785 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			785 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /* $OpenBSD: ec2_smpl.c,v 1.21 2018/11/05 20:18:21 tb Exp $ */
 | |
| /* ====================================================================
 | |
|  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 | |
|  *
 | |
|  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
 | |
|  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
 | |
|  * to the OpenSSL project.
 | |
|  *
 | |
|  * The ECC Code is licensed pursuant to the OpenSSL open source
 | |
|  * license provided below.
 | |
|  *
 | |
|  * The software is originally written by Sheueling Chang Shantz and
 | |
|  * Douglas Stebila of Sun Microsystems Laboratories.
 | |
|  *
 | |
|  */
 | |
| /* ====================================================================
 | |
|  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *
 | |
|  * 3. All advertising materials mentioning features or use of this
 | |
|  *    software must display the following acknowledgment:
 | |
|  *    "This product includes software developed by the OpenSSL Project
 | |
|  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 | |
|  *
 | |
|  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 | |
|  *    endorse or promote products derived from this software without
 | |
|  *    prior written permission. For written permission, please contact
 | |
|  *    openssl-core@openssl.org.
 | |
|  *
 | |
|  * 5. Products derived from this software may not be called "OpenSSL"
 | |
|  *    nor may "OpenSSL" appear in their names without prior written
 | |
|  *    permission of the OpenSSL Project.
 | |
|  *
 | |
|  * 6. Redistributions of any form whatsoever must retain the following
 | |
|  *    acknowledgment:
 | |
|  *    "This product includes software developed by the OpenSSL Project
 | |
|  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 | |
|  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | |
|  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 | |
|  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 | |
|  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
|  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 | |
|  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 | |
|  * OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  * ====================================================================
 | |
|  *
 | |
|  * This product includes cryptographic software written by Eric Young
 | |
|  * (eay@cryptsoft.com).  This product includes software written by Tim
 | |
|  * Hudson (tjh@cryptsoft.com).
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <openssl/opensslconf.h>
 | |
| 
 | |
| #include <openssl/err.h>
 | |
| 
 | |
| #include "ec_lcl.h"
 | |
| 
 | |
| #ifndef OPENSSL_NO_EC2M
 | |
| 
 | |
| const EC_METHOD *
 | |
| EC_GF2m_simple_method(void)
 | |
| {
 | |
| 	static const EC_METHOD ret = {
 | |
| 		.flags = EC_FLAGS_DEFAULT_OCT,
 | |
| 		.field_type = NID_X9_62_characteristic_two_field,
 | |
| 		.group_init = ec_GF2m_simple_group_init,
 | |
| 		.group_finish = ec_GF2m_simple_group_finish,
 | |
| 		.group_clear_finish = ec_GF2m_simple_group_clear_finish,
 | |
| 		.group_copy = ec_GF2m_simple_group_copy,
 | |
| 		.group_set_curve = ec_GF2m_simple_group_set_curve,
 | |
| 		.group_get_curve = ec_GF2m_simple_group_get_curve,
 | |
| 		.group_get_degree = ec_GF2m_simple_group_get_degree,
 | |
| 		.group_check_discriminant =
 | |
| 		ec_GF2m_simple_group_check_discriminant,
 | |
| 		.point_init = ec_GF2m_simple_point_init,
 | |
| 		.point_finish = ec_GF2m_simple_point_finish,
 | |
| 		.point_clear_finish = ec_GF2m_simple_point_clear_finish,
 | |
| 		.point_copy = ec_GF2m_simple_point_copy,
 | |
| 		.point_set_to_infinity = ec_GF2m_simple_point_set_to_infinity,
 | |
| 		.point_set_affine_coordinates =
 | |
| 		ec_GF2m_simple_point_set_affine_coordinates,
 | |
| 		.point_get_affine_coordinates =
 | |
| 		ec_GF2m_simple_point_get_affine_coordinates,
 | |
| 		.add = ec_GF2m_simple_add,
 | |
| 		.dbl = ec_GF2m_simple_dbl,
 | |
| 		.invert = ec_GF2m_simple_invert,
 | |
| 		.is_at_infinity = ec_GF2m_simple_is_at_infinity,
 | |
| 		.is_on_curve = ec_GF2m_simple_is_on_curve,
 | |
| 		.point_cmp = ec_GF2m_simple_cmp,
 | |
| 		.make_affine = ec_GF2m_simple_make_affine,
 | |
| 		.points_make_affine = ec_GF2m_simple_points_make_affine,
 | |
| 		.mul_generator_ct = ec_GFp_simple_mul_generator_ct,
 | |
| 		.mul_single_ct = ec_GFp_simple_mul_single_ct,
 | |
| 		.mul_double_nonct = ec_GFp_simple_mul_double_nonct,
 | |
| 		.precompute_mult = ec_GF2m_precompute_mult,
 | |
| 		.have_precompute_mult = ec_GF2m_have_precompute_mult,
 | |
| 		.field_mul = ec_GF2m_simple_field_mul,
 | |
| 		.field_sqr = ec_GF2m_simple_field_sqr,
 | |
| 		.field_div = ec_GF2m_simple_field_div,
 | |
| 		.blind_coordinates = NULL,
 | |
| 	};
 | |
| 
 | |
| 	return &ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Initialize a GF(2^m)-based EC_GROUP structure.
 | |
|  * Note that all other members are handled by EC_GROUP_new.
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_group_init(EC_GROUP * group)
 | |
| {
 | |
| 	BN_init(&group->field);
 | |
| 	BN_init(&group->a);
 | |
| 	BN_init(&group->b);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Free a GF(2^m)-based EC_GROUP structure.
 | |
|  * Note that all other members are handled by EC_GROUP_free.
 | |
|  */
 | |
| void 
 | |
| ec_GF2m_simple_group_finish(EC_GROUP * group)
 | |
| {
 | |
| 	BN_free(&group->field);
 | |
| 	BN_free(&group->a);
 | |
| 	BN_free(&group->b);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Clear and free a GF(2^m)-based EC_GROUP structure.
 | |
|  * Note that all other members are handled by EC_GROUP_clear_free.
 | |
|  */
 | |
| void 
 | |
| ec_GF2m_simple_group_clear_finish(EC_GROUP * group)
 | |
| {
 | |
| 	BN_clear_free(&group->field);
 | |
| 	BN_clear_free(&group->a);
 | |
| 	BN_clear_free(&group->b);
 | |
| 	group->poly[0] = 0;
 | |
| 	group->poly[1] = 0;
 | |
| 	group->poly[2] = 0;
 | |
| 	group->poly[3] = 0;
 | |
| 	group->poly[4] = 0;
 | |
| 	group->poly[5] = -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Copy a GF(2^m)-based EC_GROUP structure.
 | |
|  * Note that all other members are handled by EC_GROUP_copy.
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!BN_copy(&dest->field, &src->field))
 | |
| 		return 0;
 | |
| 	if (!BN_copy(&dest->a, &src->a))
 | |
| 		return 0;
 | |
| 	if (!BN_copy(&dest->b, &src->b))
 | |
| 		return 0;
 | |
| 	dest->poly[0] = src->poly[0];
 | |
| 	dest->poly[1] = src->poly[1];
 | |
| 	dest->poly[2] = src->poly[2];
 | |
| 	dest->poly[3] = src->poly[3];
 | |
| 	dest->poly[4] = src->poly[4];
 | |
| 	dest->poly[5] = src->poly[5];
 | |
| 	if (bn_wexpand(&dest->a, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
 | |
| 		return 0;
 | |
| 	if (bn_wexpand(&dest->b, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
 | |
| 		return 0;
 | |
| 	for (i = dest->a.top; i < dest->a.dmax; i++)
 | |
| 		dest->a.d[i] = 0;
 | |
| 	for (i = dest->b.top; i < dest->b.dmax; i++)
 | |
| 		dest->b.d[i] = 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Set the curve parameters of an EC_GROUP structure. */
 | |
| int 
 | |
| ec_GF2m_simple_group_set_curve(EC_GROUP * group,
 | |
|     const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx)
 | |
| {
 | |
| 	int ret = 0, i;
 | |
| 
 | |
| 	/* group->field */
 | |
| 	if (!BN_copy(&group->field, p))
 | |
| 		goto err;
 | |
| 	i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
 | |
| 	if ((i != 5) && (i != 3)) {
 | |
| 		ECerror(EC_R_UNSUPPORTED_FIELD);
 | |
| 		goto err;
 | |
| 	}
 | |
| 	/* group->a */
 | |
| 	if (!BN_GF2m_mod_arr(&group->a, a, group->poly))
 | |
| 		goto err;
 | |
| 	if (bn_wexpand(&group->a, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
 | |
| 		goto err;
 | |
| 	for (i = group->a.top; i < group->a.dmax; i++)
 | |
| 		group->a.d[i] = 0;
 | |
| 
 | |
| 	/* group->b */
 | |
| 	if (!BN_GF2m_mod_arr(&group->b, b, group->poly))
 | |
| 		goto err;
 | |
| 	if (bn_wexpand(&group->b, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
 | |
| 		goto err;
 | |
| 	for (i = group->b.top; i < group->b.dmax; i++)
 | |
| 		group->b.d[i] = 0;
 | |
| 
 | |
| 	ret = 1;
 | |
|  err:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Get the curve parameters of an EC_GROUP structure.
 | |
|  * If p, a, or b are NULL then there values will not be set but the method will return with success.
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_group_get_curve(const EC_GROUP *group,
 | |
|     BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (p != NULL) {
 | |
| 		if (!BN_copy(p, &group->field))
 | |
| 			return 0;
 | |
| 	}
 | |
| 	if (a != NULL) {
 | |
| 		if (!BN_copy(a, &group->a))
 | |
| 			goto err;
 | |
| 	}
 | |
| 	if (b != NULL) {
 | |
| 		if (!BN_copy(b, &group->b))
 | |
| 			goto err;
 | |
| 	}
 | |
| 	ret = 1;
 | |
| 
 | |
|  err:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Gets the degree of the field.  For a curve over GF(2^m) this is the value m. */
 | |
| int 
 | |
| ec_GF2m_simple_group_get_degree(const EC_GROUP * group)
 | |
| {
 | |
| 	return BN_num_bits(&group->field) - 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Checks the discriminant of the curve.
 | |
|  * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	BIGNUM *b;
 | |
| 	BN_CTX *new_ctx = NULL;
 | |
| 
 | |
| 	if (ctx == NULL) {
 | |
| 		ctx = new_ctx = BN_CTX_new();
 | |
| 		if (ctx == NULL) {
 | |
| 			ECerror(ERR_R_MALLOC_FAILURE);
 | |
| 			goto err;
 | |
| 		}
 | |
| 	}
 | |
| 	BN_CTX_start(ctx);
 | |
| 	if ((b = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (!BN_GF2m_mod_arr(b, &group->b, group->poly))
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
 | |
| 	 * curve <=> b != 0 (mod p)
 | |
| 	 */
 | |
| 	if (BN_is_zero(b))
 | |
| 		goto err;
 | |
| 
 | |
| 	ret = 1;
 | |
| 
 | |
|  err:
 | |
| 	if (ctx != NULL)
 | |
| 		BN_CTX_end(ctx);
 | |
| 	BN_CTX_free(new_ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Initializes an EC_POINT. */
 | |
| int 
 | |
| ec_GF2m_simple_point_init(EC_POINT * point)
 | |
| {
 | |
| 	BN_init(&point->X);
 | |
| 	BN_init(&point->Y);
 | |
| 	BN_init(&point->Z);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Frees an EC_POINT. */
 | |
| void 
 | |
| ec_GF2m_simple_point_finish(EC_POINT * point)
 | |
| {
 | |
| 	BN_free(&point->X);
 | |
| 	BN_free(&point->Y);
 | |
| 	BN_free(&point->Z);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Clears and frees an EC_POINT. */
 | |
| void 
 | |
| ec_GF2m_simple_point_clear_finish(EC_POINT * point)
 | |
| {
 | |
| 	BN_clear_free(&point->X);
 | |
| 	BN_clear_free(&point->Y);
 | |
| 	BN_clear_free(&point->Z);
 | |
| 	point->Z_is_one = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Copy the contents of one EC_POINT into another.  Assumes dest is initialized. */
 | |
| int 
 | |
| ec_GF2m_simple_point_copy(EC_POINT * dest, const EC_POINT * src)
 | |
| {
 | |
| 	if (!BN_copy(&dest->X, &src->X))
 | |
| 		return 0;
 | |
| 	if (!BN_copy(&dest->Y, &src->Y))
 | |
| 		return 0;
 | |
| 	if (!BN_copy(&dest->Z, &src->Z))
 | |
| 		return 0;
 | |
| 	dest->Z_is_one = src->Z_is_one;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Set an EC_POINT to the point at infinity.
 | |
|  * A point at infinity is represented by having Z=0.
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point)
 | |
| {
 | |
| 	point->Z_is_one = 0;
 | |
| 	BN_zero(&point->Z);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Set the coordinates of an EC_POINT using affine coordinates.
 | |
|  * Note that the simple implementation only uses affine coordinates.
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point,
 | |
|     const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	if (x == NULL || y == NULL) {
 | |
| 		ECerror(ERR_R_PASSED_NULL_PARAMETER);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!BN_copy(&point->X, x))
 | |
| 		goto err;
 | |
| 	BN_set_negative(&point->X, 0);
 | |
| 	if (!BN_copy(&point->Y, y))
 | |
| 		goto err;
 | |
| 	BN_set_negative(&point->Y, 0);
 | |
| 	if (!BN_copy(&point->Z, BN_value_one()))
 | |
| 		goto err;
 | |
| 	BN_set_negative(&point->Z, 0);
 | |
| 	point->Z_is_one = 1;
 | |
| 	ret = 1;
 | |
| 
 | |
|  err:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Gets the affine coordinates of an EC_POINT.
 | |
|  * Note that the simple implementation only uses affine coordinates.
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
 | |
|     const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (EC_POINT_is_at_infinity(group, point) > 0) {
 | |
| 		ECerror(EC_R_POINT_AT_INFINITY);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (BN_cmp(&point->Z, BN_value_one())) {
 | |
| 		ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (x != NULL) {
 | |
| 		if (!BN_copy(x, &point->X))
 | |
| 			goto err;
 | |
| 		BN_set_negative(x, 0);
 | |
| 	}
 | |
| 	if (y != NULL) {
 | |
| 		if (!BN_copy(y, &point->Y))
 | |
| 			goto err;
 | |
| 		BN_set_negative(y, 0);
 | |
| 	}
 | |
| 	ret = 1;
 | |
| 
 | |
|  err:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Computes a + b and stores the result in r.  r could be a or b, a could be b.
 | |
|  * Uses algorithm A.10.2 of IEEE P1363.
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
 | |
|     const EC_POINT *b, BN_CTX *ctx)
 | |
| {
 | |
| 	BN_CTX *new_ctx = NULL;
 | |
| 	BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (EC_POINT_is_at_infinity(group, a) > 0) {
 | |
| 		if (!EC_POINT_copy(r, b))
 | |
| 			return 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (EC_POINT_is_at_infinity(group, b) > 0) {
 | |
| 		if (!EC_POINT_copy(r, a))
 | |
| 			return 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (ctx == NULL) {
 | |
| 		ctx = new_ctx = BN_CTX_new();
 | |
| 		if (ctx == NULL)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	BN_CTX_start(ctx);
 | |
| 	if ((x0 = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((y0 = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((x1 = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((y1 = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((x2 = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((y2 = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((s = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((t = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (a->Z_is_one) {
 | |
| 		if (!BN_copy(x0, &a->X))
 | |
| 			goto err;
 | |
| 		if (!BN_copy(y0, &a->Y))
 | |
| 			goto err;
 | |
| 	} else {
 | |
| 		if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx))
 | |
| 			goto err;
 | |
| 	}
 | |
| 	if (b->Z_is_one) {
 | |
| 		if (!BN_copy(x1, &b->X))
 | |
| 			goto err;
 | |
| 		if (!BN_copy(y1, &b->Y))
 | |
| 			goto err;
 | |
| 	} else {
 | |
| 		if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx))
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (BN_GF2m_cmp(x0, x1)) {
 | |
| 		if (!BN_GF2m_add(t, x0, x1))
 | |
| 			goto err;
 | |
| 		if (!BN_GF2m_add(s, y0, y1))
 | |
| 			goto err;
 | |
| 		if (!group->meth->field_div(group, s, s, t, ctx))
 | |
| 			goto err;
 | |
| 		if (!group->meth->field_sqr(group, x2, s, ctx))
 | |
| 			goto err;
 | |
| 		if (!BN_GF2m_add(x2, x2, &group->a))
 | |
| 			goto err;
 | |
| 		if (!BN_GF2m_add(x2, x2, s))
 | |
| 			goto err;
 | |
| 		if (!BN_GF2m_add(x2, x2, t))
 | |
| 			goto err;
 | |
| 	} else {
 | |
| 		if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
 | |
| 			if (!EC_POINT_set_to_infinity(group, r))
 | |
| 				goto err;
 | |
| 			ret = 1;
 | |
| 			goto err;
 | |
| 		}
 | |
| 		if (!group->meth->field_div(group, s, y1, x1, ctx))
 | |
| 			goto err;
 | |
| 		if (!BN_GF2m_add(s, s, x1))
 | |
| 			goto err;
 | |
| 
 | |
| 		if (!group->meth->field_sqr(group, x2, s, ctx))
 | |
| 			goto err;
 | |
| 		if (!BN_GF2m_add(x2, x2, s))
 | |
| 			goto err;
 | |
| 		if (!BN_GF2m_add(x2, x2, &group->a))
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (!BN_GF2m_add(y2, x1, x2))
 | |
| 		goto err;
 | |
| 	if (!group->meth->field_mul(group, y2, y2, s, ctx))
 | |
| 		goto err;
 | |
| 	if (!BN_GF2m_add(y2, y2, x2))
 | |
| 		goto err;
 | |
| 	if (!BN_GF2m_add(y2, y2, y1))
 | |
| 		goto err;
 | |
| 
 | |
| 	if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx))
 | |
| 		goto err;
 | |
| 
 | |
| 	ret = 1;
 | |
| 
 | |
|  err:
 | |
| 	BN_CTX_end(ctx);
 | |
| 	BN_CTX_free(new_ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Computes 2 * a and stores the result in r.  r could be a.
 | |
|  * Uses algorithm A.10.2 of IEEE P1363.
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
 | |
|     BN_CTX *ctx)
 | |
| {
 | |
| 	return ec_GF2m_simple_add(group, r, a, a, ctx);
 | |
| }
 | |
| 
 | |
| int 
 | |
| ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
 | |
| {
 | |
| 	if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y))
 | |
| 		/* point is its own inverse */
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!EC_POINT_make_affine(group, point, ctx))
 | |
| 		return 0;
 | |
| 	return BN_GF2m_add(&point->Y, &point->X, &point->Y);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Indicates whether the given point is the point at infinity. */
 | |
| int 
 | |
| ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
 | |
| {
 | |
| 	return BN_is_zero(&point->Z);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Determines whether the given EC_POINT is an actual point on the curve defined
 | |
|  * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
 | |
|  *      y^2 + x*y = x^3 + a*x^2 + b.
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
 | |
| {
 | |
| 	int ret = -1;
 | |
| 	BN_CTX *new_ctx = NULL;
 | |
| 	BIGNUM *lh, *y2;
 | |
| 	int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
 | |
| 	int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
 | |
| 
 | |
| 	if (EC_POINT_is_at_infinity(group, point) > 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	field_mul = group->meth->field_mul;
 | |
| 	field_sqr = group->meth->field_sqr;
 | |
| 
 | |
| 	/* only support affine coordinates */
 | |
| 	if (!point->Z_is_one)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (ctx == NULL) {
 | |
| 		ctx = new_ctx = BN_CTX_new();
 | |
| 		if (ctx == NULL)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	BN_CTX_start(ctx);
 | |
| 	if ((y2 = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((lh = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have a curve defined by a Weierstrass equation y^2 + x*y = x^3
 | |
| 	 * + a*x^2 + b. <=> x^3 + a*x^2 + x*y + b + y^2 = 0 <=> ((x + a) * x
 | |
| 	 * + y ) * x + b + y^2 = 0
 | |
| 	 */
 | |
| 	if (!BN_GF2m_add(lh, &point->X, &group->a))
 | |
| 		goto err;
 | |
| 	if (!field_mul(group, lh, lh, &point->X, ctx))
 | |
| 		goto err;
 | |
| 	if (!BN_GF2m_add(lh, lh, &point->Y))
 | |
| 		goto err;
 | |
| 	if (!field_mul(group, lh, lh, &point->X, ctx))
 | |
| 		goto err;
 | |
| 	if (!BN_GF2m_add(lh, lh, &group->b))
 | |
| 		goto err;
 | |
| 	if (!field_sqr(group, y2, &point->Y, ctx))
 | |
| 		goto err;
 | |
| 	if (!BN_GF2m_add(lh, lh, y2))
 | |
| 		goto err;
 | |
| 	ret = BN_is_zero(lh);
 | |
|  err:
 | |
| 	if (ctx)
 | |
| 		BN_CTX_end(ctx);
 | |
| 	BN_CTX_free(new_ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Indicates whether two points are equal.
 | |
|  * Return values:
 | |
|  *  -1   error
 | |
|  *   0   equal (in affine coordinates)
 | |
|  *   1   not equal
 | |
|  */
 | |
| int 
 | |
| ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
 | |
|     const EC_POINT *b, BN_CTX *ctx)
 | |
| {
 | |
| 	BIGNUM *aX, *aY, *bX, *bY;
 | |
| 	BN_CTX *new_ctx = NULL;
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	if (EC_POINT_is_at_infinity(group, a) > 0) {
 | |
| 		return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1;
 | |
| 	}
 | |
| 	if (EC_POINT_is_at_infinity(group, b) > 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (a->Z_is_one && b->Z_is_one) {
 | |
| 		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
 | |
| 	}
 | |
| 	if (ctx == NULL) {
 | |
| 		ctx = new_ctx = BN_CTX_new();
 | |
| 		if (ctx == NULL)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	BN_CTX_start(ctx);
 | |
| 	if ((aX = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((aY = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((bX = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((bY = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx))
 | |
| 		goto err;
 | |
| 	if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx))
 | |
| 		goto err;
 | |
| 	ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
 | |
| 
 | |
|  err:
 | |
| 	if (ctx)
 | |
| 		BN_CTX_end(ctx);
 | |
| 	BN_CTX_free(new_ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Forces the given EC_POINT to internally use affine coordinates. */
 | |
| int 
 | |
| ec_GF2m_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx)
 | |
| {
 | |
| 	BN_CTX *new_ctx = NULL;
 | |
| 	BIGNUM *x, *y;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (ctx == NULL) {
 | |
| 		ctx = new_ctx = BN_CTX_new();
 | |
| 		if (ctx == NULL)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	BN_CTX_start(ctx);
 | |
| 	if ((x = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 	if ((y = BN_CTX_get(ctx)) == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx))
 | |
| 		goto err;
 | |
| 	if (!BN_copy(&point->X, x))
 | |
| 		goto err;
 | |
| 	if (!BN_copy(&point->Y, y))
 | |
| 		goto err;
 | |
| 	if (!BN_one(&point->Z))
 | |
| 		goto err;
 | |
| 
 | |
| 	ret = 1;
 | |
| 
 | |
|  err:
 | |
| 	if (ctx)
 | |
| 		BN_CTX_end(ctx);
 | |
| 	BN_CTX_free(new_ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Forces each of the EC_POINTs in the given array to use affine coordinates. */
 | |
| int 
 | |
| ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
 | |
|     EC_POINT *points[], BN_CTX *ctx)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		if (!group->meth->make_affine(group, points[i], ctx))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Wrapper to simple binary polynomial field multiplication implementation. */
 | |
| int 
 | |
| ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
 | |
|     const BIGNUM *b, BN_CTX *ctx)
 | |
| {
 | |
| 	return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Wrapper to simple binary polynomial field squaring implementation. */
 | |
| int 
 | |
| ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
 | |
|     BN_CTX *ctx)
 | |
| {
 | |
| 	return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Wrapper to simple binary polynomial field division implementation. */
 | |
| int 
 | |
| ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
 | |
|     const BIGNUM *b, BN_CTX *ctx)
 | |
| {
 | |
| 	return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
 | |
| }
 | |
| 
 | |
| #endif
 |