @@ ImageId TextureCache<P>::FindImage(const ImageInfo& info, GPUVAddr gpu_addr,
return image_id;
}
template <class P>
bool TextureCache<P>::ImageCanRescale(ImageBase& image) {
if (!image.info.rescaleable) {
return false;
}
if (Settings::values.resolution_info.downscale && !image.info.downscaleable) {
return false;
}
if (True(image.flags & (ImageFlagBits::Rescaled | ImageFlagBits::CheckingRescalable))) {
return true;
}
if (True(image.flags & ImageFlagBits::IsRescalable)) {
return true;
}
image.flags |= ImageFlagBits::CheckingRescalable;
for (const auto& alias : image.aliased_images) {
Image& other_image = slot_images[alias.id];
if (!ImageCanRescale(other_image)) {
image.flags &= ~ImageFlagBits::CheckingRescalable;
return false;
}
}
image.flags &= ~ImageFlagBits::CheckingRescalable;
image.flags |= ImageFlagBits::IsRescalable;
return true;
}
template <class P>
void TextureCache<P>::InvalidateScale(Image& image) {
if (image.scale_tick <= frame_tick) {
image.scale_tick = frame_tick + 1;
}
const std::span<const ImageViewId> image_view_ids = image.image_view_ids;
auto& dirty = maxwell3d.dirty.flags;
dirty[Dirty::RenderTargets] = true;
dirty[Dirty::ZetaBuffer] = true;
for (size_t rt = 0; rt < NUM_RT; ++rt) {
dirty[Dirty::ColorBuffer0 + rt] = true;
}
for (const ImageViewId image_view_id : image_view_ids) {
std::ranges::replace(render_targets.color_buffer_ids, image_view_id, ImageViewId{});
if (render_targets.depth_buffer_id == image_view_id) {
render_targets.depth_buffer_id = ImageViewId{};
}
}
RemoveImageViewReferences(image_view_ids);
RemoveFramebuffers(image_view_ids);
for (const ImageViewId image_view_id : image_view_ids) {
sentenced_image_view.Push(std::move(slot_image_views[image_view_id]));
slot_image_views.erase(image_view_id);
}
image.image_view_ids.clear();
image.image_view_infos.clear();
if constexpr (ENABLE_VALIDATION) {
std::ranges::fill(graphics_image_view_ids, CORRUPT_ID);
std::ranges::fill(compute_image_view_ids, CORRUPT_ID);
}
graphics_image_table.Invalidate();
compute_image_table.Invalidate();
has_deleted_images = true;
}
template <class P>
u64 TextureCache<P>::GetScaledImageSizeBytes(ImageBase& image) {
const u64 scale_up = static_cast<u64>(Settings::values.resolution_info.up_scale *
Settings::values.resolution_info.up_scale);
const u64 down_shift = static_cast<u64>(Settings::values.resolution_info.down_shift +
Settings::values.resolution_info.down_shift);
const u64 image_size_bytes =
static_cast<u64>(std::max(image.guest_size_bytes, image.unswizzled_size_bytes));
const u64 tentative_size = (image_size_bytes * scale_up) >> down_shift;
const u64 fitted_size = Common::AlignUp(tentative_size, 1024);
return fitted_size;
}
template <class P>
bool TextureCache<P>::ScaleUp(Image& image) {
const bool has_copy = image.HasScaled();
const bool rescaled = image.ScaleUp();
if (!rescaled) {
return false;
}
if (!has_copy) {
total_used_memory += GetScaledImageSizeBytes(image);
}
InvalidateScale(image);
return true;
}
template <class P>
bool TextureCache<P>::ScaleDown(Image& image) {
const bool rescaled = image.ScaleDown();
if (!rescaled) {
return false;
}
InvalidateScale(image);
return true;
}
template <class P>
ImageId TextureCache<P>::InsertImage(const ImageInfo& info, GPUVAddr gpu_addr,
RelaxedOptions options) {
@@ -660,12 +919,18 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
std::vector<ImageId> right_aliased_ids;
std::unordered_set<ImageId> ignore_textures;
std::vector<ImageId> bad_overlap_ids;
std::vector<ImageId> all_siblings;
const bool this_is_linear = info.type == ImageType::Linear;
const auto region_check = [&](ImageId overlap_id, ImageBase& overlap) {
if (True(overlap.flags & ImageFlagBits::Remapped)) {
ignore_textures.insert(overlap_id);
return;
}
if (info.type == ImageType::Linear) {
const bool overlap_is_linear = overlap.info.type == ImageType::Linear;
if (this_is_linear != overlap_is_linear) {
return;
}
if (this_is_linear && overlap_is_linear) {
if (info.pitch == overlap.info.pitch && gpu_addr == overlap.gpu_addr) {
// Alias linear images with the same pitch
left_aliased_ids.push_back(overlap_id);
@@ -681,6 +946,7 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
cpu_addr = solution->cpu_addr;
new_info.resources = solution->resources;
overlap_ids.push_back(overlap_id);
all_siblings.push_back(overlap_id);
return;
}
static constexpr auto options = RelaxedOptions::Size | RelaxedOptions::Format;
@@ -688,10 +954,12 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
if (IsSubresource(new_info, overlap, gpu_addr, options, broken_views, native_bgr)) {
left_aliased_ids.push_back(overlap_id);
overlap.flags |= ImageFlagBits::Alias;
all_siblings.push_back(overlap_id);
} else if (IsSubresource(overlap.info, new_image_base, overlap.gpu_addr, options,
broken_views, native_bgr)) {
right_aliased_ids.push_back(overlap_id);
overlap.flags |= ImageFlagBits::Alias;
all_siblings.push_back(overlap_id);
} else {
bad_overlap_ids.push_back(overlap_id);
overlap.flags |= ImageFlagBits::BadOverlap;
@@ -709,6 +977,37 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
}
};
ForEachSparseImageInRegion(gpu_addr, size_bytes, region_check_gpu);
bool can_rescale = info.rescaleable;
bool any_rescaled = false;
bool any_blacklisted = false;
for (const ImageId sibling_id : all_siblings) {
if (!can_rescale) {
break;
}
Image& sibling = slot_images[sibling_id];
can_rescale &= ImageCanRescale(sibling);
any_rescaled |= True(sibling.flags & ImageFlagBits::Rescaled);
any_blacklisted |= True(sibling.flags & ImageFlagBits::Blacklisted);
}
can_rescale &= any_rescaled;
if (can_rescale) {
for (const ImageId sibling_id : all_siblings) {
Image& sibling = slot_images[sibling_id];
ScaleUp(sibling);
}
} else {
for (const ImageId sibling_id : all_siblings) {
Image& sibling = slot_images[sibling_id];
ScaleDown(sibling);
if (any_blacklisted) {
sibling.flags |= ImageFlagBits::Blacklisted;
}
}
}
const ImageId new_image_id = slot_images.insert(runtime, new_info, gpu_addr, cpu_addr);
Image& new_image = slot_images[new_image_id];
@@ -731,14 +1030,23 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
// TODO: Only upload what we need
RefreshContents(new_image, new_image_id);
if (can_rescale) {
ScaleUp(new_image);
} else {
ScaleDown(new_image);
}
for (const ImageId overlap_id : overlap_ids) {
Image& overlap = slot_images[overlap_id];
if (overlap.info.num_samples != new_image.info.num_samples) {
LOG_WARNING(HW_GPU, "Copying between images with different samples is not implemented");
} else {
const auto& resolution = Settings::values.resolution_info;
const SubresourceBase base = new_image.TryFindBase(overlap.gpu_addr).value();
const auto copies = MakeShrinkImageCopies(new_info, overlap.info, base);
runtime.CopyImage(new_image, overlap, copies);
const u32 up_scale = can_rescale ? resolution.up_scale : 1;
const u32 down_shift = can_rescale ? resolution.down_shift : 0;
auto copies = MakeShrinkImageCopies(new_info, overlap.info, base, up_scale, down_shift);
runtime.CopyImage(new_image, overlap, std::move(copies));
}
if (True(overlap.flags & ImageFlagBits::Tracked)) {
UntrackImage(overlap, overlap_id);
@@ -1083,13 +1391,6 @@ void TextureCache<P>::UnregisterImage(ImageId image_id) {
"Trying to unregister an already registered image");
image.flags &= ~ImageFlagBits::Registered;
image.flags &= ~ImageFlagBits::BadOverlap;
u64 tentative_size = std::max(image.guest_size_bytes, image.unswizzled_size_bytes);
if ((IsPixelFormatASTC(image.info.format) &&
True(image.flags & ImageFlagBits::AcceleratedUpload)) ||
True(image.flags & ImageFlagBits::Converted)) {
tentative_size = EstimatedDecompressedSize(tentative_size, image.info.format);
}
total_used_memory -= Common::AlignUp(tentative_size, 1024);
lru_cache.Free(image.lru_index);
const auto& clear_page_table =
[this, image_id](
@@ -1213,8 +1514,18 @@ void TextureCache<P>::UntrackImage(ImageBase& image, ImageId image_id) {
}
template <class P>
void TextureCache<P>::DeleteImage(ImageId image_id) {
void TextureCache<P>::DeleteImage(ImageId image_id, bool immediate_delete) {
ImageBase& image = slot_images[image_id];
if (image.HasScaled()) {
total_used_memory -= GetScaledImageSizeBytes(image);
}
u64 tentative_size = std::max(image.guest_size_bytes, image.unswizzled_size_bytes);
if ((IsPixelFormatASTC(image.info.format) &&
True(image.flags & ImageFlagBits::AcceleratedUpload)) ||
True(image.flags & ImageFlagBits::Converted)) {
tentative_size = EstimatedDecompressedSize(tentative_size, image.info.format);
}
total_used_memory -= Common::AlignUp(tentative_size, 1024);
const GPUVAddr gpu_addr = image.gpu_addr;
const auto alloc_it = image_allocs_table.find(gpu_addr);
if (alloc_it == image_allocs_table.end()) {
@@ -1269,10 +1580,14 @@ void TextureCache<P>::DeleteImage(ImageId image_id) {
num_removed_overlaps);
}
for (const ImageViewId image_view_id : image_view_ids) {
sentenced_image_view.Push(std::move(slot_image_views[image_view_id]));
if (!immediate_delete) {
sentenced_image_view.Push(std::move(slot_image_views[image_view_id]));
}
slot_image_views.erase(image_view_id);
}
sentenced_images.Push(std::move(slot_images[image_id]));
if (!immediate_delete) {
sentenced_images.Push(std::move(slot_images[image_id]));
}
slot_images.erase(image_id);
alloc_images.erase(alloc_image_it);
@@ -1322,26 +1637,68 @@ void TextureCache<P>::MarkModification(ImageBase& image) noexcept {
template <class P>
void TextureCache<P>::SynchronizeAliases(ImageId image_id) {
boost::container::small_vector<const AliasedImage*, 1> aliased_images;
ImageBase& image = slot_images[image_id];
Image& image = slot_images[image_id];
bool any_rescaled = True(image.flags & ImageFlagBits::Rescaled);
bool any_blacklisted = True(image.flags & ImageFlagBits::Blacklisted);
u64 most_recent_tick = image.modification_tick;
for (const AliasedImage& aliased : image.aliased_images) {
ImageBase& aliased_image = slot_images[aliased.id];
if (image.modification_tick < aliased_image.modification_tick) {
most_recent_tick = std::max(most_recent_tick, aliased_image.modification_tick);
aliased_images.push_back(&aliased);
any_rescaled |= True(aliased_image.flags & ImageFlagBits::Rescaled);
any_blacklisted |= True(aliased_image.flags & ImageFlagBits::Blacklisted);
}
}
if (aliased_images.empty()) {
return;
}
const bool can_rescale = ImageCanRescale(image);
if (any_rescaled) {
if (can_rescale) {
ScaleUp(image);
} else {
ScaleDown(image);
if (any_blacklisted) {
image.flags |= ImageFlagBits::Blacklisted;
}
}
}
image.modification_tick = most_recent_tick;
std::ranges::sort(aliased_images, [this](const AliasedImage* lhs, const AliasedImage* rhs) {
const ImageBase& lhs_image = slot_images[lhs->id];
const ImageBase& rhs_image = slot_images[rhs->id];
return lhs_image.modification_tick < rhs_image.modification_tick;
});
const auto& resolution = Settings::values.resolution_info;
for (const AliasedImage* const aliased : aliased_images) {
CopyImage(image_id, aliased->id, aliased->copies);
if (!resolution.active | !any_rescaled) {
CopyImage(image_id, aliased->id, aliased->copies);
continue;
}
Image& aliased_image = slot_images[aliased->id];
if (!can_rescale) {
ScaleDown(aliased_image);
if (any_blacklisted) {
aliased_image.flags |= ImageFlagBits::Blacklisted;
}
CopyImage(image_id, aliased->id, aliased->copies);
continue;
}
ScaleUp(aliased_image);
const bool both_2d{image.info.type == ImageType::e2D &&
aliased_image.info.type == ImageType::e2D};
auto copies = aliased->copies;
for (auto copy : copies) {
copy.extent.width = std::max<u32>(
(copy.extent.width * resolution.up_scale) >> resolution.down_shift, 1);
if (both_2d) {
copy.extent.height = std::max<u32>(
(copy.extent.height * resolution.up_scale) >> resolution.down_shift, 1);
}
}
CopyImage(image_id, aliased->id, copies);
}
}
@@ -1377,9 +1734,25 @@ void TextureCache<P>::PrepareImageView(ImageViewId image_view_id, bool is_modifi
}
template <class P>
void TextureCache<P>::CopyImage(ImageId dst_id, ImageId src_id, std::span<const ImageCopy> copies) {
void TextureCache<P>::CopyImage(ImageId dst_id, ImageId src_id, std::vector<ImageCopy> copies) {
Image& dst = slot_images[dst_id];
Image& src = slot_images[src_id];
const bool is_rescaled = True(src.flags & ImageFlagBits::Rescaled);
if (is_rescaled) {
ASSERT(True(dst.flags & ImageFlagBits::Rescaled));
const bool both_2d{src.info.type == ImageType::e2D && dst.info.type == ImageType::e2D};
const auto& resolution = Settings::values.resolution_info;
for (auto& copy : copies) {
copy.src_offset.x = resolution.ScaleUp(copy.src_offset.x);
copy.dst_offset.x = resolution.ScaleUp(copy.dst_offset.x);
copy.extent.width = resolution.ScaleUp(copy.extent.width);
if (both_2d) {
copy.src_offset.y = resolution.ScaleUp(copy.src_offset.y);
copy.dst_offset.y = resolution.ScaleUp(copy.dst_offset.y);
copy.extent.height = resolution.ScaleUp(copy.extent.height);
}
}
}
const auto dst_format_type = GetFormatType(dst.info.format);
const auto src_format_type = GetFormatType(src.info.format);
if (src_format_type == dst_format_type) {
@@ -1424,7 +1797,7 @@ void TextureCache<P>::CopyImage(ImageId dst_id, ImageId src_id, std::span<const
};
UNIMPLEMENTED_IF(copy.extent != expected_size);
runtime.ConvertImage(dst_framebuffer, dst_view, src_view);
runtime.ConvertImage(dst_framebuffer, dst_view, src_view, is_rescaled);
}
}
@@ -1433,8 +1806,8 @@ void TextureCache<P>::BindRenderTarget(ImageViewId* old_id, ImageViewId new_id)
if (*old_id == new_id) {
return;
}
if (*old_id) {
const ImageViewBase& old_view = slot_image_views[*old_id];
if (new_id) {
const ImageViewBase& old_view = slot_image_views[new_id];
if (True(old_view.flags & ImageViewFlagBits::PreemtiveDownload)) {
uncommitted_downloads.push_back(old_view.image_id);
}
@@ -1447,10 +1820,18 @@ std::pair<FramebufferId, ImageViewId> TextureCache<P>::RenderTargetFromImage(
ImageId image_id, const ImageViewInfo& view_info) {
const ImageViewId view_id = FindOrEmplaceImageView(image_id, view_info);
const ImageBase& image = slot_images[image_id];
const bool is_rescaled = True(image.flags & ImageFlagBits::Rescaled);
const bool is_color = GetFormatType(image.info.format) == SurfaceType::ColorTexture;
const ImageViewId color_view_id = is_color ? view_id : ImageViewId{};
const ImageViewId depth_view_id = is_color ? ImageViewId{} : view_id;
const Extent3D extent = MipSize(image.info.size, view_info.range.base.level);
Extent3D extent = MipSize(image.info.size, view_info.range.base.level);
if (is_rescaled) {
const auto& resolution = Settings::values.resolution_info;
extent.width = resolution.ScaleUp(extent.width);
if (image.info.type == ImageType::e2D) {
extent.height = resolution.ScaleUp(extent.height);
}
}
const u32 num_samples = image.info.num_samples;
const auto [samples_x, samples_y] = SamplesLog2(num_samples);
const FramebufferId framebuffer_id = GetFramebufferId(RenderTargets{

View File

@@ -21,6 +21,7 @@
#include "video_core/texture_cache/descriptor_table.h"
#include "video_core/texture_cache/image_base.h"
#include "video_core/texture_cache/image_info.h"
#include "video_core/texture_cache/image_view_base.h"
#include "video_core/texture_cache/image_view_info.h"
#include "video_core/texture_cache/render_targets.h"
#include "video_core/texture_cache/slot_vector.h"
@@ -39,6 +40,12 @@ using VideoCore::Surface::PixelFormatFromDepthFormat;
using VideoCore::Surface::PixelFormatFromRenderTargetFormat;
using namespace Common::Literals;
struct ImageViewInOut {
u32 index{};
bool blacklist{};
ImageViewId id{};
};
template <class P>
class TextureCache {
/// Address shift for caching images into a hash table
@@ -53,11 +60,6 @@ class TextureCache {
/// True when the API can provide info about the memory of the device.
static constexpr bool HAS_DEVICE_MEMORY_INFO = P::HAS_DEVICE_MEMORY_INFO;
/// Image view ID for null descriptors
static constexpr ImageViewId NULL_IMAGE_VIEW_ID{0};
/// Sampler ID for bugged sampler ids
static constexpr SamplerId NULL_SAMPLER_ID{0};
static constexpr u64 DEFAULT_EXPECTED_MEMORY = 1_GiB;
static constexpr u64 DEFAULT_CRITICAL_MEMORY = 2_GiB;
@@ -99,11 +101,11 @@ public:
void MarkModification(ImageId id) noexcept;
/// Fill image_view_ids with the graphics images in indices
void FillGraphicsImageViews(std::span<const u32> indices,
std::span<ImageViewId> image_view_ids);
template <bool has_blacklists>
void FillGraphicsImageViews(std::span<ImageViewInOut> views);
/// Fill image_view_ids with the compute images in indices
void FillComputeImageViews(std::span<const u32> indices, std::span<ImageViewId> image_view_ids);
void FillComputeImageViews(std::span<ImageViewInOut> views);
/// Get the sampler from the graphics descriptor table in the specified index
Sampler* GetGraphicsSampler(u32 index);
@@ -160,6 +162,10 @@ public:
/// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size);
[[nodiscard]] bool IsRescaling() const noexcept;
[[nodiscard]] bool IsRescaling(const ImageViewBase& image_view) const noexcept;
std::mutex mutex;
private:
@@ -198,9 +204,10 @@ private:
void RunGarbageCollector();
/// Fills image_view_ids in the image views in indices
template <bool has_blacklists>
void FillImageViews(DescriptorTable<TICEntry>& table,
std::span<ImageViewId> cached_image_view_ids, std::span<const u32> indices,
std::span<ImageViewId> image_view_ids);
std::span<ImageViewId> cached_image_view_ids,
std::span<ImageViewInOut> views);
/// Find or create an image view in the guest descriptor table
ImageViewId VisitImageView(DescriptorTable<TICEntry>& table,
@@ -285,7 +292,7 @@ private:
void UntrackImage(ImageBase& image, ImageId image_id);
/// Delete image from the cache
void DeleteImage(ImageId image);
void DeleteImage(ImageId image, bool immediate_delete = false);
/// Remove image views references from the cache
void RemoveImageViewReferences(std::span<const ImageViewId> removed_views);
@@ -306,7 +313,7 @@ private:
void PrepareImageView(ImageViewId image_view_id, bool is_modification, bool invalidate);
/// Execute copies from one image to the other, even if they are incompatible
void CopyImage(ImageId dst_id, ImageId src_id, std::span<const ImageCopy> copies);
void CopyImage(ImageId dst_id, ImageId src_id, std::vector<ImageCopy> copies);
/// Bind an image view as render target, downloading resources preemtively if needed
void BindRenderTarget(ImageViewId* old_id, ImageViewId new_id);
@@ -318,6 +325,12 @@ private:
/// Returns true if the current clear parameters clear the whole image of a given image view
[[nodiscard]] bool IsFullClear(ImageViewId id);
bool ImageCanRescale(ImageBase& image);
void InvalidateScale(Image& image);
bool ScaleUp(Image& image);
bool ScaleDown(Image& image);
u64 GetScaledImageSizeBytes(ImageBase& image);
Runtime& runtime;
VideoCore::RasterizerInterface& rasterizer;
Tegra::Engines::Maxwell3D& maxwell3d;
@@ -349,6 +362,7 @@ private:
VAddr virtual_invalid_space{};
bool has_deleted_images = false;
bool is_rescaling = false;
u64 total_used_memory = 0;
u64 minimum_memory;
u64 expected_memory;

View File

@@ -22,6 +22,13 @@ using ImageAllocId = SlotId;
using SamplerId = SlotId;
using FramebufferId = SlotId;
/// Fake image ID for null image views
constexpr ImageId NULL_IMAGE_ID{0};
/// Image view ID for null descriptors
constexpr ImageViewId NULL_IMAGE_VIEW_ID{0};
/// Sampler ID for bugged sampler ids
constexpr SamplerId NULL_SAMPLER_ID{0};
enum class ImageType : u32 {
e1D,
e2D,

View File

@@ -723,7 +723,7 @@ ImageViewType RenderTargetImageViewType(const ImageInfo& info) noexcept {
}
std::vector<ImageCopy> MakeShrinkImageCopies(const ImageInfo& dst, const ImageInfo& src,
SubresourceBase base) {
SubresourceBase base, u32 up_scale, u32 down_shift) {
ASSERT(dst.resources.levels >= src.resources.levels);
ASSERT(dst.num_samples == src.num_samples);
@@ -732,7 +732,7 @@ std::vector<ImageCopy> MakeShrinkImageCopies(const ImageInfo& dst, const ImageIn
ASSERT(src.type == ImageType::e3D);
ASSERT(src.resources.levels == 1);
}
const bool both_2d{src.type == ImageType::e2D && dst.type == ImageType::e2D};
std::vector<ImageCopy> copies;
copies.reserve(src.resources.levels);
for (s32 level = 0; level < src.resources.levels; ++level) {
@@ -762,6 +762,10 @@ std::vector<ImageCopy> MakeShrinkImageCopies(const ImageInfo& dst, const ImageIn
if (is_dst_3d) {
copy.extent.depth = src.size.depth;
}
copy.extent.width = std::max<u32>((copy.extent.width * up_scale) >> down_shift, 1);
if (both_2d) {
copy.extent.height = std::max<u32>((copy.extent.height * up_scale) >> down_shift, 1);
}
}
return copies;
}
@@ -1153,10 +1157,10 @@ void DeduceBlitImages(ImageInfo& dst_info, ImageInfo& src_info, const ImageBase*
if (dst && GetFormatType(dst->info.format) != SurfaceType::ColorTexture) {
dst_info.format = dst->info.format;
}
if (!dst && src && GetFormatType(src->info.format) != SurfaceType::ColorTexture) {
if (src && GetFormatType(src->info.format) != SurfaceType::ColorTexture) {
dst_info.format = src->info.format;
}
if (!src && dst && GetFormatType(dst->info.format) != SurfaceType::ColorTexture) {
if (dst && GetFormatType(dst->info.format) != SurfaceType::ColorTexture) {
src_info.format = dst->info.format;
}
}

View File

@@ -55,7 +55,8 @@ struct OverlapResult {
[[nodiscard]] std::vector<ImageCopy> MakeShrinkImageCopies(const ImageInfo& dst,
const ImageInfo& src,
SubresourceBase base);
SubresourceBase base, u32 up_scale = 1,
u32 down_shift = 0);
[[nodiscard]] bool IsValidEntry(const Tegra::MemoryManager& gpu_memory, const TICEntry& config);

View File

@@ -37,6 +37,8 @@ std::unique_ptr<VideoCore::RendererBase> CreateRenderer(
namespace VideoCore {
std::unique_ptr<Tegra::GPU> CreateGPU(Core::Frontend::EmuWindow& emu_window, Core::System& system) {
Settings::UpdateRescalingInfo();
const auto nvdec_value = Settings::values.nvdec_emulation.GetValue();
const bool use_nvdec = nvdec_value != Settings::NvdecEmulation::Off;
const bool use_async = Settings::values.use_asynchronous_gpu_emulation.GetValue();
@@ -53,11 +55,10 @@ std::unique_ptr<Tegra::GPU> CreateGPU(Core::Frontend::EmuWindow& emu_window, Cor
}
}
u16 GetResolutionScaleFactor(const RendererBase& renderer) {
return static_cast<u16>(
Settings::values.resolution_factor.GetValue() != 0
? Settings::values.resolution_factor.GetValue()
: renderer.GetRenderWindow().GetFramebufferLayout().GetScalingRatio());
float GetResolutionScaleFactor(const RendererBase& renderer) {
return Settings::values.resolution_info.active
? Settings::values.resolution_info.up_factor
: renderer.GetRenderWindow().GetFramebufferLayout().GetScalingRatio();
}
} // namespace VideoCore

View File

@@ -25,6 +25,6 @@ class RendererBase;
/// Creates an emulated GPU instance using the given system context.
std::unique_ptr<Tegra::GPU> CreateGPU(Core::Frontend::EmuWindow& emu_window, Core::System& system);
u16 GetResolutionScaleFactor(const RendererBase& renderer);
float GetResolutionScaleFactor(const RendererBase& renderer);
} // namespace VideoCore

View File

@@ -40,6 +40,10 @@ public:
VkFormat GetSupportedFormat(VkFormat wanted_format, VkFormatFeatureFlags wanted_usage,
FormatType format_type) const;
/// Returns true if a format is supported.
bool IsFormatSupported(VkFormat wanted_format, VkFormatFeatureFlags wanted_usage,
FormatType format_type) const;
/// Reports a device loss.
void ReportLoss() const;
@@ -370,10 +374,6 @@ private:
/// Returns true if the device natively supports blitting depth stencil images.
bool TestDepthStencilBlits() const;
/// Returns true if a format is supported.
bool IsFormatSupported(VkFormat wanted_format, VkFormatFeatureFlags wanted_usage,
FormatType format_type) const;
VkInstance instance; ///< Vulkan instance.
vk::DeviceDispatch dld; ///< Device function pointers.
vk::PhysicalDevice physical; ///< Physical device.