548 lines
17 KiB
C
Executable File
548 lines
17 KiB
C
Executable File
/* $OpenBSD: sha512.c,v 1.15 2016/11/04 13:56:05 miod Exp $ */
|
|
/* ====================================================================
|
|
* Copyright (c) 2004 The OpenSSL Project. All rights reserved
|
|
* according to the OpenSSL license [found in ../../LICENSE].
|
|
* ====================================================================
|
|
*/
|
|
|
|
#include <machine/endian.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/opensslconf.h>
|
|
|
|
#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
|
|
/*
|
|
* IMPLEMENTATION NOTES.
|
|
*
|
|
* As you might have noticed 32-bit hash algorithms:
|
|
*
|
|
* - permit SHA_LONG to be wider than 32-bit (case on CRAY);
|
|
* - optimized versions implement two transform functions: one operating
|
|
* on [aligned] data in host byte order and one - on data in input
|
|
* stream byte order;
|
|
* - share common byte-order neutral collector and padding function
|
|
* implementations, ../md32_common.h;
|
|
*
|
|
* Neither of the above applies to this SHA-512 implementations. Reasons
|
|
* [in reverse order] are:
|
|
*
|
|
* - it's the only 64-bit hash algorithm for the moment of this writing,
|
|
* there is no need for common collector/padding implementation [yet];
|
|
* - by supporting only one transform function [which operates on
|
|
* *aligned* data in input stream byte order, big-endian in this case]
|
|
* we minimize burden of maintenance in two ways: a) collector/padding
|
|
* function is simpler; b) only one transform function to stare at;
|
|
* - SHA_LONG64 is required to be exactly 64-bit in order to be able to
|
|
* apply a number of optimizations to mitigate potential performance
|
|
* penalties caused by previous design decision;
|
|
*
|
|
* Caveat lector.
|
|
*
|
|
* Implementation relies on the fact that "long long" is 64-bit on
|
|
* both 32- and 64-bit platforms. If some compiler vendor comes up
|
|
* with 128-bit long long, adjustment to sha.h would be required.
|
|
* As this implementation relies on 64-bit integer type, it's totally
|
|
* inappropriate for platforms which don't support it, most notably
|
|
* 16-bit platforms.
|
|
* <appro@fy.chalmers.se>
|
|
*/
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/opensslv.h>
|
|
#include <openssl/sha.h>
|
|
|
|
#if !defined(__STRICT_ALIGNMENT) || defined(SHA512_ASM)
|
|
#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
|
|
#endif
|
|
|
|
int SHA384_Init(SHA512_CTX *c)
|
|
{
|
|
c->h[0]=U64(0xcbbb9d5dc1059ed8);
|
|
c->h[1]=U64(0x629a292a367cd507);
|
|
c->h[2]=U64(0x9159015a3070dd17);
|
|
c->h[3]=U64(0x152fecd8f70e5939);
|
|
c->h[4]=U64(0x67332667ffc00b31);
|
|
c->h[5]=U64(0x8eb44a8768581511);
|
|
c->h[6]=U64(0xdb0c2e0d64f98fa7);
|
|
c->h[7]=U64(0x47b5481dbefa4fa4);
|
|
|
|
c->Nl=0; c->Nh=0;
|
|
c->num=0; c->md_len=SHA384_DIGEST_LENGTH;
|
|
return 1;
|
|
}
|
|
|
|
int SHA512_Init(SHA512_CTX *c)
|
|
{
|
|
c->h[0]=U64(0x6a09e667f3bcc908);
|
|
c->h[1]=U64(0xbb67ae8584caa73b);
|
|
c->h[2]=U64(0x3c6ef372fe94f82b);
|
|
c->h[3]=U64(0xa54ff53a5f1d36f1);
|
|
c->h[4]=U64(0x510e527fade682d1);
|
|
c->h[5]=U64(0x9b05688c2b3e6c1f);
|
|
c->h[6]=U64(0x1f83d9abfb41bd6b);
|
|
c->h[7]=U64(0x5be0cd19137e2179);
|
|
|
|
c->Nl=0; c->Nh=0;
|
|
c->num=0; c->md_len=SHA512_DIGEST_LENGTH;
|
|
return 1;
|
|
}
|
|
|
|
#ifndef SHA512_ASM
|
|
static
|
|
#endif
|
|
void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
|
|
|
|
int SHA512_Final (unsigned char *md, SHA512_CTX *c)
|
|
{
|
|
unsigned char *p=(unsigned char *)c->u.p;
|
|
size_t n=c->num;
|
|
|
|
p[n]=0x80; /* There always is a room for one */
|
|
n++;
|
|
if (n > (sizeof(c->u)-16))
|
|
memset (p+n,0,sizeof(c->u)-n), n=0,
|
|
sha512_block_data_order (c,p,1);
|
|
|
|
memset (p+n,0,sizeof(c->u)-16-n);
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
c->u.d[SHA_LBLOCK-2] = c->Nh;
|
|
c->u.d[SHA_LBLOCK-1] = c->Nl;
|
|
#else
|
|
p[sizeof(c->u)-1] = (unsigned char)(c->Nl);
|
|
p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8);
|
|
p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16);
|
|
p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24);
|
|
p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32);
|
|
p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40);
|
|
p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48);
|
|
p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56);
|
|
p[sizeof(c->u)-9] = (unsigned char)(c->Nh);
|
|
p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
|
|
p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
|
|
p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
|
|
p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
|
|
p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
|
|
p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
|
|
p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
|
|
#endif
|
|
|
|
sha512_block_data_order (c,p,1);
|
|
|
|
if (md==0) return 0;
|
|
|
|
switch (c->md_len)
|
|
{
|
|
/* Let compiler decide if it's appropriate to unroll... */
|
|
case SHA384_DIGEST_LENGTH:
|
|
for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
|
|
{
|
|
SHA_LONG64 t = c->h[n];
|
|
|
|
*(md++) = (unsigned char)(t>>56);
|
|
*(md++) = (unsigned char)(t>>48);
|
|
*(md++) = (unsigned char)(t>>40);
|
|
*(md++) = (unsigned char)(t>>32);
|
|
*(md++) = (unsigned char)(t>>24);
|
|
*(md++) = (unsigned char)(t>>16);
|
|
*(md++) = (unsigned char)(t>>8);
|
|
*(md++) = (unsigned char)(t);
|
|
}
|
|
break;
|
|
case SHA512_DIGEST_LENGTH:
|
|
for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
|
|
{
|
|
SHA_LONG64 t = c->h[n];
|
|
|
|
*(md++) = (unsigned char)(t>>56);
|
|
*(md++) = (unsigned char)(t>>48);
|
|
*(md++) = (unsigned char)(t>>40);
|
|
*(md++) = (unsigned char)(t>>32);
|
|
*(md++) = (unsigned char)(t>>24);
|
|
*(md++) = (unsigned char)(t>>16);
|
|
*(md++) = (unsigned char)(t>>8);
|
|
*(md++) = (unsigned char)(t);
|
|
}
|
|
break;
|
|
/* ... as well as make sure md_len is not abused. */
|
|
default: return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int SHA384_Final (unsigned char *md,SHA512_CTX *c)
|
|
{ return SHA512_Final (md,c); }
|
|
|
|
int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
|
|
{
|
|
SHA_LONG64 l;
|
|
unsigned char *p=c->u.p;
|
|
const unsigned char *data=(const unsigned char *)_data;
|
|
|
|
if (len==0) return 1;
|
|
|
|
l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
|
|
if (l < c->Nl) c->Nh++;
|
|
if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61);
|
|
c->Nl=l;
|
|
|
|
if (c->num != 0)
|
|
{
|
|
size_t n = sizeof(c->u) - c->num;
|
|
|
|
if (len < n)
|
|
{
|
|
memcpy (p+c->num,data,len), c->num += (unsigned int)len;
|
|
return 1;
|
|
}
|
|
else {
|
|
memcpy (p+c->num,data,n), c->num = 0;
|
|
len-=n, data+=n;
|
|
sha512_block_data_order (c,p,1);
|
|
}
|
|
}
|
|
|
|
if (len >= sizeof(c->u))
|
|
{
|
|
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
|
|
if ((size_t)data%sizeof(c->u.d[0]) != 0)
|
|
while (len >= sizeof(c->u))
|
|
memcpy (p,data,sizeof(c->u)),
|
|
sha512_block_data_order (c,p,1),
|
|
len -= sizeof(c->u),
|
|
data += sizeof(c->u);
|
|
else
|
|
#endif
|
|
sha512_block_data_order (c,data,len/sizeof(c->u)),
|
|
data += len,
|
|
len %= sizeof(c->u),
|
|
data -= len;
|
|
}
|
|
|
|
if (len != 0) memcpy (p,data,len), c->num = (int)len;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
|
|
{ return SHA512_Update (c,data,len); }
|
|
|
|
void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
|
|
{
|
|
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
|
|
if ((size_t)data%sizeof(c->u.d[0]) != 0)
|
|
memcpy(c->u.p,data,sizeof(c->u.p)),
|
|
data = c->u.p;
|
|
#endif
|
|
sha512_block_data_order (c,data,1);
|
|
}
|
|
|
|
unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
|
|
{
|
|
SHA512_CTX c;
|
|
static unsigned char m[SHA384_DIGEST_LENGTH];
|
|
|
|
if (md == NULL) md=m;
|
|
SHA384_Init(&c);
|
|
SHA512_Update(&c,d,n);
|
|
SHA512_Final(md,&c);
|
|
explicit_bzero(&c,sizeof(c));
|
|
return(md);
|
|
}
|
|
|
|
unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
|
|
{
|
|
SHA512_CTX c;
|
|
static unsigned char m[SHA512_DIGEST_LENGTH];
|
|
|
|
if (md == NULL) md=m;
|
|
SHA512_Init(&c);
|
|
SHA512_Update(&c,d,n);
|
|
SHA512_Final(md,&c);
|
|
explicit_bzero(&c,sizeof(c));
|
|
return(md);
|
|
}
|
|
|
|
#ifndef SHA512_ASM
|
|
static const SHA_LONG64 K512[80] = {
|
|
U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
|
|
U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
|
|
U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
|
|
U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
|
|
U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
|
|
U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
|
|
U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
|
|
U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
|
|
U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
|
|
U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
|
|
U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
|
|
U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
|
|
U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
|
|
U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
|
|
U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
|
|
U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
|
|
U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
|
|
U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
|
|
U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
|
|
U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
|
|
U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
|
|
U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
|
|
U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
|
|
U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
|
|
U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
|
|
U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
|
|
U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
|
|
U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
|
|
U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
|
|
U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
|
|
U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
|
|
U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
|
|
U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
|
|
U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
|
|
U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
|
|
U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
|
|
U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
|
|
U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
|
|
U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
|
|
U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
|
|
|
|
#if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
|
|
# if defined(__x86_64) || defined(__x86_64__)
|
|
# define ROTR(a,n) ({ SHA_LONG64 ret; \
|
|
asm ("rorq %1,%0" \
|
|
: "=r"(ret) \
|
|
: "J"(n),"0"(a) \
|
|
: "cc"); ret; })
|
|
# define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
|
|
asm ("bswapq %0" \
|
|
: "=r"(ret) \
|
|
: "0"(ret)); ret; })
|
|
# elif (defined(__i386) || defined(__i386__))
|
|
# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
|
|
unsigned int hi=p[0],lo=p[1]; \
|
|
asm ("bswapl %0; bswapl %1;" \
|
|
: "=r"(lo),"=r"(hi) \
|
|
: "0"(lo),"1"(hi)); \
|
|
((SHA_LONG64)hi)<<32|lo; })
|
|
# elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
|
|
# define ROTR(a,n) ({ SHA_LONG64 ret; \
|
|
asm ("rotrdi %0,%1,%2" \
|
|
: "=r"(ret) \
|
|
: "r"(a),"K"(n)); ret; })
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef PULL64
|
|
#define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
|
|
#define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
|
|
#endif
|
|
|
|
#ifndef ROTR
|
|
#define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
|
|
#endif
|
|
|
|
#define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
|
|
#define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
|
|
#define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
|
|
#define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
|
|
|
|
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
|
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
|
|
|
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
|
|
/*
|
|
* This code should give better results on 32-bit CPU with less than
|
|
* ~24 registers, both size and performance wise...
|
|
*/
|
|
static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
|
|
{
|
|
const SHA_LONG64 *W=in;
|
|
SHA_LONG64 A,E,T;
|
|
SHA_LONG64 X[9+80],*F;
|
|
int i;
|
|
|
|
while (num--) {
|
|
|
|
F = X+80;
|
|
A = ctx->h[0]; F[1] = ctx->h[1];
|
|
F[2] = ctx->h[2]; F[3] = ctx->h[3];
|
|
E = ctx->h[4]; F[5] = ctx->h[5];
|
|
F[6] = ctx->h[6]; F[7] = ctx->h[7];
|
|
|
|
for (i=0;i<16;i++,F--)
|
|
{
|
|
T = PULL64(W[i]);
|
|
F[0] = A;
|
|
F[4] = E;
|
|
F[8] = T;
|
|
T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
|
|
E = F[3] + T;
|
|
A = T + Sigma0(A) + Maj(A,F[1],F[2]);
|
|
}
|
|
|
|
for (;i<80;i++,F--)
|
|
{
|
|
T = sigma0(F[8+16-1]);
|
|
T += sigma1(F[8+16-14]);
|
|
T += F[8+16] + F[8+16-9];
|
|
|
|
F[0] = A;
|
|
F[4] = E;
|
|
F[8] = T;
|
|
T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
|
|
E = F[3] + T;
|
|
A = T + Sigma0(A) + Maj(A,F[1],F[2]);
|
|
}
|
|
|
|
ctx->h[0] += A; ctx->h[1] += F[1];
|
|
ctx->h[2] += F[2]; ctx->h[3] += F[3];
|
|
ctx->h[4] += E; ctx->h[5] += F[5];
|
|
ctx->h[6] += F[6]; ctx->h[7] += F[7];
|
|
|
|
W+=SHA_LBLOCK;
|
|
}
|
|
}
|
|
|
|
#elif defined(OPENSSL_SMALL_FOOTPRINT)
|
|
|
|
static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
|
|
{
|
|
const SHA_LONG64 *W=in;
|
|
SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2;
|
|
SHA_LONG64 X[16];
|
|
int i;
|
|
|
|
while (num--) {
|
|
|
|
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
|
|
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
|
|
|
|
for (i=0;i<16;i++)
|
|
{
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
T1 = X[i] = W[i];
|
|
#else
|
|
T1 = X[i] = PULL64(W[i]);
|
|
#endif
|
|
T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
|
|
T2 = Sigma0(a) + Maj(a,b,c);
|
|
h = g; g = f; f = e; e = d + T1;
|
|
d = c; c = b; b = a; a = T1 + T2;
|
|
}
|
|
|
|
for (;i<80;i++)
|
|
{
|
|
s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
|
|
s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
|
|
|
|
T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
|
|
T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
|
|
T2 = Sigma0(a) + Maj(a,b,c);
|
|
h = g; g = f; f = e; e = d + T1;
|
|
d = c; c = b; b = a; a = T1 + T2;
|
|
}
|
|
|
|
ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
|
|
ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
|
|
|
|
W+=SHA_LBLOCK;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
|
|
T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
|
|
h = Sigma0(a) + Maj(a,b,c); \
|
|
d += T1; h += T1; } while (0)
|
|
|
|
#define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
|
|
s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
|
|
s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
|
|
T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
|
|
ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
|
|
|
|
static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
|
|
{
|
|
const SHA_LONG64 *W=in;
|
|
SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1;
|
|
SHA_LONG64 X[16];
|
|
int i;
|
|
|
|
while (num--) {
|
|
|
|
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
|
|
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
|
|
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
|
|
T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
|
|
T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
|
|
T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
|
|
T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
|
|
T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
|
|
T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
|
|
T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
|
|
T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
|
|
T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
|
|
T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
|
|
T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
|
|
T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
|
|
T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
|
|
T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
|
|
T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
|
|
#else
|
|
T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h);
|
|
T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g);
|
|
T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f);
|
|
T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e);
|
|
T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d);
|
|
T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c);
|
|
T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b);
|
|
T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a);
|
|
T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h);
|
|
T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g);
|
|
T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f);
|
|
T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e);
|
|
T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d);
|
|
T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c);
|
|
T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b);
|
|
T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a);
|
|
#endif
|
|
|
|
for (i=16;i<80;i+=16)
|
|
{
|
|
ROUND_16_80(i, 0,a,b,c,d,e,f,g,h,X);
|
|
ROUND_16_80(i, 1,h,a,b,c,d,e,f,g,X);
|
|
ROUND_16_80(i, 2,g,h,a,b,c,d,e,f,X);
|
|
ROUND_16_80(i, 3,f,g,h,a,b,c,d,e,X);
|
|
ROUND_16_80(i, 4,e,f,g,h,a,b,c,d,X);
|
|
ROUND_16_80(i, 5,d,e,f,g,h,a,b,c,X);
|
|
ROUND_16_80(i, 6,c,d,e,f,g,h,a,b,X);
|
|
ROUND_16_80(i, 7,b,c,d,e,f,g,h,a,X);
|
|
ROUND_16_80(i, 8,a,b,c,d,e,f,g,h,X);
|
|
ROUND_16_80(i, 9,h,a,b,c,d,e,f,g,X);
|
|
ROUND_16_80(i,10,g,h,a,b,c,d,e,f,X);
|
|
ROUND_16_80(i,11,f,g,h,a,b,c,d,e,X);
|
|
ROUND_16_80(i,12,e,f,g,h,a,b,c,d,X);
|
|
ROUND_16_80(i,13,d,e,f,g,h,a,b,c,X);
|
|
ROUND_16_80(i,14,c,d,e,f,g,h,a,b,X);
|
|
ROUND_16_80(i,15,b,c,d,e,f,g,h,a,X);
|
|
}
|
|
|
|
ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
|
|
ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
|
|
|
|
W+=SHA_LBLOCK;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif /* SHA512_ASM */
|
|
|
|
#endif /* !OPENSSL_NO_SHA512 */
|