yuzu/externals/dynarmic/tests/A64/fuzz_with_unicorn.cpp

514 lines
18 KiB
C++
Executable File

/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <catch.hpp>
#include "../fuzz_util.h"
#include "../rand_int.h"
#include "../unicorn_emu/a64_unicorn.h"
#include "./testenv.h"
#include "dynarmic/common/common_types.h"
#include "dynarmic/common/fp/fpcr.h"
#include "dynarmic/common/fp/fpsr.h"
#include "dynarmic/common/llvm_disassemble.h"
#include "dynarmic/common/scope_exit.h"
#include "dynarmic/frontend/A64/decoder/a64.h"
#include "dynarmic/frontend/A64/location_descriptor.h"
#include "dynarmic/frontend/A64/translate/translate.h"
#include "dynarmic/frontend/A64/types.h"
#include "dynarmic/ir/basic_block.h"
#include "dynarmic/ir/opcodes.h"
#include "dynarmic/ir/opt/passes.h"
// Must be declared last for all necessary operator<< to be declared prior to this.
#include <fmt/format.h>
#include <fmt/ostream.h>
using namespace Dynarmic;
static bool ShouldTestInst(u32 instruction, u64 pc, bool is_last_inst) {
const A64::LocationDescriptor location{pc, {}};
IR::Block block{location};
bool should_continue = A64::TranslateSingleInstruction(block, location, instruction);
if (!should_continue && !is_last_inst)
return false;
if (auto terminal = block.GetTerminal(); boost::get<IR::Term::Interpret>(&terminal))
return false;
for (const auto& ir_inst : block) {
switch (ir_inst.GetOpcode()) {
case IR::Opcode::A64ExceptionRaised:
case IR::Opcode::A64CallSupervisor:
case IR::Opcode::A64DataCacheOperationRaised:
case IR::Opcode::A64GetCNTPCT:
return false;
default:
continue;
}
}
return true;
}
static u32 GenRandomInst(u64 pc, bool is_last_inst) {
static const struct InstructionGeneratorInfo {
std::vector<InstructionGenerator> generators;
std::vector<InstructionGenerator> invalid;
} instructions = [] {
const std::vector<std::tuple<std::string, const char*>> list{
#define INST(fn, name, bitstring) {#fn, bitstring},
#include "dynarmic/frontend/A64/decoder/a64.inc"
#undef INST
};
std::vector<InstructionGenerator> generators;
std::vector<InstructionGenerator> invalid;
// List of instructions not to test
const std::vector<std::string> do_not_test{
// Unimplemented in QEMU
"STLLR",
// Unimplemented in QEMU
"LDLAR",
// Dynarmic and QEMU currently differ on how the exclusive monitor's address range works.
"STXR",
"STLXR",
"STXP",
"STLXP",
"LDXR",
"LDAXR",
"LDXP",
"LDAXP",
// Behaviour differs from QEMU
"MSR_reg",
"MSR_imm",
"MRS",
};
for (const auto& [fn, bitstring] : list) {
if (fn == "UnallocatedEncoding") {
continue;
}
if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
invalid.emplace_back(InstructionGenerator{bitstring});
continue;
}
generators.emplace_back(InstructionGenerator{bitstring});
}
return InstructionGeneratorInfo{generators, invalid};
}();
while (true) {
const size_t index = RandInt<size_t>(0, instructions.generators.size() - 1);
const u32 inst = instructions.generators[index].Generate();
if (std::any_of(instructions.invalid.begin(), instructions.invalid.end(), [inst](const auto& invalid) { return invalid.Match(inst); })) {
continue;
}
if (ShouldTestInst(inst, pc, is_last_inst)) {
return inst;
}
}
}
static u32 GenFloatInst(u64 pc, bool is_last_inst) {
static const std::vector<InstructionGenerator> instruction_generators = [] {
const std::vector<std::tuple<std::string, std::string, const char*>> list{
#define INST(fn, name, bitstring) {#fn, #name, bitstring},
#include "dynarmic/frontend/A64/decoder/a64.inc"
#undef INST
};
// List of instructions not to test
const std::vector<std::string> do_not_test{};
std::vector<InstructionGenerator> result;
for (const auto& [fn, name, bitstring] : list) {
(void)name;
if (fn[0] != 'F') {
continue;
} else if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
continue;
}
result.emplace_back(InstructionGenerator{bitstring});
}
return result;
}();
while (true) {
const size_t index = RandInt<size_t>(0, instruction_generators.size() - 1);
const u32 instruction = instruction_generators[index].Generate();
if (ShouldTestInst(instruction, pc, is_last_inst)) {
return instruction;
}
}
}
static Dynarmic::A64::UserConfig GetUserConfig(A64TestEnv& jit_env) {
Dynarmic::A64::UserConfig jit_user_config{&jit_env};
jit_user_config.optimizations &= ~OptimizationFlag::FastDispatch;
// The below corresponds to the settings for qemu's aarch64_max_initfn
jit_user_config.dczid_el0 = 7;
jit_user_config.ctr_el0 = 0x80038003;
return jit_user_config;
}
static void RunTestInstance(Dynarmic::A64::Jit& jit, A64Unicorn& uni, A64TestEnv& jit_env, A64TestEnv& uni_env, const A64Unicorn::RegisterArray& regs, const A64Unicorn::VectorArray& vecs, const size_t instructions_start, const std::vector<u32>& instructions, const u32 pstate, const u32 fpcr) {
jit_env.code_mem = instructions;
uni_env.code_mem = instructions;
jit_env.code_mem.emplace_back(0x14000000); // B .
uni_env.code_mem.emplace_back(0x14000000); // B .
jit_env.code_mem_start_address = instructions_start;
uni_env.code_mem_start_address = instructions_start;
jit_env.modified_memory.clear();
uni_env.modified_memory.clear();
jit_env.interrupts.clear();
uni_env.interrupts.clear();
const u64 initial_sp = RandInt<u64>(0x30'0000'0000, 0x40'0000'0000) * 4;
jit.SetRegisters(regs);
jit.SetVectors(vecs);
jit.SetPC(instructions_start);
jit.SetSP(initial_sp);
jit.SetFpcr(fpcr);
jit.SetFpsr(0);
jit.SetPstate(pstate);
jit.ClearCache();
uni.SetRegisters(regs);
uni.SetVectors(vecs);
uni.SetPC(instructions_start);
uni.SetSP(initial_sp);
uni.SetFpcr(fpcr);
uni.SetFpsr(0);
uni.SetPstate(pstate);
uni.ClearPageCache();
jit_env.ticks_left = instructions.size();
jit.Run();
uni_env.ticks_left = instructions.size();
uni.Run();
SCOPE_FAIL {
fmt::print("Instruction Listing:\n");
for (u32 instruction : instructions) {
fmt::print("{:08x} {}\n", instruction, Common::DisassembleAArch64(instruction));
}
fmt::print("\n");
fmt::print("Initial register listing:\n");
for (size_t i = 0; i < regs.size(); ++i) {
fmt::print("{:3s}: {:016x}\n", static_cast<A64::Reg>(i), regs[i]);
}
for (size_t i = 0; i < vecs.size(); ++i) {
fmt::print("{:3s}: {}\n", static_cast<A64::Vec>(i), vecs[i]);
}
fmt::print("sp : {:016x}\n", initial_sp);
fmt::print("pc : {:016x}\n", instructions_start);
fmt::print("p : {:08x}\n", pstate);
fmt::print("fpcr {:08x}\n", fpcr);
fmt::print("fpcr.AHP {}\n", FP::FPCR{fpcr}.AHP());
fmt::print("fpcr.DN {}\n", FP::FPCR{fpcr}.DN());
fmt::print("fpcr.FZ {}\n", FP::FPCR{fpcr}.FZ());
fmt::print("fpcr.RMode {}\n", static_cast<size_t>(FP::FPCR{fpcr}.RMode()));
fmt::print("fpcr.FZ16 {}\n", FP::FPCR{fpcr}.FZ16());
fmt::print("\n");
fmt::print("Final register listing:\n");
fmt::print(" unicorn dynarmic\n");
const auto uni_regs = uni.GetRegisters();
for (size_t i = 0; i < regs.size(); ++i) {
fmt::print("{:3s}: {:016x} {:016x} {}\n", static_cast<A64::Reg>(i), uni_regs[i], jit.GetRegisters()[i], uni_regs[i] != jit.GetRegisters()[i] ? "*" : "");
}
const auto uni_vecs = uni.GetVectors();
for (size_t i = 0; i < vecs.size(); ++i) {
fmt::print("{:3s}: {} {} {}\n", static_cast<A64::Vec>(i), uni_vecs[i], jit.GetVectors()[i], uni_vecs[i] != jit.GetVectors()[i] ? "*" : "");
}
fmt::print("sp : {:016x} {:016x} {}\n", uni.GetSP(), jit.GetSP(), uni.GetSP() != jit.GetSP() ? "*" : "");
fmt::print("pc : {:016x} {:016x} {}\n", uni.GetPC(), jit.GetPC(), uni.GetPC() != jit.GetPC() ? "*" : "");
fmt::print("p : {:08x} {:08x} {}\n", uni.GetPstate(), jit.GetPstate(), (uni.GetPstate() & 0xF0000000) != (jit.GetPstate() & 0xF0000000) ? "*" : "");
fmt::print("qc : {:08x} {:08x} {}\n", uni.GetFpsr(), jit.GetFpsr(), FP::FPSR{uni.GetFpsr()}.QC() != FP::FPSR{jit.GetFpsr()}.QC() ? "*" : "");
fmt::print("\n");
fmt::print("Modified memory:\n");
fmt::print(" uni dyn\n");
auto uni_iter = uni_env.modified_memory.begin();
auto jit_iter = jit_env.modified_memory.begin();
while (uni_iter != uni_env.modified_memory.end() || jit_iter != jit_env.modified_memory.end()) {
if (uni_iter == uni_env.modified_memory.end() || (jit_iter != jit_env.modified_memory.end() && uni_iter->first > jit_iter->first)) {
fmt::print("{:016x}: {:02x} *\n", jit_iter->first, jit_iter->second);
jit_iter++;
} else if (jit_iter == jit_env.modified_memory.end() || jit_iter->first > uni_iter->first) {
fmt::print("{:016x}: {:02x} *\n", uni_iter->first, uni_iter->second);
uni_iter++;
} else if (uni_iter->first == jit_iter->first) {
fmt::print("{:016x}: {:02x} {:02x} {}\n", uni_iter->first, uni_iter->second, jit_iter->second, uni_iter->second != jit_iter->second ? "*" : "");
uni_iter++;
jit_iter++;
}
}
fmt::print("\n");
const auto get_code = [&jit_env](u64 vaddr) { return jit_env.MemoryReadCode(vaddr); };
IR::Block ir_block = A64::Translate({instructions_start, FP::FPCR{fpcr}}, get_code, {});
Optimization::A64CallbackConfigPass(ir_block, GetUserConfig(jit_env));
fmt::print("IR:\n");
fmt::print("{}\n", IR::DumpBlock(ir_block));
Optimization::A64GetSetElimination(ir_block);
Optimization::DeadCodeElimination(ir_block);
Optimization::ConstantPropagation(ir_block);
Optimization::DeadCodeElimination(ir_block);
fmt::print("Optimized IR:\n");
fmt::print("{}\n", IR::DumpBlock(ir_block));
fmt::print("x86_64:\n");
fmt::print("{}\n", jit.Disassemble());
fmt::print("Interrupts:\n");
for (auto& i : uni_env.interrupts) {
puts(i.c_str());
}
};
REQUIRE(uni_env.code_mem_modified_by_guest == jit_env.code_mem_modified_by_guest);
if (uni_env.code_mem_modified_by_guest) {
return;
}
REQUIRE(uni.GetPC() == jit.GetPC());
REQUIRE(uni.GetRegisters() == jit.GetRegisters());
REQUIRE(uni.GetVectors() == jit.GetVectors());
REQUIRE(uni.GetSP() == jit.GetSP());
REQUIRE((uni.GetPstate() & 0xF0000000) == (jit.GetPstate() & 0xF0000000));
REQUIRE(uni_env.modified_memory == jit_env.modified_memory);
REQUIRE(uni_env.interrupts.empty());
REQUIRE(FP::FPSR{uni.GetFpsr()}.QC() == FP::FPSR{jit.GetFpsr()}.QC());
}
TEST_CASE("A64: Single random instruction", "[a64]") {
A64TestEnv jit_env{};
A64TestEnv uni_env{};
Dynarmic::A64::Jit jit{GetUserConfig(jit_env)};
A64Unicorn uni{uni_env};
A64Unicorn::RegisterArray regs;
A64Unicorn::VectorArray vecs;
std::vector<u32> instructions(1);
for (size_t iteration = 0; iteration < 100000; ++iteration) {
std::generate(regs.begin(), regs.end(), [] { return RandInt<u64>(0, ~u64(0)); });
std::generate(vecs.begin(), vecs.end(), RandomVector);
instructions[0] = GenRandomInst(0, true);
const u64 start_address = RandInt<u64>(0, 0x10'0000'0000) * 4;
const u32 pstate = RandInt<u32>(0, 0xF) << 28;
const u32 fpcr = RandomFpcr();
INFO("Instruction: 0x" << std::hex << instructions[0]);
RunTestInstance(jit, uni, jit_env, uni_env, regs, vecs, start_address, instructions, pstate, fpcr);
}
}
TEST_CASE("A64: Floating point instructions", "[a64]") {
A64TestEnv jit_env{};
A64TestEnv uni_env{};
Dynarmic::A64::Jit jit{GetUserConfig(jit_env)};
A64Unicorn uni{uni_env};
static constexpr std::array<u64, 80> float_numbers{
0x00000000, // positive zero
0x00000001, // smallest positive denormal
0x00000076, //
0x00002b94, //
0x00636d24, //
0x007fffff, // largest positive denormal
0x00800000, // smallest positive normalised real
0x00800002, //
0x01398437, //
0x0ba98d27, //
0x0ba98d7a, //
0x751f853a, //
0x7f7ffff0, //
0x7f7fffff, // largest positive normalised real
0x7f800000, // positive infinity
0x7f800001, // first positive SNaN
0x7f984a37, //
0x7fbfffff, // last positive SNaN
0x7fc00000, // first positive QNaN
0x7fd9ba98, //
0x7fffffff, // last positive QNaN
0x80000000, // negative zero
0x80000001, // smallest negative denormal
0x80000076, //
0x80002b94, //
0x80636d24, //
0x807fffff, // largest negative denormal
0x80800000, // smallest negative normalised real
0x80800002, //
0x81398437, //
0x8ba98d27, //
0x8ba98d7a, //
0xf51f853a, //
0xff7ffff0, //
0xff7fffff, // largest negative normalised real
0xff800000, // negative infinity
0xff800001, // first negative SNaN
0xff984a37, //
0xffbfffff, // last negative SNaN
0xffc00000, // first negative QNaN
0xffd9ba98, //
0xffffffff, // last negative QNaN
// some random numbers follow
0x4f3495cb,
0xe73a5134,
0x7c994e9e,
0x6164bd6c,
0x09503366,
0xbf5a97c9,
0xe6ff1a14,
0x77f31e2f,
0xaab4d7d8,
0x0966320b,
0xb26bddee,
0xb5c8e5d3,
0x317285d3,
0x3c9623b1,
0x51fd2c7c,
0x7b906a6c,
0x3f800000,
0x3dcccccd,
0x3f000000,
0x42280000,
0x3eaaaaab,
0xc1200000,
0xbf800000,
0xbf8147ae,
0x3f8147ae,
0x415df525,
0xc79b271e,
0x460e8c84,
// some 64-bit-float upper-halves
0x7ff00000, // +SNaN / +Inf
0x7ff0abcd, // +SNaN
0x7ff80000, // +QNaN
0x7ff81234, // +QNaN
0xfff00000, // -SNaN / -Inf
0xfff05678, // -SNaN
0xfff80000, // -QNaN
0xfff809ef, // -QNaN
0x3ff00000, // Number near +1.0
0xbff00000, // Number near -1.0
};
const auto gen_float = [&] {
if (RandInt<size_t>(0, 1) == 0) {
return RandInt<u64>(0, 0xffffffff);
}
return float_numbers[RandInt<size_t>(0, float_numbers.size() - 1)];
};
const auto gen_vector = [&] {
u64 upper = (gen_float() << 32) | gen_float();
u64 lower = (gen_float() << 32) | gen_float();
return Vector{lower, upper};
};
A64Unicorn::RegisterArray regs;
A64Unicorn::VectorArray vecs;
std::vector<u32> instructions(1);
for (size_t iteration = 0; iteration < 100000; ++iteration) {
std::generate(regs.begin(), regs.end(), gen_float);
std::generate(vecs.begin(), vecs.end(), gen_vector);
instructions[0] = GenFloatInst(0, true);
const u64 start_address = RandInt<u64>(0, 0x10'0000'0000) * 4;
const u32 pstate = RandInt<u32>(0, 0xF) << 28;
const u32 fpcr = RandomFpcr();
INFO("Instruction: 0x" << std::hex << instructions[0]);
RunTestInstance(jit, uni, jit_env, uni_env, regs, vecs, start_address, instructions, pstate, fpcr);
}
}
TEST_CASE("A64: Small random block", "[a64]") {
A64TestEnv jit_env{};
A64TestEnv uni_env{};
Dynarmic::A64::Jit jit{GetUserConfig(jit_env)};
A64Unicorn uni{uni_env};
A64Unicorn::RegisterArray regs;
A64Unicorn::VectorArray vecs;
std::vector<u32> instructions(5);
for (size_t iteration = 0; iteration < 100000; ++iteration) {
std::generate(regs.begin(), regs.end(), [] { return RandInt<u64>(0, ~u64(0)); });
std::generate(vecs.begin(), vecs.end(), RandomVector);
instructions[0] = GenRandomInst(0, false);
instructions[1] = GenRandomInst(4, false);
instructions[2] = GenRandomInst(8, false);
instructions[3] = GenRandomInst(12, false);
instructions[4] = GenRandomInst(16, true);
const u64 start_address = RandInt<u64>(0, 0x10'0000'0000) * 4;
const u32 pstate = RandInt<u32>(0, 0xF) << 28;
const u32 fpcr = RandomFpcr();
INFO("Instruction 1: 0x" << std::hex << instructions[0]);
INFO("Instruction 2: 0x" << std::hex << instructions[1]);
INFO("Instruction 3: 0x" << std::hex << instructions[2]);
INFO("Instruction 4: 0x" << std::hex << instructions[3]);
INFO("Instruction 5: 0x" << std::hex << instructions[4]);
RunTestInstance(jit, uni, jit_env, uni_env, regs, vecs, start_address, instructions, pstate, fpcr);
}
}
TEST_CASE("A64: Large random block", "[a64]") {
A64TestEnv jit_env{};
A64TestEnv uni_env{};
Dynarmic::A64::Jit jit{GetUserConfig(jit_env)};
A64Unicorn uni{uni_env};
A64Unicorn::RegisterArray regs;
A64Unicorn::VectorArray vecs;
constexpr size_t instruction_count = 100;
std::vector<u32> instructions(instruction_count);
for (size_t iteration = 0; iteration < 500; ++iteration) {
std::generate(regs.begin(), regs.end(), [] { return RandInt<u64>(0, ~u64(0)); });
std::generate(vecs.begin(), vecs.end(), RandomVector);
for (size_t j = 0; j < instruction_count; ++j) {
instructions[j] = GenRandomInst(j * 4, j == instruction_count - 1);
}
const u64 start_address = RandInt<u64>(0, 0x10'0000'0000) * 4;
const u32 pstate = RandInt<u32>(0, 0xF) << 28;
const u32 fpcr = RandomFpcr();
RunTestInstance(jit, uni, jit_env, uni_env, regs, vecs, start_address, instructions, pstate, fpcr);
}
}