yuzu/externals/libressl/crypto/rsa/rsa_pmeth.c
2022-04-24 22:29:35 +02:00

870 lines
21 KiB
C
Executable File

/* $OpenBSD: rsa_pmeth.c,v 1.33 2021/12/04 16:08:32 tb Exp $ */
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2006.
*/
/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <openssl/opensslconf.h>
#include <openssl/asn1t.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include "bn_lcl.h"
#include "evp_locl.h"
#include "rsa_locl.h"
/* RSA pkey context structure */
typedef struct {
/* Key gen parameters */
int nbits;
BIGNUM *pub_exp;
/* Keygen callback info */
int gentmp[2];
/* RSA padding mode */
int pad_mode;
/* message digest */
const EVP_MD *md;
/* message digest for MGF1 */
const EVP_MD *mgf1md;
/* PSS salt length */
int saltlen;
/* Minimum salt length or -1 if no PSS parameter restriction */
int min_saltlen;
/* Temp buffer */
unsigned char *tbuf;
/* OAEP label */
unsigned char *oaep_label;
size_t oaep_labellen;
} RSA_PKEY_CTX;
/* True if PSS parameters are restricted */
#define rsa_pss_restricted(rctx) (rctx->min_saltlen != -1)
static int
pkey_rsa_init(EVP_PKEY_CTX *ctx)
{
RSA_PKEY_CTX *rctx;
if ((rctx = calloc(1, sizeof(RSA_PKEY_CTX))) == NULL)
return 0;
rctx->nbits = 2048;
if (ctx->pmeth->pkey_id == EVP_PKEY_RSA_PSS)
rctx->pad_mode = RSA_PKCS1_PSS_PADDING;
else
rctx->pad_mode = RSA_PKCS1_PADDING;
/* Maximum for sign, auto for verify */
rctx->saltlen = RSA_PSS_SALTLEN_AUTO;
rctx->min_saltlen = -1;
ctx->data = rctx;
ctx->keygen_info = rctx->gentmp;
ctx->keygen_info_count = 2;
return 1;
}
static int
pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src)
{
RSA_PKEY_CTX *dctx, *sctx;
if (!pkey_rsa_init(dst))
return 0;
sctx = src->data;
dctx = dst->data;
dctx->nbits = sctx->nbits;
if (sctx->pub_exp != NULL) {
BN_free(dctx->pub_exp);
if ((dctx->pub_exp = BN_dup(sctx->pub_exp)) == NULL)
return 0;
}
dctx->pad_mode = sctx->pad_mode;
dctx->md = sctx->md;
dctx->mgf1md = sctx->mgf1md;
if (sctx->oaep_label != NULL) {
free(dctx->oaep_label);
if ((dctx->oaep_label = calloc(1, sctx->oaep_labellen)) == NULL)
return 0;
memcpy(dctx->oaep_label, sctx->oaep_label, sctx->oaep_labellen);
dctx->oaep_labellen = sctx->oaep_labellen;
}
return 1;
}
static int
setup_tbuf(RSA_PKEY_CTX *ctx, EVP_PKEY_CTX *pk)
{
if (ctx->tbuf != NULL)
return 1;
if ((ctx->tbuf = calloc(1, EVP_PKEY_size(pk->pkey))) == NULL) {
RSAerror(ERR_R_MALLOC_FAILURE);
return 0;
}
return 1;
}
static void
pkey_rsa_cleanup(EVP_PKEY_CTX *ctx)
{
RSA_PKEY_CTX *rctx = ctx->data;
if (rctx) {
BN_free(rctx->pub_exp);
free(rctx->tbuf);
free(rctx->oaep_label);
free(rctx);
}
}
static int
pkey_rsa_sign(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
const unsigned char *tbs, size_t tbslen)
{
int ret;
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
if (rctx->md) {
if (tbslen != (size_t)EVP_MD_size(rctx->md)) {
RSAerror(RSA_R_INVALID_DIGEST_LENGTH);
return -1;
}
if (rctx->pad_mode == RSA_X931_PADDING) {
if ((size_t)EVP_PKEY_size(ctx->pkey) < tbslen + 1) {
RSAerror(RSA_R_KEY_SIZE_TOO_SMALL);
return -1;
}
if (!setup_tbuf(rctx, ctx)) {
RSAerror(ERR_R_MALLOC_FAILURE);
return -1;
}
memcpy(rctx->tbuf, tbs, tbslen);
rctx->tbuf[tbslen] =
RSA_X931_hash_id(EVP_MD_type(rctx->md));
ret = RSA_private_encrypt(tbslen + 1, rctx->tbuf, sig,
rsa, RSA_X931_PADDING);
} else if (rctx->pad_mode == RSA_PKCS1_PADDING) {
unsigned int sltmp;
ret = RSA_sign(EVP_MD_type(rctx->md), tbs, tbslen, sig,
&sltmp, rsa);
if (ret <= 0)
return ret;
ret = sltmp;
} else if (rctx->pad_mode == RSA_PKCS1_PSS_PADDING) {
if (!setup_tbuf(rctx, ctx))
return -1;
if (!RSA_padding_add_PKCS1_PSS_mgf1(rsa, rctx->tbuf,
tbs, rctx->md, rctx->mgf1md, rctx->saltlen))
return -1;
ret = RSA_private_encrypt(RSA_size(rsa), rctx->tbuf,
sig, rsa, RSA_NO_PADDING);
} else {
return -1;
}
} else {
ret = RSA_private_encrypt(tbslen, tbs, sig, ctx->pkey->pkey.rsa,
rctx->pad_mode);
}
if (ret < 0)
return ret;
*siglen = ret;
return 1;
}
static int
pkey_rsa_verifyrecover(EVP_PKEY_CTX *ctx, unsigned char *rout, size_t *routlen,
const unsigned char *sig, size_t siglen)
{
int ret;
RSA_PKEY_CTX *rctx = ctx->data;
if (rctx->md) {
if (rctx->pad_mode == RSA_X931_PADDING) {
if (!setup_tbuf(rctx, ctx))
return -1;
ret = RSA_public_decrypt(siglen, sig, rctx->tbuf,
ctx->pkey->pkey.rsa, RSA_X931_PADDING);
if (ret < 1)
return 0;
ret--;
if (rctx->tbuf[ret] !=
RSA_X931_hash_id(EVP_MD_type(rctx->md))) {
RSAerror(RSA_R_ALGORITHM_MISMATCH);
return 0;
}
if (ret != EVP_MD_size(rctx->md)) {
RSAerror(RSA_R_INVALID_DIGEST_LENGTH);
return 0;
}
if (rout)
memcpy(rout, rctx->tbuf, ret);
} else if (rctx->pad_mode == RSA_PKCS1_PADDING) {
size_t sltmp;
ret = int_rsa_verify(EVP_MD_type(rctx->md), NULL, 0,
rout, &sltmp, sig, siglen, ctx->pkey->pkey.rsa);
if (ret <= 0)
return 0;
ret = sltmp;
} else {
return -1;
}
} else {
ret = RSA_public_decrypt(siglen, sig, rout, ctx->pkey->pkey.rsa,
rctx->pad_mode);
}
if (ret < 0)
return ret;
*routlen = ret;
return 1;
}
static int
pkey_rsa_verify(EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen,
const unsigned char *tbs, size_t tbslen)
{
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
size_t rslen;
if (rctx->md) {
if (rctx->pad_mode == RSA_PKCS1_PADDING)
return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen,
sig, siglen, rsa);
if (tbslen != (size_t)EVP_MD_size(rctx->md)) {
RSAerror(RSA_R_INVALID_DIGEST_LENGTH);
return -1;
}
if (rctx->pad_mode == RSA_X931_PADDING) {
if (pkey_rsa_verifyrecover(ctx, NULL, &rslen, sig,
siglen) <= 0)
return 0;
} else if (rctx->pad_mode == RSA_PKCS1_PSS_PADDING) {
int ret;
if (!setup_tbuf(rctx, ctx))
return -1;
ret = RSA_public_decrypt(siglen, sig, rctx->tbuf,
rsa, RSA_NO_PADDING);
if (ret <= 0)
return 0;
ret = RSA_verify_PKCS1_PSS_mgf1(rsa, tbs, rctx->md,
rctx->mgf1md, rctx->tbuf, rctx->saltlen);
if (ret <= 0)
return 0;
return 1;
} else {
return -1;
}
} else {
if (!setup_tbuf(rctx, ctx))
return -1;
rslen = RSA_public_decrypt(siglen, sig, rctx->tbuf, rsa,
rctx->pad_mode);
if (rslen == 0)
return 0;
}
if (rslen != tbslen || timingsafe_bcmp(tbs, rctx->tbuf, rslen))
return 0;
return 1;
}
static int
pkey_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen)
{
RSA_PKEY_CTX *rctx = ctx->data;
int ret;
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
int klen = RSA_size(ctx->pkey->pkey.rsa);
if (!setup_tbuf(rctx, ctx))
return -1;
if (!RSA_padding_add_PKCS1_OAEP_mgf1(rctx->tbuf, klen,
in, inlen, rctx->oaep_label, rctx->oaep_labellen,
rctx->md, rctx->mgf1md))
return -1;
ret = RSA_public_encrypt(klen, rctx->tbuf, out,
ctx->pkey->pkey.rsa, RSA_NO_PADDING);
} else {
ret = RSA_public_encrypt(inlen, in, out, ctx->pkey->pkey.rsa,
rctx->pad_mode);
}
if (ret < 0)
return ret;
*outlen = ret;
return 1;
}
static int
pkey_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen)
{
int ret;
RSA_PKEY_CTX *rctx = ctx->data;
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
if (!setup_tbuf(rctx, ctx))
return -1;
ret = RSA_private_decrypt(inlen, in, rctx->tbuf,
ctx->pkey->pkey.rsa, RSA_NO_PADDING);
if (ret <= 0)
return ret;
ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, ret, rctx->tbuf,
ret, ret, rctx->oaep_label, rctx->oaep_labellen, rctx->md,
rctx->mgf1md);
} else {
ret = RSA_private_decrypt(inlen, in, out, ctx->pkey->pkey.rsa,
rctx->pad_mode);
}
if (ret < 0)
return ret;
*outlen = ret;
return 1;
}
static int
check_padding_md(const EVP_MD *md, int padding)
{
if (md == NULL)
return 1;
if (padding == RSA_NO_PADDING) {
RSAerror(RSA_R_INVALID_PADDING_MODE);
return 0;
}
if (padding == RSA_X931_PADDING) {
if (RSA_X931_hash_id(EVP_MD_type(md)) == -1) {
RSAerror(RSA_R_INVALID_X931_DIGEST);
return 0;
}
} else {
/* List of all supported RSA digests. */
switch(EVP_MD_type(md)) {
case NID_sha1:
case NID_sha224:
case NID_sha256:
case NID_sha384:
case NID_sha512:
case NID_md5:
case NID_md5_sha1:
case NID_md4:
case NID_ripemd160:
return 1;
default:
RSAerror(RSA_R_INVALID_DIGEST);
return 0;
}
}
return 1;
}
static int
pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
{
RSA_PKEY_CTX *rctx = ctx->data;
switch (type) {
case EVP_PKEY_CTRL_RSA_PADDING:
if (p1 >= RSA_PKCS1_PADDING && p1 <= RSA_PKCS1_PSS_PADDING) {
if (!check_padding_md(rctx->md, p1))
return 0;
if (p1 == RSA_PKCS1_PSS_PADDING) {
if (!(ctx->operation &
(EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY)))
goto bad_pad;
if (!rctx->md)
rctx->md = EVP_sha1();
} else if (ctx->pmeth->pkey_id == EVP_PKEY_RSA_PSS) {
goto bad_pad;
}
if (p1 == RSA_PKCS1_OAEP_PADDING) {
if (!(ctx->operation & EVP_PKEY_OP_TYPE_CRYPT))
goto bad_pad;
if (!rctx->md)
rctx->md = EVP_sha1();
}
rctx->pad_mode = p1;
return 1;
}
bad_pad:
RSAerror(RSA_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE);
return -2;
case EVP_PKEY_CTRL_GET_RSA_PADDING:
*(int *)p2 = rctx->pad_mode;
return 1;
case EVP_PKEY_CTRL_RSA_PSS_SALTLEN:
case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN:
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING) {
RSAerror(RSA_R_INVALID_PSS_SALTLEN);
return -2;
}
if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN) {
*(int *)p2 = rctx->saltlen;
} else {
if (p1 < RSA_PSS_SALTLEN_MAX)
return -2;
if (rsa_pss_restricted(rctx)) {
if (p1 == RSA_PSS_SALTLEN_AUTO &&
ctx->operation == EVP_PKEY_OP_VERIFY) {
RSAerror(RSA_R_INVALID_PSS_SALTLEN);
return -2;
}
if ((p1 == RSA_PSS_SALTLEN_DIGEST &&
rctx->min_saltlen > EVP_MD_size(rctx->md)) ||
(p1 >= 0 && p1 < rctx->min_saltlen)) {
RSAerror(RSA_R_PSS_SALTLEN_TOO_SMALL);
return 0;
}
}
rctx->saltlen = p1;
}
return 1;
case EVP_PKEY_CTRL_RSA_KEYGEN_BITS:
if (p1 < RSA_MIN_MODULUS_BITS) {
RSAerror(RSA_R_KEY_SIZE_TOO_SMALL);
return -2;
}
rctx->nbits = p1;
return 1;
case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP:
if (p2 == NULL || !BN_is_odd((BIGNUM *)p2) ||
BN_is_one((BIGNUM *)p2)) {
RSAerror(RSA_R_BAD_E_VALUE);
return -2;
}
BN_free(rctx->pub_exp);
rctx->pub_exp = p2;
return 1;
case EVP_PKEY_CTRL_RSA_OAEP_MD:
case EVP_PKEY_CTRL_GET_RSA_OAEP_MD:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
RSAerror(RSA_R_INVALID_PADDING_MODE);
return -2;
}
if (type == EVP_PKEY_CTRL_GET_RSA_OAEP_MD)
*(const EVP_MD **)p2 = rctx->md;
else
rctx->md = p2;
return 1;
case EVP_PKEY_CTRL_MD:
if (!check_padding_md(p2, rctx->pad_mode))
return 0;
if (rsa_pss_restricted(rctx)) {
if (EVP_MD_type(rctx->md) == EVP_MD_type(p2))
return 1;
RSAerror(RSA_R_DIGEST_NOT_ALLOWED);
return 0;
}
rctx->md = p2;
return 1;
case EVP_PKEY_CTRL_GET_MD:
*(const EVP_MD **)p2 = rctx->md;
return 1;
case EVP_PKEY_CTRL_RSA_MGF1_MD:
case EVP_PKEY_CTRL_GET_RSA_MGF1_MD:
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING &&
rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
RSAerror(RSA_R_INVALID_MGF1_MD);
return -2;
}
if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD) {
if (rctx->mgf1md)
*(const EVP_MD **)p2 = rctx->mgf1md;
else
*(const EVP_MD **)p2 = rctx->md;
} else {
if (rsa_pss_restricted(rctx)) {
if (EVP_MD_type(rctx->mgf1md) == EVP_MD_type(p2))
return 1;
RSAerror(RSA_R_MGF1_DIGEST_NOT_ALLOWED);
return 0;
}
rctx->mgf1md = p2;
}
return 1;
case EVP_PKEY_CTRL_RSA_OAEP_LABEL:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
RSAerror(RSA_R_INVALID_PADDING_MODE);
return -2;
}
free(rctx->oaep_label);
if (p2 != NULL && p1 > 0) {
rctx->oaep_label = p2;
rctx->oaep_labellen = p1;
} else {
rctx->oaep_label = NULL;
rctx->oaep_labellen = 0;
}
return 1;
case EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
RSAerror(RSA_R_INVALID_PADDING_MODE);
return -2;
}
*(unsigned char **)p2 = rctx->oaep_label;
return rctx->oaep_labellen;
case EVP_PKEY_CTRL_DIGESTINIT:
case EVP_PKEY_CTRL_PKCS7_SIGN:
#ifndef OPENSSL_NO_CMS
case EVP_PKEY_CTRL_CMS_SIGN:
#endif
return 1;
case EVP_PKEY_CTRL_PKCS7_ENCRYPT:
case EVP_PKEY_CTRL_PKCS7_DECRYPT:
#ifndef OPENSSL_NO_CMS
case EVP_PKEY_CTRL_CMS_DECRYPT:
case EVP_PKEY_CTRL_CMS_ENCRYPT:
#endif
if (ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
return 1;
/* fall through */
case EVP_PKEY_CTRL_PEER_KEY:
RSAerror(RSA_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
return -2;
default:
return -2;
}
}
static int
pkey_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value)
{
if (!value) {
RSAerror(RSA_R_VALUE_MISSING);
return 0;
}
if (!strcmp(type, "rsa_padding_mode")) {
int pm;
if (!strcmp(value, "pkcs1"))
pm = RSA_PKCS1_PADDING;
else if (!strcmp(value, "none"))
pm = RSA_NO_PADDING;
else if (!strcmp(value, "oeap"))
pm = RSA_PKCS1_OAEP_PADDING;
else if (!strcmp(value, "oaep"))
pm = RSA_PKCS1_OAEP_PADDING;
else if (!strcmp(value, "x931"))
pm = RSA_X931_PADDING;
else if (!strcmp(value, "pss"))
pm = RSA_PKCS1_PSS_PADDING;
else {
RSAerror(RSA_R_UNKNOWN_PADDING_TYPE);
return -2;
}
return EVP_PKEY_CTX_set_rsa_padding(ctx, pm);
}
if (strcmp(type, "rsa_pss_saltlen") == 0) {
int saltlen;
if (!strcmp(value, "digest"))
saltlen = RSA_PSS_SALTLEN_DIGEST;
else if (!strcmp(value, "max"))
saltlen = RSA_PSS_SALTLEN_MAX;
else if (!strcmp(value, "auto"))
saltlen = RSA_PSS_SALTLEN_AUTO;
else
saltlen = atoi(value);
return EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, saltlen);
}
if (strcmp(type, "rsa_keygen_bits") == 0) {
int nbits = atoi(value);
return EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, nbits);
}
if (strcmp(type, "rsa_keygen_pubexp") == 0) {
BIGNUM *pubexp = NULL;
int ret;
if (!BN_asc2bn(&pubexp, value))
return 0;
ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);
if (ret <= 0)
BN_free(pubexp);
return ret;
}
if (strcmp(type, "rsa_mgf1_md") == 0)
return EVP_PKEY_CTX_md(ctx,
EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_MGF1_MD, value);
if (ctx->pmeth->pkey_id == EVP_PKEY_RSA_PSS) {
if (strcmp(type, "rsa_pss_keygen_mgf1_md") == 0)
return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_RSA_MGF1_MD, value);
if (strcmp(type, "rsa_pss_keygen_md") == 0)
return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_MD, value);
if (strcmp(type, "rsa_pss_keygen_saltlen") == 0) {
int saltlen = atoi(value);
return EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(ctx, saltlen);
}
}
if (strcmp(type, "rsa_oaep_md") == 0)
return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_OAEP_MD, value);
if (strcmp(type, "rsa_oaep_label") == 0) {
unsigned char *lab;
long lablen;
int ret;
if ((lab = string_to_hex(value, &lablen)) == NULL)
return 0;
ret = EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, lab, lablen);
if (ret <= 0)
free(lab);
return ret;
}
return -2;
}
/* Set PSS parameters when generating a key, if necessary. */
static int
rsa_set_pss_param(RSA *rsa, EVP_PKEY_CTX *ctx)
{
RSA_PKEY_CTX *rctx = ctx->data;
if (ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
return 1;
/* If all parameters are default values then do not set PSS. */
if (rctx->md == NULL && rctx->mgf1md == NULL &&
rctx->saltlen == RSA_PSS_SALTLEN_AUTO)
return 1;
rsa->pss = rsa_pss_params_create(rctx->md, rctx->mgf1md,
rctx->saltlen == RSA_PSS_SALTLEN_AUTO ? 0 : rctx->saltlen);
if (rsa->pss == NULL)
return 0;
return 1;
}
static int
pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
{
RSA *rsa = NULL;
RSA_PKEY_CTX *rctx = ctx->data;
BN_GENCB *pcb, cb;
int ret;
if (rctx->pub_exp == NULL) {
if ((rctx->pub_exp = BN_new()) == NULL)
return 0;
if (!BN_set_word(rctx->pub_exp, RSA_F4))
return 0;
}
if ((rsa = RSA_new()) == NULL)
return 0;
if (ctx->pkey_gencb != NULL) {
pcb = &cb;
evp_pkey_set_cb_translate(pcb, ctx);
} else {
pcb = NULL;
}
ret = RSA_generate_key_ex(rsa, rctx->nbits, rctx->pub_exp, pcb);
if (ret > 0 && !rsa_set_pss_param(rsa, ctx)) {
RSA_free(rsa);
return 0;
}
if (ret > 0)
EVP_PKEY_assign(pkey, ctx->pmeth->pkey_id, rsa);
else
RSA_free(rsa);
return ret;
}
const EVP_PKEY_METHOD rsa_pkey_meth = {
.pkey_id = EVP_PKEY_RSA,
.flags = EVP_PKEY_FLAG_AUTOARGLEN,
.init = pkey_rsa_init,
.copy = pkey_rsa_copy,
.cleanup = pkey_rsa_cleanup,
.keygen = pkey_rsa_keygen,
.sign = pkey_rsa_sign,
.verify = pkey_rsa_verify,
.verify_recover = pkey_rsa_verifyrecover,
.encrypt = pkey_rsa_encrypt,
.decrypt = pkey_rsa_decrypt,
.ctrl = pkey_rsa_ctrl,
.ctrl_str = pkey_rsa_ctrl_str
};
/*
* Called for PSS sign or verify initialisation: checks PSS parameter
* sanity and sets any restrictions on key usage.
*/
static int
pkey_pss_init(EVP_PKEY_CTX *ctx)
{
RSA *rsa;
RSA_PKEY_CTX *rctx = ctx->data;
const EVP_MD *md;
const EVP_MD *mgf1md;
int min_saltlen, max_saltlen;
/* Should never happen */
if (ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
return 0;
rsa = ctx->pkey->pkey.rsa;
/* If no restrictions just return */
if (rsa->pss == NULL)
return 1;
/* Get and check parameters */
if (!rsa_pss_get_param(rsa->pss, &md, &mgf1md, &min_saltlen))
return 0;
/* See if minimum salt length exceeds maximum possible */
max_saltlen = RSA_size(rsa) - EVP_MD_size(md);
if ((RSA_bits(rsa) & 0x7) == 1)
max_saltlen--;
if (min_saltlen > max_saltlen) {
RSAerror(RSA_R_INVALID_SALT_LENGTH);
return 0;
}
rctx->min_saltlen = min_saltlen;
/*
* Set PSS restrictions as defaults: we can then block any attempt to
* use invalid values in pkey_rsa_ctrl
*/
rctx->md = md;
rctx->mgf1md = mgf1md;
rctx->saltlen = min_saltlen;
return 1;
}
const EVP_PKEY_METHOD rsa_pss_pkey_meth = {
.pkey_id = EVP_PKEY_RSA_PSS,
.flags = EVP_PKEY_FLAG_AUTOARGLEN,
.init = pkey_rsa_init,
.copy = pkey_rsa_copy,
.cleanup = pkey_rsa_cleanup,
.keygen = pkey_rsa_keygen,
.sign_init = pkey_pss_init,
.sign = pkey_rsa_sign,
.verify_init = pkey_pss_init,
.verify = pkey_rsa_verify,
.ctrl = pkey_rsa_ctrl,
.ctrl_str = pkey_rsa_ctrl_str
};