581 lines
18 KiB
C
Executable File
581 lines
18 KiB
C
Executable File
/*
|
|
* Copyright (c) 2012 Andrew D'Addesio
|
|
* Copyright (c) 2013-2014 Mozilla Corporation
|
|
* Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Opus CELT decoder
|
|
*/
|
|
|
|
#include "opus_celt.h"
|
|
#include "opustab.h"
|
|
#include "opus_pvq.h"
|
|
|
|
/* Use the 2D z-transform to apply prediction in both the time domain (alpha)
|
|
* and the frequency domain (beta) */
|
|
static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc)
|
|
{
|
|
int i, j;
|
|
float prev[2] = { 0 };
|
|
float alpha = ff_celt_alpha_coef[f->size];
|
|
float beta = ff_celt_beta_coef[f->size];
|
|
const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0];
|
|
|
|
/* intra frame */
|
|
if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) {
|
|
alpha = 0.0f;
|
|
beta = 1.0f - (4915.0f/32768.0f);
|
|
model = ff_celt_coarse_energy_dist[f->size][1];
|
|
}
|
|
|
|
for (i = 0; i < CELT_MAX_BANDS; i++) {
|
|
for (j = 0; j < f->channels; j++) {
|
|
CeltBlock *block = &f->block[j];
|
|
float value;
|
|
int available;
|
|
|
|
if (i < f->start_band || i >= f->end_band) {
|
|
block->energy[i] = 0.0;
|
|
continue;
|
|
}
|
|
|
|
available = f->framebits - opus_rc_tell(rc);
|
|
if (available >= 15) {
|
|
/* decode using a Laplace distribution */
|
|
int k = FFMIN(i, 20) << 1;
|
|
value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6);
|
|
} else if (available >= 2) {
|
|
int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small);
|
|
value = (x>>1) ^ -(x&1);
|
|
} else if (available >= 1) {
|
|
value = -(float)ff_opus_rc_dec_log(rc, 1);
|
|
} else value = -1;
|
|
|
|
block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value;
|
|
prev[j] += beta * value;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc)
|
|
{
|
|
int i;
|
|
for (i = f->start_band; i < f->end_band; i++) {
|
|
int j;
|
|
if (!f->fine_bits[i])
|
|
continue;
|
|
|
|
for (j = 0; j < f->channels; j++) {
|
|
CeltBlock *block = &f->block[j];
|
|
int q2;
|
|
float offset;
|
|
q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]);
|
|
offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f;
|
|
block->energy[i] += offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc)
|
|
{
|
|
int priority, i, j;
|
|
int bits_left = f->framebits - opus_rc_tell(rc);
|
|
|
|
for (priority = 0; priority < 2; priority++) {
|
|
for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) {
|
|
if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
|
|
continue;
|
|
|
|
for (j = 0; j < f->channels; j++) {
|
|
int q2;
|
|
float offset;
|
|
q2 = ff_opus_rc_get_raw(rc, 1);
|
|
offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
|
|
f->block[j].energy[i] += offset;
|
|
bits_left--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc)
|
|
{
|
|
int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
|
|
int consumed, bits = f->transient ? 2 : 4;
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits);
|
|
|
|
for (i = f->start_band; i < f->end_band; i++) {
|
|
if (consumed+bits+tf_select_bit <= f->framebits) {
|
|
diff ^= ff_opus_rc_dec_log(rc, bits);
|
|
consumed = opus_rc_tell(rc);
|
|
tf_changed |= diff;
|
|
}
|
|
f->tf_change[i] = diff;
|
|
bits = f->transient ? 4 : 5;
|
|
}
|
|
|
|
if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
|
|
ff_celt_tf_select[f->size][f->transient][1][tf_changed])
|
|
tf_select = ff_opus_rc_dec_log(rc, 1);
|
|
|
|
for (i = f->start_band; i < f->end_band; i++) {
|
|
f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
|
|
}
|
|
}
|
|
|
|
static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = f->start_band; i < f->end_band; i++) {
|
|
float *dst = data + (ff_celt_freq_bands[i] << f->size);
|
|
float log_norm = block->energy[i] + ff_celt_mean_energy[i];
|
|
float norm = exp2f(FFMIN(log_norm, 32.0f));
|
|
|
|
for (j = 0; j < ff_celt_freq_range[i] << f->size; j++)
|
|
dst[j] *= norm;
|
|
}
|
|
}
|
|
|
|
static void celt_postfilter_apply_transition(CeltBlock *block, float *data)
|
|
{
|
|
const int T0 = block->pf_period_old;
|
|
const int T1 = block->pf_period;
|
|
|
|
float g00, g01, g02;
|
|
float g10, g11, g12;
|
|
|
|
float x0, x1, x2, x3, x4;
|
|
|
|
int i;
|
|
|
|
if (block->pf_gains[0] == 0.0 &&
|
|
block->pf_gains_old[0] == 0.0)
|
|
return;
|
|
|
|
g00 = block->pf_gains_old[0];
|
|
g01 = block->pf_gains_old[1];
|
|
g02 = block->pf_gains_old[2];
|
|
g10 = block->pf_gains[0];
|
|
g11 = block->pf_gains[1];
|
|
g12 = block->pf_gains[2];
|
|
|
|
x1 = data[-T1 + 1];
|
|
x2 = data[-T1];
|
|
x3 = data[-T1 - 1];
|
|
x4 = data[-T1 - 2];
|
|
|
|
for (i = 0; i < CELT_OVERLAP; i++) {
|
|
float w = ff_celt_window2[i];
|
|
x0 = data[i - T1 + 2];
|
|
|
|
data[i] += (1.0 - w) * g00 * data[i - T0] +
|
|
(1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
|
|
(1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
|
|
w * g10 * x2 +
|
|
w * g11 * (x1 + x3) +
|
|
w * g12 * (x0 + x4);
|
|
x4 = x3;
|
|
x3 = x2;
|
|
x2 = x1;
|
|
x1 = x0;
|
|
}
|
|
}
|
|
|
|
static void celt_postfilter(CeltFrame *f, CeltBlock *block)
|
|
{
|
|
int len = f->blocksize * f->blocks;
|
|
const int filter_len = len - 2 * CELT_OVERLAP;
|
|
|
|
celt_postfilter_apply_transition(block, block->buf + 1024);
|
|
|
|
block->pf_period_old = block->pf_period;
|
|
memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
|
|
|
|
block->pf_period = block->pf_period_new;
|
|
memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains));
|
|
|
|
if (len > CELT_OVERLAP) {
|
|
celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP);
|
|
|
|
if (block->pf_gains[0] > FLT_EPSILON && filter_len > 0)
|
|
f->opusdsp.postfilter(block->buf + 1024 + 2 * CELT_OVERLAP,
|
|
block->pf_period, block->pf_gains,
|
|
filter_len);
|
|
|
|
block->pf_period_old = block->pf_period;
|
|
memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
|
|
}
|
|
|
|
memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
|
|
}
|
|
|
|
static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed)
|
|
{
|
|
int i;
|
|
|
|
memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new));
|
|
memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new));
|
|
|
|
if (f->start_band == 0 && consumed + 16 <= f->framebits) {
|
|
int has_postfilter = ff_opus_rc_dec_log(rc, 1);
|
|
if (has_postfilter) {
|
|
float gain;
|
|
int tapset, octave, period;
|
|
|
|
octave = ff_opus_rc_dec_uint(rc, 6);
|
|
period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1;
|
|
gain = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1);
|
|
tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ?
|
|
ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
CeltBlock *block = &f->block[i];
|
|
|
|
block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
|
|
block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
|
|
block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
|
|
block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
|
|
}
|
|
}
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
}
|
|
|
|
return consumed;
|
|
}
|
|
|
|
static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X)
|
|
{
|
|
int i, j, k;
|
|
|
|
for (i = f->start_band; i < f->end_band; i++) {
|
|
int renormalize = 0;
|
|
float *xptr;
|
|
float prev[2];
|
|
float Ediff, r;
|
|
float thresh, sqrt_1;
|
|
int depth;
|
|
|
|
/* depth in 1/8 bits */
|
|
depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size);
|
|
thresh = exp2f(-1.0 - 0.125f * depth);
|
|
sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size);
|
|
|
|
xptr = X + (ff_celt_freq_bands[i] << f->size);
|
|
|
|
prev[0] = block->prev_energy[0][i];
|
|
prev[1] = block->prev_energy[1][i];
|
|
if (f->channels == 1) {
|
|
CeltBlock *block1 = &f->block[1];
|
|
|
|
prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]);
|
|
prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]);
|
|
}
|
|
Ediff = block->energy[i] - FFMIN(prev[0], prev[1]);
|
|
Ediff = FFMAX(0, Ediff);
|
|
|
|
/* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
|
|
short blocks don't have the same energy as long */
|
|
r = exp2f(1 - Ediff);
|
|
if (f->size == 3)
|
|
r *= M_SQRT2;
|
|
r = FFMIN(thresh, r) * sqrt_1;
|
|
for (k = 0; k < 1 << f->size; k++) {
|
|
/* Detect collapse */
|
|
if (!(block->collapse_masks[i] & 1 << k)) {
|
|
/* Fill with noise */
|
|
for (j = 0; j < ff_celt_freq_range[i]; j++)
|
|
xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r;
|
|
renormalize = 1;
|
|
}
|
|
}
|
|
|
|
/* We just added some energy, so we need to renormalize */
|
|
if (renormalize)
|
|
celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f);
|
|
}
|
|
}
|
|
|
|
int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
|
|
float **output, int channels, int frame_size,
|
|
int start_band, int end_band)
|
|
{
|
|
int i, j, downmix = 0;
|
|
int consumed; // bits of entropy consumed thus far for this frame
|
|
MDCT15Context *imdct;
|
|
|
|
if (channels != 1 && channels != 2) {
|
|
av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
|
|
channels);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) {
|
|
av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
|
|
start_band, end_band);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
f->silence = 0;
|
|
f->transient = 0;
|
|
f->anticollapse = 0;
|
|
f->flushed = 0;
|
|
f->channels = channels;
|
|
f->start_band = start_band;
|
|
f->end_band = end_band;
|
|
f->framebits = rc->rb.bytes * 8;
|
|
|
|
f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
|
|
if (f->size > CELT_MAX_LOG_BLOCKS ||
|
|
frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) {
|
|
av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
|
|
frame_size);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (!f->output_channels)
|
|
f->output_channels = channels;
|
|
|
|
for (i = 0; i < f->channels; i++) {
|
|
memset(f->block[i].coeffs, 0, sizeof(f->block[i].coeffs));
|
|
memset(f->block[i].collapse_masks, 0, sizeof(f->block[i].collapse_masks));
|
|
}
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
|
|
/* obtain silence flag */
|
|
if (consumed >= f->framebits)
|
|
f->silence = 1;
|
|
else if (consumed == 1)
|
|
f->silence = ff_opus_rc_dec_log(rc, 15);
|
|
|
|
|
|
if (f->silence) {
|
|
consumed = f->framebits;
|
|
rc->total_bits += f->framebits - opus_rc_tell(rc);
|
|
}
|
|
|
|
/* obtain post-filter options */
|
|
consumed = parse_postfilter(f, rc, consumed);
|
|
|
|
/* obtain transient flag */
|
|
if (f->size != 0 && consumed+3 <= f->framebits)
|
|
f->transient = ff_opus_rc_dec_log(rc, 3);
|
|
|
|
f->blocks = f->transient ? 1 << f->size : 1;
|
|
f->blocksize = frame_size / f->blocks;
|
|
|
|
imdct = f->imdct[f->transient ? 0 : f->size];
|
|
|
|
if (channels == 1) {
|
|
for (i = 0; i < CELT_MAX_BANDS; i++)
|
|
f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]);
|
|
}
|
|
|
|
celt_decode_coarse_energy(f, rc);
|
|
celt_decode_tf_changes (f, rc);
|
|
ff_celt_bitalloc (f, rc, 0);
|
|
celt_decode_fine_energy (f, rc);
|
|
ff_celt_quant_bands (f, rc);
|
|
|
|
if (f->anticollapse_needed)
|
|
f->anticollapse = ff_opus_rc_get_raw(rc, 1);
|
|
|
|
celt_decode_final_energy(f, rc);
|
|
|
|
/* apply anti-collapse processing and denormalization to
|
|
* each coded channel */
|
|
for (i = 0; i < f->channels; i++) {
|
|
CeltBlock *block = &f->block[i];
|
|
|
|
if (f->anticollapse)
|
|
process_anticollapse(f, block, f->block[i].coeffs);
|
|
|
|
celt_denormalize(f, block, f->block[i].coeffs);
|
|
}
|
|
|
|
/* stereo -> mono downmix */
|
|
if (f->output_channels < f->channels) {
|
|
f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16));
|
|
downmix = 1;
|
|
} else if (f->output_channels > f->channels)
|
|
memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float));
|
|
|
|
if (f->silence) {
|
|
for (i = 0; i < 2; i++) {
|
|
CeltBlock *block = &f->block[i];
|
|
|
|
for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++)
|
|
block->energy[j] = CELT_ENERGY_SILENCE;
|
|
}
|
|
memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs));
|
|
memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs));
|
|
}
|
|
|
|
/* transform and output for each output channel */
|
|
for (i = 0; i < f->output_channels; i++) {
|
|
CeltBlock *block = &f->block[i];
|
|
|
|
/* iMDCT and overlap-add */
|
|
for (j = 0; j < f->blocks; j++) {
|
|
float *dst = block->buf + 1024 + j * f->blocksize;
|
|
|
|
imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j,
|
|
f->blocks);
|
|
f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
|
|
ff_celt_window, CELT_OVERLAP / 2);
|
|
}
|
|
|
|
if (downmix)
|
|
f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size);
|
|
|
|
/* postfilter */
|
|
celt_postfilter(f, block);
|
|
|
|
/* deemphasis */
|
|
block->emph_coeff = f->opusdsp.deemphasis(output[i],
|
|
&block->buf[1024 - frame_size],
|
|
block->emph_coeff, frame_size);
|
|
}
|
|
|
|
if (channels == 1)
|
|
memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy));
|
|
|
|
for (i = 0; i < 2; i++ ) {
|
|
CeltBlock *block = &f->block[i];
|
|
|
|
if (!f->transient) {
|
|
memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0]));
|
|
memcpy(block->prev_energy[0], block->energy, sizeof(block->prev_energy[0]));
|
|
} else {
|
|
for (j = 0; j < CELT_MAX_BANDS; j++)
|
|
block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]);
|
|
}
|
|
|
|
for (j = 0; j < f->start_band; j++) {
|
|
block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
|
|
block->energy[j] = 0.0;
|
|
}
|
|
for (j = f->end_band; j < CELT_MAX_BANDS; j++) {
|
|
block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
|
|
block->energy[j] = 0.0;
|
|
}
|
|
}
|
|
|
|
f->seed = rc->range;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ff_celt_flush(CeltFrame *f)
|
|
{
|
|
int i, j;
|
|
|
|
if (f->flushed)
|
|
return;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
CeltBlock *block = &f->block[i];
|
|
|
|
for (j = 0; j < CELT_MAX_BANDS; j++)
|
|
block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE;
|
|
|
|
memset(block->energy, 0, sizeof(block->energy));
|
|
memset(block->buf, 0, sizeof(block->buf));
|
|
|
|
memset(block->pf_gains, 0, sizeof(block->pf_gains));
|
|
memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old));
|
|
memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new));
|
|
|
|
/* libopus uses CELT_EMPH_COEFF on init, but 0 is better since there's
|
|
* a lesser discontinuity when seeking.
|
|
* The deemphasis functions differ from libopus in that they require
|
|
* an initial state divided by the coefficient. */
|
|
block->emph_coeff = 0.0f / CELT_EMPH_COEFF;
|
|
}
|
|
f->seed = 0;
|
|
|
|
f->flushed = 1;
|
|
}
|
|
|
|
void ff_celt_free(CeltFrame **f)
|
|
{
|
|
CeltFrame *frm = *f;
|
|
int i;
|
|
|
|
if (!frm)
|
|
return;
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
|
|
ff_mdct15_uninit(&frm->imdct[i]);
|
|
|
|
ff_celt_pvq_uninit(&frm->pvq);
|
|
|
|
av_freep(&frm->dsp);
|
|
av_freep(f);
|
|
}
|
|
|
|
int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels,
|
|
int apply_phase_inv)
|
|
{
|
|
CeltFrame *frm;
|
|
int i, ret;
|
|
|
|
if (output_channels != 1 && output_channels != 2) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
|
|
output_channels);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
frm = av_mallocz(sizeof(*frm));
|
|
if (!frm)
|
|
return AVERROR(ENOMEM);
|
|
|
|
frm->avctx = avctx;
|
|
frm->output_channels = output_channels;
|
|
frm->apply_phase_inv = apply_phase_inv;
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
|
|
if ((ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f/32768)) < 0)
|
|
goto fail;
|
|
|
|
if ((ret = ff_celt_pvq_init(&frm->pvq, 0)) < 0)
|
|
goto fail;
|
|
|
|
frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
|
|
if (!frm->dsp) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto fail;
|
|
}
|
|
|
|
ff_opus_dsp_init(&frm->opusdsp);
|
|
ff_celt_flush(frm);
|
|
|
|
*f = frm;
|
|
|
|
return 0;
|
|
fail:
|
|
ff_celt_free(&frm);
|
|
return ret;
|
|
}
|