270 lines
8.4 KiB
C
Executable File
270 lines
8.4 KiB
C
Executable File
/*
|
|
* Copyright (C) 2013 Reimar Döffinger <Reimar.Doeffinger@gmx.de>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @ingroup lavu_hash_generic
|
|
* Generic hashing API
|
|
*/
|
|
|
|
#ifndef AVUTIL_HASH_H
|
|
#define AVUTIL_HASH_H
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "version.h"
|
|
|
|
/**
|
|
* @defgroup lavu_hash Hash Functions
|
|
* @ingroup lavu_crypto
|
|
* Hash functions useful in multimedia.
|
|
*
|
|
* Hash functions are widely used in multimedia, from error checking and
|
|
* concealment to internal regression testing. libavutil has efficient
|
|
* implementations of a variety of hash functions that may be useful for
|
|
* FFmpeg and other multimedia applications.
|
|
*
|
|
* @{
|
|
*
|
|
* @defgroup lavu_hash_generic Generic Hashing API
|
|
* An abstraction layer for all hash functions supported by libavutil.
|
|
*
|
|
* If your application needs to support a wide range of different hash
|
|
* functions, then the Generic Hashing API is for you. It provides a generic,
|
|
* reusable API for @ref lavu_hash "all hash functions" implemented in libavutil.
|
|
* If you just need to use one particular hash function, use the @ref lavu_hash
|
|
* "individual hash" directly.
|
|
*
|
|
* @section Sample Code
|
|
*
|
|
* A basic template for using the Generic Hashing API follows:
|
|
*
|
|
* @code
|
|
* struct AVHashContext *ctx = NULL;
|
|
* const char *hash_name = NULL;
|
|
* uint8_t *output_buf = NULL;
|
|
*
|
|
* // Select from a string returned by av_hash_names()
|
|
* hash_name = ...;
|
|
*
|
|
* // Allocate a hash context
|
|
* ret = av_hash_alloc(&ctx, hash_name);
|
|
* if (ret < 0)
|
|
* return ret;
|
|
*
|
|
* // Initialize the hash context
|
|
* av_hash_init(ctx);
|
|
*
|
|
* // Update the hash context with data
|
|
* while (data_left) {
|
|
* av_hash_update(ctx, data, size);
|
|
* }
|
|
*
|
|
* // Now we have no more data, so it is time to finalize the hash and get the
|
|
* // output. But we need to first allocate an output buffer. Note that you can
|
|
* // use any memory allocation function, including malloc(), not just
|
|
* // av_malloc().
|
|
* output_buf = av_malloc(av_hash_get_size(ctx));
|
|
* if (!output_buf)
|
|
* return AVERROR(ENOMEM);
|
|
*
|
|
* // Finalize the hash context.
|
|
* // You can use any of the av_hash_final*() functions provided, for other
|
|
* // output formats. If you do so, be sure to adjust the memory allocation
|
|
* // above. See the function documentation below for the exact amount of extra
|
|
* // memory needed.
|
|
* av_hash_final(ctx, output_buffer);
|
|
*
|
|
* // Free the context
|
|
* av_hash_freep(&ctx);
|
|
* @endcode
|
|
*
|
|
* @section Hash Function-Specific Information
|
|
* If the CRC32 hash is selected, the #AV_CRC_32_IEEE polynomial will be
|
|
* used.
|
|
*
|
|
* If the Murmur3 hash is selected, the default seed will be used. See @ref
|
|
* lavu_murmur3_seedinfo "Murmur3" for more information.
|
|
*
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @example ffhash.c
|
|
* This example is a simple command line application that takes one or more
|
|
* arguments. It demonstrates a typical use of the hashing API with allocation,
|
|
* initialization, updating, and finalizing.
|
|
*/
|
|
|
|
struct AVHashContext;
|
|
|
|
/**
|
|
* Allocate a hash context for the algorithm specified by name.
|
|
*
|
|
* @return >= 0 for success, a negative error code for failure
|
|
*
|
|
* @note The context is not initialized after a call to this function; you must
|
|
* call av_hash_init() to do so.
|
|
*/
|
|
int av_hash_alloc(struct AVHashContext **ctx, const char *name);
|
|
|
|
/**
|
|
* Get the names of available hash algorithms.
|
|
*
|
|
* This function can be used to enumerate the algorithms.
|
|
*
|
|
* @param[in] i Index of the hash algorithm, starting from 0
|
|
* @return Pointer to a static string or `NULL` if `i` is out of range
|
|
*/
|
|
const char *av_hash_names(int i);
|
|
|
|
/**
|
|
* Get the name of the algorithm corresponding to the given hash context.
|
|
*/
|
|
const char *av_hash_get_name(const struct AVHashContext *ctx);
|
|
|
|
/**
|
|
* Maximum value that av_hash_get_size() will currently return.
|
|
*
|
|
* You can use this if you absolutely want or need to use static allocation for
|
|
* the output buffer and are fine with not supporting hashes newly added to
|
|
* libavutil without recompilation.
|
|
*
|
|
* @warning
|
|
* Adding new hashes with larger sizes, and increasing the macro while doing
|
|
* so, will not be considered an ABI change. To prevent your code from
|
|
* overflowing a buffer, either dynamically allocate the output buffer with
|
|
* av_hash_get_size(), or limit your use of the Hashing API to hashes that are
|
|
* already in FFmpeg during the time of compilation.
|
|
*/
|
|
#define AV_HASH_MAX_SIZE 64
|
|
|
|
/**
|
|
* Get the size of the resulting hash value in bytes.
|
|
*
|
|
* The maximum value this function will currently return is available as macro
|
|
* #AV_HASH_MAX_SIZE.
|
|
*
|
|
* @param[in] ctx Hash context
|
|
* @return Size of the hash value in bytes
|
|
*/
|
|
int av_hash_get_size(const struct AVHashContext *ctx);
|
|
|
|
/**
|
|
* Initialize or reset a hash context.
|
|
*
|
|
* @param[in,out] ctx Hash context
|
|
*/
|
|
void av_hash_init(struct AVHashContext *ctx);
|
|
|
|
/**
|
|
* Update a hash context with additional data.
|
|
*
|
|
* @param[in,out] ctx Hash context
|
|
* @param[in] src Data to be added to the hash context
|
|
* @param[in] len Size of the additional data
|
|
*/
|
|
#if FF_API_CRYPTO_SIZE_T
|
|
void av_hash_update(struct AVHashContext *ctx, const uint8_t *src, int len);
|
|
#else
|
|
void av_hash_update(struct AVHashContext *ctx, const uint8_t *src, size_t len);
|
|
#endif
|
|
|
|
/**
|
|
* Finalize a hash context and compute the actual hash value.
|
|
*
|
|
* The minimum size of `dst` buffer is given by av_hash_get_size() or
|
|
* #AV_HASH_MAX_SIZE. The use of the latter macro is discouraged.
|
|
*
|
|
* It is not safe to update or finalize a hash context again, if it has already
|
|
* been finalized.
|
|
*
|
|
* @param[in,out] ctx Hash context
|
|
* @param[out] dst Where the final hash value will be stored
|
|
*
|
|
* @see av_hash_final_bin() provides an alternative API
|
|
*/
|
|
void av_hash_final(struct AVHashContext *ctx, uint8_t *dst);
|
|
|
|
/**
|
|
* Finalize a hash context and store the actual hash value in a buffer.
|
|
*
|
|
* It is not safe to update or finalize a hash context again, if it has already
|
|
* been finalized.
|
|
*
|
|
* If `size` is smaller than the hash size (given by av_hash_get_size()), the
|
|
* hash is truncated; if size is larger, the buffer is padded with 0.
|
|
*
|
|
* @param[in,out] ctx Hash context
|
|
* @param[out] dst Where the final hash value will be stored
|
|
* @param[in] size Number of bytes to write to `dst`
|
|
*/
|
|
void av_hash_final_bin(struct AVHashContext *ctx, uint8_t *dst, int size);
|
|
|
|
/**
|
|
* Finalize a hash context and store the hexadecimal representation of the
|
|
* actual hash value as a string.
|
|
*
|
|
* It is not safe to update or finalize a hash context again, if it has already
|
|
* been finalized.
|
|
*
|
|
* The string is always 0-terminated.
|
|
*
|
|
* If `size` is smaller than `2 * hash_size + 1`, where `hash_size` is the
|
|
* value returned by av_hash_get_size(), the string will be truncated.
|
|
*
|
|
* @param[in,out] ctx Hash context
|
|
* @param[out] dst Where the string will be stored
|
|
* @param[in] size Maximum number of bytes to write to `dst`
|
|
*/
|
|
void av_hash_final_hex(struct AVHashContext *ctx, uint8_t *dst, int size);
|
|
|
|
/**
|
|
* Finalize a hash context and store the Base64 representation of the
|
|
* actual hash value as a string.
|
|
*
|
|
* It is not safe to update or finalize a hash context again, if it has already
|
|
* been finalized.
|
|
*
|
|
* The string is always 0-terminated.
|
|
*
|
|
* If `size` is smaller than AV_BASE64_SIZE(hash_size), where `hash_size` is
|
|
* the value returned by av_hash_get_size(), the string will be truncated.
|
|
*
|
|
* @param[in,out] ctx Hash context
|
|
* @param[out] dst Where the final hash value will be stored
|
|
* @param[in] size Maximum number of bytes to write to `dst`
|
|
*/
|
|
void av_hash_final_b64(struct AVHashContext *ctx, uint8_t *dst, int size);
|
|
|
|
/**
|
|
* Free hash context and set hash context pointer to `NULL`.
|
|
*
|
|
* @param[in,out] ctx Pointer to hash context
|
|
*/
|
|
void av_hash_freep(struct AVHashContext **ctx);
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|
|
|
|
#endif /* AVUTIL_HASH_H */
|