797 lines
30 KiB
C++
Executable File
797 lines
30 KiB
C++
Executable File
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: wan@google.com (Zhanyong Wan)
|
|
|
|
// Google Test - The Google C++ Testing Framework
|
|
//
|
|
// This file implements a universal value printer that can print a
|
|
// value of any type T:
|
|
//
|
|
// void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
|
|
//
|
|
// A user can teach this function how to print a class type T by
|
|
// defining either operator<<() or PrintTo() in the namespace that
|
|
// defines T. More specifically, the FIRST defined function in the
|
|
// following list will be used (assuming T is defined in namespace
|
|
// foo):
|
|
//
|
|
// 1. foo::PrintTo(const T&, ostream*)
|
|
// 2. operator<<(ostream&, const T&) defined in either foo or the
|
|
// global namespace.
|
|
//
|
|
// If none of the above is defined, it will print the debug string of
|
|
// the value if it is a protocol buffer, or print the raw bytes in the
|
|
// value otherwise.
|
|
//
|
|
// To aid debugging: when T is a reference type, the address of the
|
|
// value is also printed; when T is a (const) char pointer, both the
|
|
// pointer value and the NUL-terminated string it points to are
|
|
// printed.
|
|
//
|
|
// We also provide some convenient wrappers:
|
|
//
|
|
// // Prints a value to a string. For a (const or not) char
|
|
// // pointer, the NUL-terminated string (but not the pointer) is
|
|
// // printed.
|
|
// std::string ::testing::PrintToString(const T& value);
|
|
//
|
|
// // Prints a value tersely: for a reference type, the referenced
|
|
// // value (but not the address) is printed; for a (const or not) char
|
|
// // pointer, the NUL-terminated string (but not the pointer) is
|
|
// // printed.
|
|
// void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
|
|
//
|
|
// // Prints value using the type inferred by the compiler. The difference
|
|
// // from UniversalTersePrint() is that this function prints both the
|
|
// // pointer and the NUL-terminated string for a (const or not) char pointer.
|
|
// void ::testing::internal::UniversalPrint(const T& value, ostream*);
|
|
//
|
|
// // Prints the fields of a tuple tersely to a string vector, one
|
|
// // element for each field. Tuple support must be enabled in
|
|
// // gtest-port.h.
|
|
// std::vector<string> UniversalTersePrintTupleFieldsToStrings(
|
|
// const Tuple& value);
|
|
//
|
|
// Known limitation:
|
|
//
|
|
// The print primitives print the elements of an STL-style container
|
|
// using the compiler-inferred type of *iter where iter is a
|
|
// const_iterator of the container. When const_iterator is an input
|
|
// iterator but not a forward iterator, this inferred type may not
|
|
// match value_type, and the print output may be incorrect. In
|
|
// practice, this is rarely a problem as for most containers
|
|
// const_iterator is a forward iterator. We'll fix this if there's an
|
|
// actual need for it. Note that this fix cannot rely on value_type
|
|
// being defined as many user-defined container types don't have
|
|
// value_type.
|
|
|
|
#ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
|
|
#define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
|
|
|
|
#include <ostream> // NOLINT
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "gtest/internal/gtest-port.h"
|
|
#include "gtest/internal/gtest-internal.h"
|
|
|
|
namespace testing {
|
|
|
|
// Definitions in the 'internal' and 'internal2' name spaces are
|
|
// subject to change without notice. DO NOT USE THEM IN USER CODE!
|
|
namespace internal2 {
|
|
|
|
// Prints the given number of bytes in the given object to the given
|
|
// ostream.
|
|
GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
|
|
size_t count,
|
|
::std::ostream* os);
|
|
|
|
// For selecting which printer to use when a given type has neither <<
|
|
// nor PrintTo().
|
|
enum TypeKind {
|
|
kProtobuf, // a protobuf type
|
|
kConvertibleToInteger, // a type implicitly convertible to BiggestInt
|
|
// (e.g. a named or unnamed enum type)
|
|
kOtherType // anything else
|
|
};
|
|
|
|
// TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
|
|
// by the universal printer to print a value of type T when neither
|
|
// operator<< nor PrintTo() is defined for T, where kTypeKind is the
|
|
// "kind" of T as defined by enum TypeKind.
|
|
template <typename T, TypeKind kTypeKind>
|
|
class TypeWithoutFormatter {
|
|
public:
|
|
// This default version is called when kTypeKind is kOtherType.
|
|
static void PrintValue(const T& value, ::std::ostream* os) {
|
|
PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value),
|
|
sizeof(value), os);
|
|
}
|
|
};
|
|
|
|
// We print a protobuf using its ShortDebugString() when the string
|
|
// doesn't exceed this many characters; otherwise we print it using
|
|
// DebugString() for better readability.
|
|
const size_t kProtobufOneLinerMaxLength = 50;
|
|
|
|
template <typename T>
|
|
class TypeWithoutFormatter<T, kProtobuf> {
|
|
public:
|
|
static void PrintValue(const T& value, ::std::ostream* os) {
|
|
const ::testing::internal::string short_str = value.ShortDebugString();
|
|
const ::testing::internal::string pretty_str =
|
|
short_str.length() <= kProtobufOneLinerMaxLength ?
|
|
short_str : ("\n" + value.DebugString());
|
|
*os << ("<" + pretty_str + ">");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class TypeWithoutFormatter<T, kConvertibleToInteger> {
|
|
public:
|
|
// Since T has no << operator or PrintTo() but can be implicitly
|
|
// converted to BiggestInt, we print it as a BiggestInt.
|
|
//
|
|
// Most likely T is an enum type (either named or unnamed), in which
|
|
// case printing it as an integer is the desired behavior. In case
|
|
// T is not an enum, printing it as an integer is the best we can do
|
|
// given that it has no user-defined printer.
|
|
static void PrintValue(const T& value, ::std::ostream* os) {
|
|
const internal::BiggestInt kBigInt = value;
|
|
*os << kBigInt;
|
|
}
|
|
};
|
|
|
|
// Prints the given value to the given ostream. If the value is a
|
|
// protocol message, its debug string is printed; if it's an enum or
|
|
// of a type implicitly convertible to BiggestInt, it's printed as an
|
|
// integer; otherwise the bytes in the value are printed. This is
|
|
// what UniversalPrinter<T>::Print() does when it knows nothing about
|
|
// type T and T has neither << operator nor PrintTo().
|
|
//
|
|
// A user can override this behavior for a class type Foo by defining
|
|
// a << operator in the namespace where Foo is defined.
|
|
//
|
|
// We put this operator in namespace 'internal2' instead of 'internal'
|
|
// to simplify the implementation, as much code in 'internal' needs to
|
|
// use << in STL, which would conflict with our own << were it defined
|
|
// in 'internal'.
|
|
//
|
|
// Note that this operator<< takes a generic std::basic_ostream<Char,
|
|
// CharTraits> type instead of the more restricted std::ostream. If
|
|
// we define it to take an std::ostream instead, we'll get an
|
|
// "ambiguous overloads" compiler error when trying to print a type
|
|
// Foo that supports streaming to std::basic_ostream<Char,
|
|
// CharTraits>, as the compiler cannot tell whether
|
|
// operator<<(std::ostream&, const T&) or
|
|
// operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
|
|
// specific.
|
|
template <typename Char, typename CharTraits, typename T>
|
|
::std::basic_ostream<Char, CharTraits>& operator<<(
|
|
::std::basic_ostream<Char, CharTraits>& os, const T& x) {
|
|
TypeWithoutFormatter<T,
|
|
(internal::IsAProtocolMessage<T>::value ? kProtobuf :
|
|
internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ?
|
|
kConvertibleToInteger : kOtherType)>::PrintValue(x, &os);
|
|
return os;
|
|
}
|
|
|
|
} // namespace internal2
|
|
} // namespace testing
|
|
|
|
// This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
|
|
// magic needed for implementing UniversalPrinter won't work.
|
|
namespace testing_internal {
|
|
|
|
// Used to print a value that is not an STL-style container when the
|
|
// user doesn't define PrintTo() for it.
|
|
template <typename T>
|
|
void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
|
|
// With the following statement, during unqualified name lookup,
|
|
// testing::internal2::operator<< appears as if it was declared in
|
|
// the nearest enclosing namespace that contains both
|
|
// ::testing_internal and ::testing::internal2, i.e. the global
|
|
// namespace. For more details, refer to the C++ Standard section
|
|
// 7.3.4-1 [namespace.udir]. This allows us to fall back onto
|
|
// testing::internal2::operator<< in case T doesn't come with a <<
|
|
// operator.
|
|
//
|
|
// We cannot write 'using ::testing::internal2::operator<<;', which
|
|
// gcc 3.3 fails to compile due to a compiler bug.
|
|
using namespace ::testing::internal2; // NOLINT
|
|
|
|
// Assuming T is defined in namespace foo, in the next statement,
|
|
// the compiler will consider all of:
|
|
//
|
|
// 1. foo::operator<< (thanks to Koenig look-up),
|
|
// 2. ::operator<< (as the current namespace is enclosed in ::),
|
|
// 3. testing::internal2::operator<< (thanks to the using statement above).
|
|
//
|
|
// The operator<< whose type matches T best will be picked.
|
|
//
|
|
// We deliberately allow #2 to be a candidate, as sometimes it's
|
|
// impossible to define #1 (e.g. when foo is ::std, defining
|
|
// anything in it is undefined behavior unless you are a compiler
|
|
// vendor.).
|
|
*os << value;
|
|
}
|
|
|
|
} // namespace testing_internal
|
|
|
|
namespace testing {
|
|
namespace internal {
|
|
|
|
// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
|
|
// value to the given ostream. The caller must ensure that
|
|
// 'ostream_ptr' is not NULL, or the behavior is undefined.
|
|
//
|
|
// We define UniversalPrinter as a class template (as opposed to a
|
|
// function template), as we need to partially specialize it for
|
|
// reference types, which cannot be done with function templates.
|
|
template <typename T>
|
|
class UniversalPrinter;
|
|
|
|
template <typename T>
|
|
void UniversalPrint(const T& value, ::std::ostream* os);
|
|
|
|
// Used to print an STL-style container when the user doesn't define
|
|
// a PrintTo() for it.
|
|
template <typename C>
|
|
void DefaultPrintTo(IsContainer /* dummy */,
|
|
false_type /* is not a pointer */,
|
|
const C& container, ::std::ostream* os) {
|
|
const size_t kMaxCount = 32; // The maximum number of elements to print.
|
|
*os << '{';
|
|
size_t count = 0;
|
|
for (typename C::const_iterator it = container.begin();
|
|
it != container.end(); ++it, ++count) {
|
|
if (count > 0) {
|
|
*os << ',';
|
|
if (count == kMaxCount) { // Enough has been printed.
|
|
*os << " ...";
|
|
break;
|
|
}
|
|
}
|
|
*os << ' ';
|
|
// We cannot call PrintTo(*it, os) here as PrintTo() doesn't
|
|
// handle *it being a native array.
|
|
internal::UniversalPrint(*it, os);
|
|
}
|
|
|
|
if (count > 0) {
|
|
*os << ' ';
|
|
}
|
|
*os << '}';
|
|
}
|
|
|
|
// Used to print a pointer that is neither a char pointer nor a member
|
|
// pointer, when the user doesn't define PrintTo() for it. (A member
|
|
// variable pointer or member function pointer doesn't really point to
|
|
// a location in the address space. Their representation is
|
|
// implementation-defined. Therefore they will be printed as raw
|
|
// bytes.)
|
|
template <typename T>
|
|
void DefaultPrintTo(IsNotContainer /* dummy */,
|
|
true_type /* is a pointer */,
|
|
T* p, ::std::ostream* os) {
|
|
if (p == NULL) {
|
|
*os << "NULL";
|
|
} else {
|
|
// C++ doesn't allow casting from a function pointer to any object
|
|
// pointer.
|
|
//
|
|
// IsTrue() silences warnings: "Condition is always true",
|
|
// "unreachable code".
|
|
if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) {
|
|
// T is not a function type. We just call << to print p,
|
|
// relying on ADL to pick up user-defined << for their pointer
|
|
// types, if any.
|
|
*os << p;
|
|
} else {
|
|
// T is a function type, so '*os << p' doesn't do what we want
|
|
// (it just prints p as bool). We want to print p as a const
|
|
// void*. However, we cannot cast it to const void* directly,
|
|
// even using reinterpret_cast, as earlier versions of gcc
|
|
// (e.g. 3.4.5) cannot compile the cast when p is a function
|
|
// pointer. Casting to UInt64 first solves the problem.
|
|
*os << reinterpret_cast<const void*>(
|
|
reinterpret_cast<internal::UInt64>(p));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Used to print a non-container, non-pointer value when the user
|
|
// doesn't define PrintTo() for it.
|
|
template <typename T>
|
|
void DefaultPrintTo(IsNotContainer /* dummy */,
|
|
false_type /* is not a pointer */,
|
|
const T& value, ::std::ostream* os) {
|
|
::testing_internal::DefaultPrintNonContainerTo(value, os);
|
|
}
|
|
|
|
// Prints the given value using the << operator if it has one;
|
|
// otherwise prints the bytes in it. This is what
|
|
// UniversalPrinter<T>::Print() does when PrintTo() is not specialized
|
|
// or overloaded for type T.
|
|
//
|
|
// A user can override this behavior for a class type Foo by defining
|
|
// an overload of PrintTo() in the namespace where Foo is defined. We
|
|
// give the user this option as sometimes defining a << operator for
|
|
// Foo is not desirable (e.g. the coding style may prevent doing it,
|
|
// or there is already a << operator but it doesn't do what the user
|
|
// wants).
|
|
template <typename T>
|
|
void PrintTo(const T& value, ::std::ostream* os) {
|
|
// DefaultPrintTo() is overloaded. The type of its first two
|
|
// arguments determine which version will be picked. If T is an
|
|
// STL-style container, the version for container will be called; if
|
|
// T is a pointer, the pointer version will be called; otherwise the
|
|
// generic version will be called.
|
|
//
|
|
// Note that we check for container types here, prior to we check
|
|
// for protocol message types in our operator<<. The rationale is:
|
|
//
|
|
// For protocol messages, we want to give people a chance to
|
|
// override Google Mock's format by defining a PrintTo() or
|
|
// operator<<. For STL containers, other formats can be
|
|
// incompatible with Google Mock's format for the container
|
|
// elements; therefore we check for container types here to ensure
|
|
// that our format is used.
|
|
//
|
|
// The second argument of DefaultPrintTo() is needed to bypass a bug
|
|
// in Symbian's C++ compiler that prevents it from picking the right
|
|
// overload between:
|
|
//
|
|
// PrintTo(const T& x, ...);
|
|
// PrintTo(T* x, ...);
|
|
DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os);
|
|
}
|
|
|
|
// The following list of PrintTo() overloads tells
|
|
// UniversalPrinter<T>::Print() how to print standard types (built-in
|
|
// types, strings, plain arrays, and pointers).
|
|
|
|
// Overloads for various char types.
|
|
GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
|
|
GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
|
|
inline void PrintTo(char c, ::std::ostream* os) {
|
|
// When printing a plain char, we always treat it as unsigned. This
|
|
// way, the output won't be affected by whether the compiler thinks
|
|
// char is signed or not.
|
|
PrintTo(static_cast<unsigned char>(c), os);
|
|
}
|
|
|
|
// Overloads for other simple built-in types.
|
|
inline void PrintTo(bool x, ::std::ostream* os) {
|
|
*os << (x ? "true" : "false");
|
|
}
|
|
|
|
// Overload for wchar_t type.
|
|
// Prints a wchar_t as a symbol if it is printable or as its internal
|
|
// code otherwise and also as its decimal code (except for L'\0').
|
|
// The L'\0' char is printed as "L'\\0'". The decimal code is printed
|
|
// as signed integer when wchar_t is implemented by the compiler
|
|
// as a signed type and is printed as an unsigned integer when wchar_t
|
|
// is implemented as an unsigned type.
|
|
GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
|
|
|
|
// Overloads for C strings.
|
|
GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
|
|
inline void PrintTo(char* s, ::std::ostream* os) {
|
|
PrintTo(ImplicitCast_<const char*>(s), os);
|
|
}
|
|
|
|
// signed/unsigned char is often used for representing binary data, so
|
|
// we print pointers to it as void* to be safe.
|
|
inline void PrintTo(const signed char* s, ::std::ostream* os) {
|
|
PrintTo(ImplicitCast_<const void*>(s), os);
|
|
}
|
|
inline void PrintTo(signed char* s, ::std::ostream* os) {
|
|
PrintTo(ImplicitCast_<const void*>(s), os);
|
|
}
|
|
inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
|
|
PrintTo(ImplicitCast_<const void*>(s), os);
|
|
}
|
|
inline void PrintTo(unsigned char* s, ::std::ostream* os) {
|
|
PrintTo(ImplicitCast_<const void*>(s), os);
|
|
}
|
|
|
|
// MSVC can be configured to define wchar_t as a typedef of unsigned
|
|
// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
|
|
// type. When wchar_t is a typedef, defining an overload for const
|
|
// wchar_t* would cause unsigned short* be printed as a wide string,
|
|
// possibly causing invalid memory accesses.
|
|
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
|
|
// Overloads for wide C strings
|
|
GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
|
|
inline void PrintTo(wchar_t* s, ::std::ostream* os) {
|
|
PrintTo(ImplicitCast_<const wchar_t*>(s), os);
|
|
}
|
|
#endif
|
|
|
|
// Overload for C arrays. Multi-dimensional arrays are printed
|
|
// properly.
|
|
|
|
// Prints the given number of elements in an array, without printing
|
|
// the curly braces.
|
|
template <typename T>
|
|
void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
|
|
UniversalPrint(a[0], os);
|
|
for (size_t i = 1; i != count; i++) {
|
|
*os << ", ";
|
|
UniversalPrint(a[i], os);
|
|
}
|
|
}
|
|
|
|
// Overloads for ::string and ::std::string.
|
|
#if GTEST_HAS_GLOBAL_STRING
|
|
GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
|
|
inline void PrintTo(const ::string& s, ::std::ostream* os) {
|
|
PrintStringTo(s, os);
|
|
}
|
|
#endif // GTEST_HAS_GLOBAL_STRING
|
|
|
|
GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
|
|
inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
|
|
PrintStringTo(s, os);
|
|
}
|
|
|
|
// Overloads for ::wstring and ::std::wstring.
|
|
#if GTEST_HAS_GLOBAL_WSTRING
|
|
GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
|
|
inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
|
|
PrintWideStringTo(s, os);
|
|
}
|
|
#endif // GTEST_HAS_GLOBAL_WSTRING
|
|
|
|
#if GTEST_HAS_STD_WSTRING
|
|
GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
|
|
inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
|
|
PrintWideStringTo(s, os);
|
|
}
|
|
#endif // GTEST_HAS_STD_WSTRING
|
|
|
|
#if GTEST_HAS_TR1_TUPLE
|
|
// Overload for ::std::tr1::tuple. Needed for printing function arguments,
|
|
// which are packed as tuples.
|
|
|
|
// Helper function for printing a tuple. T must be instantiated with
|
|
// a tuple type.
|
|
template <typename T>
|
|
void PrintTupleTo(const T& t, ::std::ostream* os);
|
|
|
|
// Overloaded PrintTo() for tuples of various arities. We support
|
|
// tuples of up-to 10 fields. The following implementation works
|
|
// regardless of whether tr1::tuple is implemented using the
|
|
// non-standard variadic template feature or not.
|
|
|
|
inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1>
|
|
void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3>
|
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3, typename T4>
|
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5>
|
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t,
|
|
::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5,
|
|
typename T6>
|
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t,
|
|
::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5,
|
|
typename T6, typename T7>
|
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t,
|
|
::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5,
|
|
typename T6, typename T7, typename T8>
|
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t,
|
|
::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5,
|
|
typename T6, typename T7, typename T8, typename T9>
|
|
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t,
|
|
::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3, typename T4, typename T5,
|
|
typename T6, typename T7, typename T8, typename T9, typename T10>
|
|
void PrintTo(
|
|
const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t,
|
|
::std::ostream* os) {
|
|
PrintTupleTo(t, os);
|
|
}
|
|
#endif // GTEST_HAS_TR1_TUPLE
|
|
|
|
// Overload for std::pair.
|
|
template <typename T1, typename T2>
|
|
void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
|
|
*os << '(';
|
|
// We cannot use UniversalPrint(value.first, os) here, as T1 may be
|
|
// a reference type. The same for printing value.second.
|
|
UniversalPrinter<T1>::Print(value.first, os);
|
|
*os << ", ";
|
|
UniversalPrinter<T2>::Print(value.second, os);
|
|
*os << ')';
|
|
}
|
|
|
|
// Implements printing a non-reference type T by letting the compiler
|
|
// pick the right overload of PrintTo() for T.
|
|
template <typename T>
|
|
class UniversalPrinter {
|
|
public:
|
|
// MSVC warns about adding const to a function type, so we want to
|
|
// disable the warning.
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push) // Saves the current warning state.
|
|
# pragma warning(disable:4180) // Temporarily disables warning 4180.
|
|
#endif // _MSC_VER
|
|
|
|
// Note: we deliberately don't call this PrintTo(), as that name
|
|
// conflicts with ::testing::internal::PrintTo in the body of the
|
|
// function.
|
|
static void Print(const T& value, ::std::ostream* os) {
|
|
// By default, ::testing::internal::PrintTo() is used for printing
|
|
// the value.
|
|
//
|
|
// Thanks to Koenig look-up, if T is a class and has its own
|
|
// PrintTo() function defined in its namespace, that function will
|
|
// be visible here. Since it is more specific than the generic ones
|
|
// in ::testing::internal, it will be picked by the compiler in the
|
|
// following statement - exactly what we want.
|
|
PrintTo(value, os);
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop) // Restores the warning state.
|
|
#endif // _MSC_VER
|
|
};
|
|
|
|
// UniversalPrintArray(begin, len, os) prints an array of 'len'
|
|
// elements, starting at address 'begin'.
|
|
template <typename T>
|
|
void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
|
|
if (len == 0) {
|
|
*os << "{}";
|
|
} else {
|
|
*os << "{ ";
|
|
const size_t kThreshold = 18;
|
|
const size_t kChunkSize = 8;
|
|
// If the array has more than kThreshold elements, we'll have to
|
|
// omit some details by printing only the first and the last
|
|
// kChunkSize elements.
|
|
// TODO(wan@google.com): let the user control the threshold using a flag.
|
|
if (len <= kThreshold) {
|
|
PrintRawArrayTo(begin, len, os);
|
|
} else {
|
|
PrintRawArrayTo(begin, kChunkSize, os);
|
|
*os << ", ..., ";
|
|
PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
|
|
}
|
|
*os << " }";
|
|
}
|
|
}
|
|
// This overload prints a (const) char array compactly.
|
|
GTEST_API_ void UniversalPrintArray(const char* begin,
|
|
size_t len,
|
|
::std::ostream* os);
|
|
|
|
// Implements printing an array type T[N].
|
|
template <typename T, size_t N>
|
|
class UniversalPrinter<T[N]> {
|
|
public:
|
|
// Prints the given array, omitting some elements when there are too
|
|
// many.
|
|
static void Print(const T (&a)[N], ::std::ostream* os) {
|
|
UniversalPrintArray(a, N, os);
|
|
}
|
|
};
|
|
|
|
// Implements printing a reference type T&.
|
|
template <typename T>
|
|
class UniversalPrinter<T&> {
|
|
public:
|
|
// MSVC warns about adding const to a function type, so we want to
|
|
// disable the warning.
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push) // Saves the current warning state.
|
|
# pragma warning(disable:4180) // Temporarily disables warning 4180.
|
|
#endif // _MSC_VER
|
|
|
|
static void Print(const T& value, ::std::ostream* os) {
|
|
// Prints the address of the value. We use reinterpret_cast here
|
|
// as static_cast doesn't compile when T is a function type.
|
|
*os << "@" << reinterpret_cast<const void*>(&value) << " ";
|
|
|
|
// Then prints the value itself.
|
|
UniversalPrint(value, os);
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop) // Restores the warning state.
|
|
#endif // _MSC_VER
|
|
};
|
|
|
|
// Prints a value tersely: for a reference type, the referenced value
|
|
// (but not the address) is printed; for a (const) char pointer, the
|
|
// NUL-terminated string (but not the pointer) is printed.
|
|
template <typename T>
|
|
void UniversalTersePrint(const T& value, ::std::ostream* os) {
|
|
UniversalPrint(value, os);
|
|
}
|
|
inline void UniversalTersePrint(const char* str, ::std::ostream* os) {
|
|
if (str == NULL) {
|
|
*os << "NULL";
|
|
} else {
|
|
UniversalPrint(string(str), os);
|
|
}
|
|
}
|
|
inline void UniversalTersePrint(char* str, ::std::ostream* os) {
|
|
UniversalTersePrint(static_cast<const char*>(str), os);
|
|
}
|
|
|
|
// Prints a value using the type inferred by the compiler. The
|
|
// difference between this and UniversalTersePrint() is that for a
|
|
// (const) char pointer, this prints both the pointer and the
|
|
// NUL-terminated string.
|
|
template <typename T>
|
|
void UniversalPrint(const T& value, ::std::ostream* os) {
|
|
UniversalPrinter<T>::Print(value, os);
|
|
}
|
|
|
|
#if GTEST_HAS_TR1_TUPLE
|
|
typedef ::std::vector<string> Strings;
|
|
|
|
// This helper template allows PrintTo() for tuples and
|
|
// UniversalTersePrintTupleFieldsToStrings() to be defined by
|
|
// induction on the number of tuple fields. The idea is that
|
|
// TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N
|
|
// fields in tuple t, and can be defined in terms of
|
|
// TuplePrefixPrinter<N - 1>.
|
|
|
|
// The inductive case.
|
|
template <size_t N>
|
|
struct TuplePrefixPrinter {
|
|
// Prints the first N fields of a tuple.
|
|
template <typename Tuple>
|
|
static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
|
|
TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os);
|
|
*os << ", ";
|
|
UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type>
|
|
::Print(::std::tr1::get<N - 1>(t), os);
|
|
}
|
|
|
|
// Tersely prints the first N fields of a tuple to a string vector,
|
|
// one element for each field.
|
|
template <typename Tuple>
|
|
static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
|
|
TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings);
|
|
::std::stringstream ss;
|
|
UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss);
|
|
strings->push_back(ss.str());
|
|
}
|
|
};
|
|
|
|
// Base cases.
|
|
template <>
|
|
struct TuplePrefixPrinter<0> {
|
|
template <typename Tuple>
|
|
static void PrintPrefixTo(const Tuple&, ::std::ostream*) {}
|
|
|
|
template <typename Tuple>
|
|
static void TersePrintPrefixToStrings(const Tuple&, Strings*) {}
|
|
};
|
|
// We have to specialize the entire TuplePrefixPrinter<> class
|
|
// template here, even though the definition of
|
|
// TersePrintPrefixToStrings() is the same as the generic version, as
|
|
// Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't
|
|
// support specializing a method template of a class template.
|
|
template <>
|
|
struct TuplePrefixPrinter<1> {
|
|
template <typename Tuple>
|
|
static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
|
|
UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>::
|
|
Print(::std::tr1::get<0>(t), os);
|
|
}
|
|
|
|
template <typename Tuple>
|
|
static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
|
|
::std::stringstream ss;
|
|
UniversalTersePrint(::std::tr1::get<0>(t), &ss);
|
|
strings->push_back(ss.str());
|
|
}
|
|
};
|
|
|
|
// Helper function for printing a tuple. T must be instantiated with
|
|
// a tuple type.
|
|
template <typename T>
|
|
void PrintTupleTo(const T& t, ::std::ostream* os) {
|
|
*os << "(";
|
|
TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>::
|
|
PrintPrefixTo(t, os);
|
|
*os << ")";
|
|
}
|
|
|
|
// Prints the fields of a tuple tersely to a string vector, one
|
|
// element for each field. See the comment before
|
|
// UniversalTersePrint() for how we define "tersely".
|
|
template <typename Tuple>
|
|
Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
|
|
Strings result;
|
|
TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>::
|
|
TersePrintPrefixToStrings(value, &result);
|
|
return result;
|
|
}
|
|
#endif // GTEST_HAS_TR1_TUPLE
|
|
|
|
} // namespace internal
|
|
|
|
template <typename T>
|
|
::std::string PrintToString(const T& value) {
|
|
::std::stringstream ss;
|
|
internal::UniversalTersePrint(value, &ss);
|
|
return ss.str();
|
|
}
|
|
|
|
} // namespace testing
|
|
|
|
#endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
|