yuzu/externals/libressl/crypto/evp/e_aes_cbc_hmac_sha1.c
2020-12-28 15:15:37 +00:00

604 lines
16 KiB
C
Executable File

/* $OpenBSD: e_aes_cbc_hmac_sha1.c,v 1.15 2019/04/03 15:33:37 tb Exp $ */
/* ====================================================================
* Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
#include <stdio.h>
#include <string.h>
#include <openssl/opensslconf.h>
#if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/aes.h>
#include <openssl/sha.h>
#include "evp_locl.h"
#include "constant_time_locl.h"
#define TLS1_1_VERSION 0x0302
typedef struct {
AES_KEY ks;
SHA_CTX head, tail, md;
size_t payload_length; /* AAD length in decrypt case */
union {
unsigned int tls_ver;
unsigned char tls_aad[16]; /* 13 used */
} aux;
} EVP_AES_HMAC_SHA1;
#define NO_PAYLOAD_LENGTH ((size_t)-1)
#if defined(AES_ASM) && ( \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) || \
defined(__INTEL__) )
#include "x86_arch.h"
#if defined(__GNUC__) && __GNUC__>=2
# define BSWAP(x) ({ unsigned int r=(x); asm ("bswapl %0":"=r"(r):"0"(r)); r; })
#endif
int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key);
int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key);
void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key, unsigned char *ivec, int enc);
void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks,
const AES_KEY *key, unsigned char iv[16], SHA_CTX *ctx, const void *in0);
#define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)
static int
aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *inkey,
const unsigned char *iv, int enc)
{
EVP_AES_HMAC_SHA1 *key = data(ctx);
int ret;
if (enc)
ret = aesni_set_encrypt_key(inkey, ctx->key_len * 8, &key->ks);
else
ret = aesni_set_decrypt_key(inkey, ctx->key_len * 8, &key->ks);
SHA1_Init(&key->head); /* handy when benchmarking */
key->tail = key->head;
key->md = key->head;
key->payload_length = NO_PAYLOAD_LENGTH;
return ret < 0 ? 0 : 1;
}
#define STITCHED_CALL
#if !defined(STITCHED_CALL)
#define aes_off 0
#endif
void sha1_block_data_order (void *c, const void *p, size_t len);
static void
sha1_update(SHA_CTX *c, const void *data, size_t len)
{
const unsigned char *ptr = data;
size_t res;
if ((res = c->num)) {
res = SHA_CBLOCK - res;
if (len < res)
res = len;
SHA1_Update(c, ptr, res);
ptr += res;
len -= res;
}
res = len % SHA_CBLOCK;
len -= res;
if (len) {
sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
ptr += len;
c->Nh += len >> 29;
c->Nl += len <<= 3;
if (c->Nl < (unsigned int)len)
c->Nh++;
}
if (res)
SHA1_Update(c, ptr, res);
}
#ifdef SHA1_Update
#undef SHA1_Update
#endif
#define SHA1_Update sha1_update
static int
aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_HMAC_SHA1 *key = data(ctx);
unsigned int l;
size_t plen = key->payload_length,
iv = 0, /* explicit IV in TLS 1.1 and later */
sha_off = 0;
#if defined(STITCHED_CALL)
size_t aes_off = 0, blocks;
sha_off = SHA_CBLOCK - key->md.num;
#endif
key->payload_length = NO_PAYLOAD_LENGTH;
if (len % AES_BLOCK_SIZE)
return 0;
if (ctx->encrypt) {
if (plen == NO_PAYLOAD_LENGTH)
plen = len;
else if (len != ((plen + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE) &
-AES_BLOCK_SIZE))
return 0;
else if (key->aux.tls_ver >= TLS1_1_VERSION)
iv = AES_BLOCK_SIZE;
#if defined(STITCHED_CALL)
if (plen > (sha_off + iv) &&
(blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
SHA1_Update(&key->md, in + iv, sha_off);
aesni_cbc_sha1_enc(in, out, blocks, &key->ks,
ctx->iv, &key->md, in + iv + sha_off);
blocks *= SHA_CBLOCK;
aes_off += blocks;
sha_off += blocks;
key->md.Nh += blocks >> 29;
key->md.Nl += blocks <<= 3;
if (key->md.Nl < (unsigned int)blocks)
key->md.Nh++;
} else {
sha_off = 0;
}
#endif
sha_off += iv;
SHA1_Update(&key->md, in + sha_off, plen - sha_off);
if (plen != len) { /* "TLS" mode of operation */
if (in != out)
memcpy(out + aes_off, in + aes_off,
plen - aes_off);
/* calculate HMAC and append it to payload */
SHA1_Final(out + plen, &key->md);
key->md = key->tail;
SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH);
SHA1_Final(out + plen, &key->md);
/* pad the payload|hmac */
plen += SHA_DIGEST_LENGTH;
for (l = len - plen - 1; plen < len; plen++)
out[plen] = l;
/* encrypt HMAC|padding at once */
aesni_cbc_encrypt(out + aes_off, out + aes_off,
len - aes_off, &key->ks, ctx->iv, 1);
} else {
aesni_cbc_encrypt(in + aes_off, out + aes_off,
len - aes_off, &key->ks, ctx->iv, 1);
}
} else {
union {
unsigned int u[SHA_DIGEST_LENGTH/sizeof(unsigned int)];
unsigned char c[32 + SHA_DIGEST_LENGTH];
} mac, *pmac;
/* arrange cache line alignment */
pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
/* decrypt HMAC|padding at once */
aesni_cbc_encrypt(in, out, len, &key->ks, ctx->iv, 0);
if (plen == 0 || plen == NO_PAYLOAD_LENGTH) {
SHA1_Update(&key->md, out, len);
} else if (plen < 4) {
return 0;
} else { /* "TLS" mode of operation */
size_t inp_len, mask, j, i;
unsigned int res, maxpad, pad, bitlen;
int ret = 1;
union {
unsigned int u[SHA_LBLOCK];
unsigned char c[SHA_CBLOCK];
}
*data = (void *)key->md.data;
if ((key->aux.tls_aad[plen - 4] << 8 |
key->aux.tls_aad[plen - 3]) >= TLS1_1_VERSION)
iv = AES_BLOCK_SIZE;
if (len < (iv + SHA_DIGEST_LENGTH + 1))
return 0;
/* omit explicit iv */
out += iv;
len -= iv;
/* figure out payload length */
pad = out[len - 1];
maxpad = len - (SHA_DIGEST_LENGTH + 1);
maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
maxpad &= 255;
ret &= constant_time_ge(maxpad, pad);
inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
mask = (0 - ((inp_len - len) >>
(sizeof(inp_len) * 8 - 1)));
inp_len &= mask;
ret &= (int)mask;
key->aux.tls_aad[plen - 2] = inp_len >> 8;
key->aux.tls_aad[plen - 1] = inp_len;
/* calculate HMAC */
key->md = key->head;
SHA1_Update(&key->md, key->aux.tls_aad, plen);
#if 1
len -= SHA_DIGEST_LENGTH; /* amend mac */
if (len >= (256 + SHA_CBLOCK)) {
j = (len - (256 + SHA_CBLOCK)) &
(0 - SHA_CBLOCK);
j += SHA_CBLOCK - key->md.num;
SHA1_Update(&key->md, out, j);
out += j;
len -= j;
inp_len -= j;
}
/* but pretend as if we hashed padded payload */
bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
#ifdef BSWAP
bitlen = BSWAP(bitlen);
#else
mac.c[0] = 0;
mac.c[1] = (unsigned char)(bitlen >> 16);
mac.c[2] = (unsigned char)(bitlen >> 8);
mac.c[3] = (unsigned char)bitlen;
bitlen = mac.u[0];
#endif
pmac->u[0] = 0;
pmac->u[1] = 0;
pmac->u[2] = 0;
pmac->u[3] = 0;
pmac->u[4] = 0;
for (res = key->md.num, j = 0; j < len; j++) {
size_t c = out[j];
mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
c &= mask;
c |= 0x80 & ~mask &
~((inp_len - j) >> (sizeof(j) * 8 - 8));
data->c[res++] = (unsigned char)c;
if (res != SHA_CBLOCK)
continue;
/* j is not incremented yet */
mask = 0 - ((inp_len + 7 - j) >>
(sizeof(j) * 8 - 1));
data->u[SHA_LBLOCK - 1] |= bitlen&mask;
sha1_block_data_order(&key->md, data, 1);
mask &= 0 - ((j - inp_len - 72) >>
(sizeof(j) * 8 - 1));
pmac->u[0] |= key->md.h0 & mask;
pmac->u[1] |= key->md.h1 & mask;
pmac->u[2] |= key->md.h2 & mask;
pmac->u[3] |= key->md.h3 & mask;
pmac->u[4] |= key->md.h4 & mask;
res = 0;
}
for (i = res; i < SHA_CBLOCK; i++, j++)
data->c[i] = 0;
if (res > SHA_CBLOCK - 8) {
mask = 0 - ((inp_len + 8 - j) >>
(sizeof(j) * 8 - 1));
data->u[SHA_LBLOCK - 1] |= bitlen & mask;
sha1_block_data_order(&key->md, data, 1);
mask &= 0 - ((j - inp_len - 73) >>
(sizeof(j) * 8 - 1));
pmac->u[0] |= key->md.h0 & mask;
pmac->u[1] |= key->md.h1 & mask;
pmac->u[2] |= key->md.h2 & mask;
pmac->u[3] |= key->md.h3 & mask;
pmac->u[4] |= key->md.h4 & mask;
memset(data, 0, SHA_CBLOCK);
j += 64;
}
data->u[SHA_LBLOCK - 1] = bitlen;
sha1_block_data_order(&key->md, data, 1);
mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
pmac->u[0] |= key->md.h0 & mask;
pmac->u[1] |= key->md.h1 & mask;
pmac->u[2] |= key->md.h2 & mask;
pmac->u[3] |= key->md.h3 & mask;
pmac->u[4] |= key->md.h4 & mask;
#ifdef BSWAP
pmac->u[0] = BSWAP(pmac->u[0]);
pmac->u[1] = BSWAP(pmac->u[1]);
pmac->u[2] = BSWAP(pmac->u[2]);
pmac->u[3] = BSWAP(pmac->u[3]);
pmac->u[4] = BSWAP(pmac->u[4]);
#else
for (i = 0; i < 5; i++) {
res = pmac->u[i];
pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
pmac->c[4 * i + 3] = (unsigned char)res;
}
#endif
len += SHA_DIGEST_LENGTH;
#else
SHA1_Update(&key->md, out, inp_len);
res = key->md.num;
SHA1_Final(pmac->c, &key->md);
{
unsigned int inp_blocks, pad_blocks;
/* but pretend as if we hashed padded payload */
inp_blocks = 1 + ((SHA_CBLOCK - 9 - res) >>
(sizeof(res) * 8 - 1));
res += (unsigned int)(len - inp_len);
pad_blocks = res / SHA_CBLOCK;
res %= SHA_CBLOCK;
pad_blocks += 1 + ((SHA_CBLOCK - 9 - res) >>
(sizeof(res) * 8 - 1));
for (; inp_blocks < pad_blocks; inp_blocks++)
sha1_block_data_order(&key->md,
data, 1);
}
#endif
key->md = key->tail;
SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH);
SHA1_Final(pmac->c, &key->md);
/* verify HMAC */
out += inp_len;
len -= inp_len;
#if 1
{
unsigned char *p =
out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
size_t off = out - p;
unsigned int c, cmask;
maxpad += SHA_DIGEST_LENGTH;
for (res = 0, i = 0, j = 0; j < maxpad; j++) {
c = p[j];
cmask = ((int)(j - off -
SHA_DIGEST_LENGTH)) >>
(sizeof(int) * 8 - 1);
res |= (c ^ pad) & ~cmask; /* ... and padding */
cmask &= ((int)(off - 1 - j)) >>
(sizeof(int) * 8 - 1);
res |= (c ^ pmac->c[i]) & cmask;
i += 1 & cmask;
}
maxpad -= SHA_DIGEST_LENGTH;
res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
ret &= (int)~res;
}
#else
for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++)
res |= out[i] ^ pmac->c[i];
res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
ret &= (int)~res;
/* verify padding */
pad = (pad & ~res) | (maxpad & res);
out = out + len - 1 - pad;
for (res = 0, i = 0; i < pad; i++)
res |= out[i] ^ pad;
res = (0 - res) >> (sizeof(res) * 8 - 1);
ret &= (int)~res;
#endif
return ret;
}
}
return 1;
}
static int
aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
{
EVP_AES_HMAC_SHA1 *key = data(ctx);
switch (type) {
case EVP_CTRL_AEAD_SET_MAC_KEY:
{
unsigned int i;
unsigned char hmac_key[64];
memset(hmac_key, 0, sizeof(hmac_key));
if (arg > (int)sizeof(hmac_key)) {
SHA1_Init(&key->head);
SHA1_Update(&key->head, ptr, arg);
SHA1_Final(hmac_key, &key->head);
} else {
memcpy(hmac_key, ptr, arg);
}
for (i = 0; i < sizeof(hmac_key); i++)
hmac_key[i] ^= 0x36; /* ipad */
SHA1_Init(&key->head);
SHA1_Update(&key->head, hmac_key, sizeof(hmac_key));
for (i = 0; i < sizeof(hmac_key); i++)
hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
SHA1_Init(&key->tail);
SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key));
explicit_bzero(hmac_key, sizeof(hmac_key));
return 1;
}
case EVP_CTRL_AEAD_TLS1_AAD:
{
unsigned char *p = ptr;
unsigned int len;
/* RFC 5246, 6.2.3.3: additional data has length 13 */
if (arg != 13)
return -1;
len = p[arg - 2] << 8 | p[arg - 1];
if (ctx->encrypt) {
key->payload_length = len;
if ((key->aux.tls_ver = p[arg - 4] << 8 |
p[arg - 3]) >= TLS1_1_VERSION) {
len -= AES_BLOCK_SIZE;
p[arg - 2] = len >> 8;
p[arg - 1] = len;
}
key->md = key->head;
SHA1_Update(&key->md, p, arg);
return (int)(((len + SHA_DIGEST_LENGTH +
AES_BLOCK_SIZE) & -AES_BLOCK_SIZE) - len);
} else {
memcpy(key->aux.tls_aad, ptr, arg);
key->payload_length = arg;
return SHA_DIGEST_LENGTH;
}
}
default:
return -1;
}
}
static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = {
#ifdef NID_aes_128_cbc_hmac_sha1
.nid = NID_aes_128_cbc_hmac_sha1,
#else
.nid = NID_undef,
#endif
.block_size = 16,
.key_len = 16,
.iv_len = 16,
.flags = EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
EVP_CIPH_FLAG_AEAD_CIPHER,
.init = aesni_cbc_hmac_sha1_init_key,
.do_cipher = aesni_cbc_hmac_sha1_cipher,
.ctx_size = sizeof(EVP_AES_HMAC_SHA1),
.ctrl = aesni_cbc_hmac_sha1_ctrl
};
static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = {
#ifdef NID_aes_256_cbc_hmac_sha1
.nid = NID_aes_256_cbc_hmac_sha1,
#else
.nid = NID_undef,
#endif
.block_size = 16,
.key_len = 32,
.iv_len = 16,
.flags = EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
EVP_CIPH_FLAG_AEAD_CIPHER,
.init = aesni_cbc_hmac_sha1_init_key,
.do_cipher = aesni_cbc_hmac_sha1_cipher,
.ctx_size = sizeof(EVP_AES_HMAC_SHA1),
.ctrl = aesni_cbc_hmac_sha1_ctrl
};
const EVP_CIPHER *
EVP_aes_128_cbc_hmac_sha1(void)
{
return (OPENSSL_cpu_caps() & CPUCAP_MASK_AESNI) ?
&aesni_128_cbc_hmac_sha1_cipher : NULL;
}
const EVP_CIPHER *
EVP_aes_256_cbc_hmac_sha1(void)
{
return (OPENSSL_cpu_caps() & CPUCAP_MASK_AESNI) ?
&aesni_256_cbc_hmac_sha1_cipher : NULL;
}
#else
const EVP_CIPHER *
EVP_aes_128_cbc_hmac_sha1(void)
{
return NULL;
}
const EVP_CIPHER *
EVP_aes_256_cbc_hmac_sha1(void)
{
return NULL;
}
#endif
#endif