1025 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1025 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
// Copyright (C) 2000, 2001 Stephen Cleary
 | 
						|
//
 | 
						|
// Distributed under the Boost Software License, Version 1.0. (See
 | 
						|
// accompanying file LICENSE_1_0.txt or copy at
 | 
						|
// http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
//
 | 
						|
// See http://www.boost.org for updates, documentation, and revision history.
 | 
						|
 | 
						|
#ifndef BOOST_POOL_HPP
 | 
						|
#define BOOST_POOL_HPP
 | 
						|
 | 
						|
#include <boost/config.hpp>  // for workarounds
 | 
						|
 | 
						|
// std::less, std::less_equal, std::greater
 | 
						|
#include <functional>
 | 
						|
// new[], delete[], std::nothrow
 | 
						|
#include <new>
 | 
						|
// std::size_t, std::ptrdiff_t
 | 
						|
#include <cstddef>
 | 
						|
// std::malloc, std::free
 | 
						|
#include <cstdlib>
 | 
						|
// std::invalid_argument
 | 
						|
#include <exception>
 | 
						|
// std::max
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
#include <boost/pool/poolfwd.hpp>
 | 
						|
 | 
						|
// boost::integer::static_lcm
 | 
						|
#include <boost/integer/common_factor_ct.hpp>
 | 
						|
// boost::simple_segregated_storage
 | 
						|
#include <boost/pool/simple_segregated_storage.hpp>
 | 
						|
// boost::alignment_of
 | 
						|
#include <boost/type_traits/alignment_of.hpp>
 | 
						|
// BOOST_ASSERT
 | 
						|
#include <boost/assert.hpp>
 | 
						|
 | 
						|
#ifdef BOOST_POOL_INSTRUMENT
 | 
						|
#include <iostream>
 | 
						|
#include<iomanip>
 | 
						|
#endif
 | 
						|
#ifdef BOOST_POOL_VALGRIND
 | 
						|
#include <set>
 | 
						|
#include <valgrind/memcheck.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef BOOST_NO_STDC_NAMESPACE
 | 
						|
 namespace std { using ::malloc; using ::free; }
 | 
						|
#endif
 | 
						|
 | 
						|
// There are a few places in this file where the expression "this->m" is used.
 | 
						|
// This expression is used to force instantiation-time name lookup, which I am
 | 
						|
//   informed is required for strict Standard compliance.  It's only necessary
 | 
						|
//   if "m" is a member of a base class that is dependent on a template
 | 
						|
//   parameter.
 | 
						|
// Thanks to Jens Maurer for pointing this out!
 | 
						|
 | 
						|
/*!
 | 
						|
  \file
 | 
						|
  \brief Provides class \ref pool: a fast memory allocator that guarantees proper alignment of all allocated chunks,
 | 
						|
  and which extends and generalizes the framework provided by the simple segregated storage solution.
 | 
						|
  Also provides two UserAllocator classes which can be used in conjuction with \ref pool.
 | 
						|
*/
 | 
						|
 | 
						|
/*!
 | 
						|
  \mainpage Boost.Pool Memory Allocation Scheme
 | 
						|
 | 
						|
  \section intro_sec Introduction
 | 
						|
 | 
						|
   Pool allocation is a memory allocation scheme that is very fast, but limited in its usage.
 | 
						|
 | 
						|
   This Doxygen-style documentation is complementary to the
 | 
						|
   full Quickbook-generated html and pdf documentation at www.boost.org.
 | 
						|
 | 
						|
  This page generated from file pool.hpp.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#ifdef BOOST_MSVC
 | 
						|
#pragma warning(push)
 | 
						|
#pragma warning(disable:4127)  // Conditional expression is constant
 | 
						|
#endif
 | 
						|
 | 
						|
 namespace boost
 | 
						|
{
 | 
						|
 | 
						|
//! \brief Allocator used as the default template parameter for 
 | 
						|
//! a <a href="boost_pool/pool/pooling.html#boost_pool.pool.pooling.user_allocator">UserAllocator</a>
 | 
						|
//! template parameter.  Uses new and delete.
 | 
						|
struct default_user_allocator_new_delete
 | 
						|
{
 | 
						|
  typedef std::size_t size_type; //!< An unsigned integral type that can represent the size of the largest object to be allocated.
 | 
						|
  typedef std::ptrdiff_t difference_type; //!< A signed integral type that can represent the difference of any two pointers.
 | 
						|
 | 
						|
  static char * malloc BOOST_PREVENT_MACRO_SUBSTITUTION(const size_type bytes)
 | 
						|
  { //! Attempts to allocate n bytes from the system. Returns 0 if out-of-memory
 | 
						|
    return new (std::nothrow) char[bytes];
 | 
						|
  }
 | 
						|
  static void free BOOST_PREVENT_MACRO_SUBSTITUTION(char * const block)
 | 
						|
  { //! Attempts to de-allocate block.
 | 
						|
    //! \pre Block must have been previously returned from a call to UserAllocator::malloc.
 | 
						|
    delete [] block;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
//! \brief <a href="boost_pool/pool/pooling.html#boost_pool.pool.pooling.user_allocator">UserAllocator</a>
 | 
						|
//! used as template parameter for \ref pool and \ref object_pool.
 | 
						|
//! Uses malloc and free internally.
 | 
						|
struct default_user_allocator_malloc_free
 | 
						|
{
 | 
						|
  typedef std::size_t size_type; //!< An unsigned integral type that can represent the size of the largest object to be allocated.
 | 
						|
  typedef std::ptrdiff_t difference_type; //!< A signed integral type that can represent the difference of any two pointers.
 | 
						|
 | 
						|
  static char * malloc BOOST_PREVENT_MACRO_SUBSTITUTION(const size_type bytes)
 | 
						|
  { return static_cast<char *>((std::malloc)(bytes)); }
 | 
						|
  static void free BOOST_PREVENT_MACRO_SUBSTITUTION(char * const block)
 | 
						|
  { (std::free)(block); }
 | 
						|
};
 | 
						|
 | 
						|
namespace details
 | 
						|
{  //! Implemention only.
 | 
						|
 | 
						|
template <typename SizeType>
 | 
						|
class PODptr
 | 
						|
{ //! PODptr is a class that pretends to be a "pointer" to different class types
 | 
						|
  //!  that don't really exist.  It provides member functions to access the "data"
 | 
						|
  //!  of the "object" it points to.  Since these "class" types are of variable
 | 
						|
  //!  size, and contains some information at the *end* of its memory
 | 
						|
  //!  (for alignment reasons),
 | 
						|
  //! PODptr must contain the size of this "class" as well as the pointer to this "object".
 | 
						|
 | 
						|
  /*! \details A PODptr holds the location and size of a memory block allocated from the system. 
 | 
						|
  Each memory block is split logically into three sections:
 | 
						|
 | 
						|
  <b>Chunk area</b>. This section may be different sizes. PODptr does not care what the size of the chunks is, 
 | 
						|
  but it does care (and keep track of) the total size of the chunk area.
 | 
						|
 | 
						|
  <b>Next pointer</b>. This section is always the same size for a given SizeType. It holds a pointer 
 | 
						|
  to the location of the next memory block in the memory block list, or 0 if there is no such block.
 | 
						|
 | 
						|
  <b>Next size</b>. This section is always the same size for a given SizeType. It holds the size of the 
 | 
						|
  next memory block in the memory block list.
 | 
						|
 | 
						|
The PODptr class just provides cleaner ways of dealing with raw memory blocks.
 | 
						|
 | 
						|
A PODptr object is either valid or invalid. An invalid PODptr is analogous to a null pointer.
 | 
						|
The default constructor for PODptr will result in an invalid object.
 | 
						|
Calling the member function invalidate will result in that object becoming invalid.
 | 
						|
The member function valid can be used to test for validity.
 | 
						|
*/
 | 
						|
  public:
 | 
						|
    typedef SizeType size_type;
 | 
						|
 | 
						|
  private:
 | 
						|
    char * ptr;
 | 
						|
    size_type sz;
 | 
						|
 | 
						|
    char * ptr_next_size() const
 | 
						|
    {
 | 
						|
      return (ptr + sz - sizeof(size_type));
 | 
						|
    }
 | 
						|
    char * ptr_next_ptr() const
 | 
						|
    {
 | 
						|
      return (ptr_next_size() -
 | 
						|
          integer::static_lcm<sizeof(size_type), sizeof(void *)>::value);
 | 
						|
    }
 | 
						|
 | 
						|
  public:
 | 
						|
    PODptr(char * const nptr, const size_type nsize)
 | 
						|
    :ptr(nptr), sz(nsize)
 | 
						|
    {
 | 
						|
      //! A PODptr may be created to point to a memory block by passing
 | 
						|
      //! the address and size of that memory block into the constructor.
 | 
						|
      //! A PODptr constructed in this way is valid.
 | 
						|
    }
 | 
						|
    PODptr()
 | 
						|
    :  ptr(0), sz(0)
 | 
						|
    { //! default constructor for PODptr will result in an invalid object.
 | 
						|
    }
 | 
						|
 | 
						|
    bool valid() const
 | 
						|
    { //! A PODptr object is either valid or invalid.
 | 
						|
      //! An invalid PODptr is analogous to a null pointer.
 | 
						|
      //! \returns true if PODptr is valid, false if invalid.
 | 
						|
      return (begin() != 0);
 | 
						|
    }
 | 
						|
    void invalidate()
 | 
						|
    { //! Make object invalid.
 | 
						|
      begin() = 0;
 | 
						|
    }
 | 
						|
    char * & begin()
 | 
						|
    { //! Each PODptr keeps the address and size of its memory block.
 | 
						|
      //! \returns The address of its memory block.
 | 
						|
      return ptr;
 | 
						|
  }
 | 
						|
    char * begin() const
 | 
						|
    { //! Each PODptr keeps the address and size of its memory block.
 | 
						|
      //! \return The address of its memory block.
 | 
						|
      return ptr;
 | 
						|
    }
 | 
						|
    char * end() const
 | 
						|
    { //! \returns begin() plus element_size (a 'past the end' value).
 | 
						|
      return ptr_next_ptr();
 | 
						|
    }
 | 
						|
    size_type total_size() const
 | 
						|
    { //! Each PODptr keeps the address and size of its memory block.
 | 
						|
      //! The address may be read or written by the member functions begin.
 | 
						|
      //! The size of the memory block may only be read,
 | 
						|
      //! \returns size of the memory block.
 | 
						|
      return sz;
 | 
						|
    }
 | 
						|
    size_type element_size() const
 | 
						|
    { //! \returns size of element pointer area.
 | 
						|
      return static_cast<size_type>(sz - sizeof(size_type) -
 | 
						|
          integer::static_lcm<sizeof(size_type), sizeof(void *)>::value);
 | 
						|
    }
 | 
						|
 | 
						|
    size_type & next_size() const
 | 
						|
    { //!
 | 
						|
      //! \returns next_size.
 | 
						|
      return *(static_cast<size_type *>(static_cast<void*>((ptr_next_size()))));
 | 
						|
    }
 | 
						|
    char * & next_ptr() const
 | 
						|
    {  //! \returns pointer to next pointer area.
 | 
						|
      return *(static_cast<char **>(static_cast<void*>(ptr_next_ptr())));
 | 
						|
    }
 | 
						|
 | 
						|
    PODptr next() const
 | 
						|
    { //! \returns next PODptr.
 | 
						|
      return PODptr<size_type>(next_ptr(), next_size());
 | 
						|
    }
 | 
						|
    void next(const PODptr & arg) const
 | 
						|
    { //! Sets next PODptr.
 | 
						|
      next_ptr() = arg.begin();
 | 
						|
      next_size() = arg.total_size();
 | 
						|
    }
 | 
						|
}; // class PODptr
 | 
						|
} // namespace details
 | 
						|
 | 
						|
#ifndef BOOST_POOL_VALGRIND
 | 
						|
/*!
 | 
						|
  \brief A fast memory allocator that guarantees proper alignment of all allocated chunks.
 | 
						|
 | 
						|
  \details Whenever an object of type pool needs memory from the system,
 | 
						|
  it will request it from its UserAllocator template parameter.
 | 
						|
  The amount requested is determined using a doubling algorithm;
 | 
						|
  that is, each time more system memory is allocated,
 | 
						|
  the amount of system memory requested is doubled.
 | 
						|
 | 
						|
  Users may control the doubling algorithm by using the following extensions:
 | 
						|
 | 
						|
  Users may pass an additional constructor parameter to pool.
 | 
						|
  This parameter is of type size_type,
 | 
						|
  and is the number of chunks to request from the system
 | 
						|
  the first time that object needs to allocate system memory.
 | 
						|
  The default is 32. This parameter may not be 0.
 | 
						|
 | 
						|
  Users may also pass an optional third parameter to pool's
 | 
						|
  constructor.  This parameter is of type size_type,
 | 
						|
  and sets a maximum size for allocated chunks.  When this
 | 
						|
  parameter takes the default value of 0, then there is no upper
 | 
						|
  limit on chunk size.
 | 
						|
 | 
						|
  Finally, if the doubling algorithm results in no memory
 | 
						|
  being allocated, the pool will backtrack just once, halving
 | 
						|
  the chunk size and trying again.
 | 
						|
 | 
						|
  <b>UserAllocator type</b> - the method that the Pool will use to allocate memory from the system.
 | 
						|
 | 
						|
  There are essentially two ways to use class pool: the client can call \ref malloc() and \ref free() to allocate
 | 
						|
  and free single chunks of memory, this is the most efficient way to use a pool, but does not allow for
 | 
						|
  the efficient allocation of arrays of chunks.  Alternatively, the client may call \ref ordered_malloc() and \ref
 | 
						|
  ordered_free(), in which case the free list is maintained in an ordered state, and efficient allocation of arrays
 | 
						|
  of chunks are possible.  However, this latter option can suffer from poor performance when large numbers of
 | 
						|
  allocations are performed.
 | 
						|
 | 
						|
*/
 | 
						|
template <typename UserAllocator>
 | 
						|
class pool: protected simple_segregated_storage < typename UserAllocator::size_type >
 | 
						|
{
 | 
						|
  public:
 | 
						|
    typedef UserAllocator user_allocator; //!< User allocator.
 | 
						|
    typedef typename UserAllocator::size_type size_type;  //!< An unsigned integral type that can represent the size of the largest object to be allocated.
 | 
						|
    typedef typename UserAllocator::difference_type difference_type;  //!< A signed integral type that can represent the difference of any two pointers.
 | 
						|
 | 
						|
  private:
 | 
						|
    BOOST_STATIC_CONSTANT(size_type, min_alloc_size =
 | 
						|
        (::boost::integer::static_lcm<sizeof(void *), sizeof(size_type)>::value) );
 | 
						|
    BOOST_STATIC_CONSTANT(size_type, min_align =
 | 
						|
        (::boost::integer::static_lcm< ::boost::alignment_of<void *>::value, ::boost::alignment_of<size_type>::value>::value) );
 | 
						|
 | 
						|
    //! \returns 0 if out-of-memory.
 | 
						|
    //! Called if malloc/ordered_malloc needs to resize the free list.
 | 
						|
    void * malloc_need_resize(); //! Called if malloc needs to resize the free list.
 | 
						|
    void * ordered_malloc_need_resize();  //! Called if ordered_malloc needs to resize the free list.
 | 
						|
 | 
						|
  protected:
 | 
						|
    details::PODptr<size_type> list; //!< List structure holding ordered blocks.
 | 
						|
 | 
						|
    simple_segregated_storage<size_type> & store()
 | 
						|
    { //! \returns pointer to store.
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
    const simple_segregated_storage<size_type> & store() const
 | 
						|
    { //! \returns pointer to store.
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
    const size_type requested_size;
 | 
						|
    size_type next_size;
 | 
						|
    size_type start_size;
 | 
						|
    size_type max_size;
 | 
						|
 | 
						|
    //! finds which POD in the list 'chunk' was allocated from.
 | 
						|
    details::PODptr<size_type> find_POD(void * const chunk) const;
 | 
						|
 | 
						|
    // is_from() tests a chunk to determine if it belongs in a block.
 | 
						|
    static bool is_from(void * const chunk, char * const i,
 | 
						|
        const size_type sizeof_i)
 | 
						|
    { //! \param chunk chunk to check if is from this pool.
 | 
						|
      //! \param i memory chunk at i with element sizeof_i.
 | 
						|
      //! \param sizeof_i element size (size of the chunk area of that block, not the total size of that block).
 | 
						|
      //! \returns true if chunk was allocated or may be returned.
 | 
						|
      //! as the result of a future allocation.
 | 
						|
      //!
 | 
						|
      //! Returns false if chunk was allocated from some other pool,
 | 
						|
      //! or may be returned as the result of a future allocation from some other pool.
 | 
						|
      //! Otherwise, the return value is meaningless.
 | 
						|
      //!
 | 
						|
      //! Note that this function may not be used to reliably test random pointer values.
 | 
						|
 | 
						|
      // We use std::less_equal and std::less to test 'chunk'
 | 
						|
      //  against the array bounds because standard operators
 | 
						|
      //  may return unspecified results.
 | 
						|
      // This is to ensure portability.  The operators < <= > >= are only
 | 
						|
      //  defined for pointers to objects that are 1) in the same array, or
 | 
						|
      //  2) subobjects of the same object [5.9/2].
 | 
						|
      // The functor objects guarantee a total order for any pointer [20.3.3/8]
 | 
						|
      std::less_equal<void *> lt_eq;
 | 
						|
      std::less<void *> lt;
 | 
						|
      return (lt_eq(i, chunk) && lt(chunk, i + sizeof_i));
 | 
						|
    }
 | 
						|
 | 
						|
    size_type alloc_size() const
 | 
						|
    { //!  Calculated size of the memory chunks that will be allocated by this Pool.
 | 
						|
      //! \returns allocated size.
 | 
						|
      // For alignment reasons, this used to be defined to be lcm(requested_size, sizeof(void *), sizeof(size_type)),
 | 
						|
      // but is now more parsimonious: just rounding up to the minimum required alignment of our housekeeping data
 | 
						|
      // when required.  This works provided all alignments are powers of two.
 | 
						|
      size_type s = (std::max)(requested_size, min_alloc_size);
 | 
						|
      size_type rem = s % min_align;
 | 
						|
      if(rem)
 | 
						|
         s += min_align - rem;
 | 
						|
      BOOST_ASSERT(s >= min_alloc_size);
 | 
						|
      BOOST_ASSERT(s % min_align == 0);
 | 
						|
      return s;
 | 
						|
    }
 | 
						|
 | 
						|
    static void * & nextof(void * const ptr)
 | 
						|
    { //! \returns Pointer dereferenced.
 | 
						|
      //! (Provided and used for the sake of code readability :)
 | 
						|
      return *(static_cast<void **>(ptr));
 | 
						|
    }
 | 
						|
 | 
						|
  public:
 | 
						|
    // pre: npartition_size != 0 && nnext_size != 0
 | 
						|
    explicit pool(const size_type nrequested_size,
 | 
						|
        const size_type nnext_size = 32,
 | 
						|
        const size_type nmax_size = 0)
 | 
						|
    :
 | 
						|
        list(0, 0), requested_size(nrequested_size), next_size(nnext_size), start_size(nnext_size),max_size(nmax_size)
 | 
						|
    { //!   Constructs a new empty Pool that can be used to allocate chunks of size RequestedSize.
 | 
						|
      //! \param nrequested_size  Requested chunk size
 | 
						|
      //! \param  nnext_size parameter is of type size_type,
 | 
						|
      //!   is the number of chunks to request from the system
 | 
						|
      //!   the first time that object needs to allocate system memory.
 | 
						|
      //!   The default is 32. This parameter may not be 0.
 | 
						|
      //! \param nmax_size is the maximum number of chunks to allocate in one block.
 | 
						|
    }
 | 
						|
 | 
						|
    ~pool()
 | 
						|
    { //!   Destructs the Pool, freeing its list of memory blocks.
 | 
						|
      purge_memory();
 | 
						|
    }
 | 
						|
 | 
						|
    // Releases memory blocks that don't have chunks allocated
 | 
						|
    // pre: lists are ordered
 | 
						|
    //  Returns true if memory was actually deallocated
 | 
						|
    bool release_memory();
 | 
						|
 | 
						|
    // Releases *all* memory blocks, even if chunks are still allocated
 | 
						|
    //  Returns true if memory was actually deallocated
 | 
						|
    bool purge_memory();
 | 
						|
 | 
						|
    size_type get_next_size() const
 | 
						|
    { //! Number of chunks to request from the system the next time that object needs to allocate system memory. This value should never be 0.
 | 
						|
      //! \returns next_size;
 | 
						|
      return next_size;
 | 
						|
    }
 | 
						|
    void set_next_size(const size_type nnext_size)
 | 
						|
    { //! Set number of chunks to request from the system the next time that object needs to allocate system memory. This value should never be set to 0.
 | 
						|
      //! \returns nnext_size.
 | 
						|
      next_size = start_size = nnext_size;
 | 
						|
    }
 | 
						|
    size_type get_max_size() const
 | 
						|
    { //! \returns max_size.
 | 
						|
      return max_size;
 | 
						|
    }
 | 
						|
    void set_max_size(const size_type nmax_size)
 | 
						|
    { //! Set max_size.
 | 
						|
      max_size = nmax_size;
 | 
						|
    }
 | 
						|
    size_type get_requested_size() const
 | 
						|
    { //!   \returns the requested size passed into the constructor.
 | 
						|
      //! (This value will not change during the lifetime of a Pool object).
 | 
						|
      return requested_size;
 | 
						|
    }
 | 
						|
 | 
						|
    // Both malloc and ordered_malloc do a quick inlined check first for any
 | 
						|
    //  free chunks.  Only if we need to get another memory block do we call
 | 
						|
    //  the non-inlined *_need_resize() functions.
 | 
						|
    // Returns 0 if out-of-memory
 | 
						|
    void * malloc BOOST_PREVENT_MACRO_SUBSTITUTION()
 | 
						|
    { //! Allocates a chunk of memory. Searches in the list of memory blocks
 | 
						|
      //! for a block that has a free chunk, and returns that free chunk if found.
 | 
						|
      //! Otherwise, creates a new memory block, adds its free list to pool's free list,
 | 
						|
      //! \returns a free chunk from that block.
 | 
						|
      //! If a new memory block cannot be allocated, returns 0. Amortized O(1).
 | 
						|
      // Look for a non-empty storage
 | 
						|
      if (!store().empty())
 | 
						|
        return (store().malloc)();
 | 
						|
      return malloc_need_resize();
 | 
						|
    }
 | 
						|
 | 
						|
    void * ordered_malloc()
 | 
						|
    { //! Same as malloc, only merges the free lists, to preserve order. Amortized O(1).
 | 
						|
      //! \returns a free chunk from that block.
 | 
						|
      //! If a new memory block cannot be allocated, returns 0. Amortized O(1).
 | 
						|
      // Look for a non-empty storage
 | 
						|
      if (!store().empty())
 | 
						|
        return (store().malloc)();
 | 
						|
      return ordered_malloc_need_resize();
 | 
						|
    }
 | 
						|
 | 
						|
    // Returns 0 if out-of-memory
 | 
						|
    // Allocate a contiguous section of n chunks
 | 
						|
    void * ordered_malloc(size_type n);
 | 
						|
      //! Same as malloc, only allocates enough contiguous chunks to cover n * requested_size bytes. Amortized O(n).
 | 
						|
      //! \returns a free chunk from that block.
 | 
						|
      //! If a new memory block cannot be allocated, returns 0. Amortized O(1).
 | 
						|
 | 
						|
    // pre: 'chunk' must have been previously
 | 
						|
    //        returned by *this.malloc().
 | 
						|
    void free BOOST_PREVENT_MACRO_SUBSTITUTION(void * const chunk)
 | 
						|
    { //!   Deallocates a chunk of memory. Note that chunk may not be 0. O(1).
 | 
						|
      //!
 | 
						|
      //! Chunk must have been previously returned by t.malloc() or t.ordered_malloc().
 | 
						|
      //! Assumes that chunk actually refers to a block of chunks
 | 
						|
      //! spanning n * partition_sz bytes.
 | 
						|
      //! deallocates each chunk in that block.
 | 
						|
      //! Note that chunk may not be 0. O(n).
 | 
						|
      (store().free)(chunk);
 | 
						|
    }
 | 
						|
 | 
						|
    // pre: 'chunk' must have been previously
 | 
						|
    //        returned by *this.malloc().
 | 
						|
    void ordered_free(void * const chunk)
 | 
						|
    { //! Same as above, but is order-preserving.
 | 
						|
      //!
 | 
						|
      //! Note that chunk may not be 0. O(N) with respect to the size of the free list.
 | 
						|
      //! chunk must have been previously returned by t.malloc() or t.ordered_malloc().
 | 
						|
      store().ordered_free(chunk);
 | 
						|
    }
 | 
						|
 | 
						|
    // pre: 'chunk' must have been previously
 | 
						|
    //        returned by *this.malloc(n).
 | 
						|
    void free BOOST_PREVENT_MACRO_SUBSTITUTION(void * const chunks, const size_type n)
 | 
						|
    { //! Assumes that chunk actually refers to a block of chunks.
 | 
						|
      //!
 | 
						|
      //! chunk must have been previously returned by t.ordered_malloc(n)
 | 
						|
      //! spanning n * partition_sz bytes.
 | 
						|
      //! Deallocates each chunk in that block.
 | 
						|
      //! Note that chunk may not be 0. O(n).
 | 
						|
      const size_type partition_size = alloc_size();
 | 
						|
      const size_type total_req_size = n * requested_size;
 | 
						|
      const size_type num_chunks = total_req_size / partition_size +
 | 
						|
          ((total_req_size % partition_size) ? true : false);
 | 
						|
 | 
						|
      store().free_n(chunks, num_chunks, partition_size);
 | 
						|
    }
 | 
						|
 | 
						|
    // pre: 'chunk' must have been previously
 | 
						|
    //        returned by *this.malloc(n).
 | 
						|
    void ordered_free(void * const chunks, const size_type n)
 | 
						|
    { //! Assumes that chunk actually refers to a block of chunks spanning n * partition_sz bytes;
 | 
						|
      //! deallocates each chunk in that block.
 | 
						|
      //!
 | 
						|
      //! Note that chunk may not be 0. Order-preserving. O(N + n) where N is the size of the free list.
 | 
						|
      //! chunk must have been previously returned by t.malloc() or t.ordered_malloc().
 | 
						|
 | 
						|
      const size_type partition_size = alloc_size();
 | 
						|
      const size_type total_req_size = n * requested_size;
 | 
						|
      const size_type num_chunks = total_req_size / partition_size +
 | 
						|
          ((total_req_size % partition_size) ? true : false);
 | 
						|
 | 
						|
      store().ordered_free_n(chunks, num_chunks, partition_size);
 | 
						|
    }
 | 
						|
 | 
						|
    // is_from() tests a chunk to determine if it was allocated from *this
 | 
						|
    bool is_from(void * const chunk) const
 | 
						|
    { //! \returns Returns true if chunk was allocated from u or
 | 
						|
      //! may be returned as the result of a future allocation from u.
 | 
						|
      //! Returns false if chunk was allocated from some other pool or
 | 
						|
      //! may be returned as the result of a future allocation from some other pool.
 | 
						|
      //! Otherwise, the return value is meaningless.
 | 
						|
      //! Note that this function may not be used to reliably test random pointer values.
 | 
						|
      return (find_POD(chunk).valid());
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
 | 
						|
template <typename UserAllocator>
 | 
						|
typename pool<UserAllocator>::size_type const pool<UserAllocator>::min_alloc_size;
 | 
						|
template <typename UserAllocator>
 | 
						|
typename pool<UserAllocator>::size_type const pool<UserAllocator>::min_align;
 | 
						|
#endif
 | 
						|
 | 
						|
template <typename UserAllocator>
 | 
						|
bool pool<UserAllocator>::release_memory()
 | 
						|
{ //! pool must be ordered. Frees every memory block that doesn't have any allocated chunks.
 | 
						|
  //! \returns true if at least one memory block was freed.
 | 
						|
 | 
						|
  // ret is the return value: it will be set to true when we actually call
 | 
						|
  //  UserAllocator::free(..)
 | 
						|
  bool ret = false;
 | 
						|
 | 
						|
  // This is a current & previous iterator pair over the memory block list
 | 
						|
  details::PODptr<size_type> ptr = list;
 | 
						|
  details::PODptr<size_type> prev;
 | 
						|
 | 
						|
  // This is a current & previous iterator pair over the free memory chunk list
 | 
						|
  //  Note that "prev_free" in this case does NOT point to the previous memory
 | 
						|
  //  chunk in the free list, but rather the last free memory chunk before the
 | 
						|
  //  current block.
 | 
						|
  void * free_p = this->first;
 | 
						|
  void * prev_free_p = 0;
 | 
						|
 | 
						|
  const size_type partition_size = alloc_size();
 | 
						|
 | 
						|
  // Search through all the all the allocated memory blocks
 | 
						|
  while (ptr.valid())
 | 
						|
  {
 | 
						|
    // At this point:
 | 
						|
    //  ptr points to a valid memory block
 | 
						|
    //  free_p points to either:
 | 
						|
    //    0 if there are no more free chunks
 | 
						|
    //    the first free chunk in this or some next memory block
 | 
						|
    //  prev_free_p points to either:
 | 
						|
    //    the last free chunk in some previous memory block
 | 
						|
    //    0 if there is no such free chunk
 | 
						|
    //  prev is either:
 | 
						|
    //    the PODptr whose next() is ptr
 | 
						|
    //    !valid() if there is no such PODptr
 | 
						|
 | 
						|
    // If there are no more free memory chunks, then every remaining
 | 
						|
    //  block is allocated out to its fullest capacity, and we can't
 | 
						|
    //  release any more memory
 | 
						|
    if (free_p == 0)
 | 
						|
      break;
 | 
						|
 | 
						|
    // We have to check all the chunks.  If they are *all* free (i.e., present
 | 
						|
    //  in the free list), then we can free the block.
 | 
						|
    bool all_chunks_free = true;
 | 
						|
 | 
						|
    // Iterate 'i' through all chunks in the memory block
 | 
						|
    // if free starts in the memory block, be careful to keep it there
 | 
						|
    void * saved_free = free_p;
 | 
						|
    for (char * i = ptr.begin(); i != ptr.end(); i += partition_size)
 | 
						|
    {
 | 
						|
      // If this chunk is not free
 | 
						|
      if (i != free_p)
 | 
						|
      {
 | 
						|
        // We won't be able to free this block
 | 
						|
        all_chunks_free = false;
 | 
						|
 | 
						|
        // free_p might have travelled outside ptr
 | 
						|
        free_p = saved_free;
 | 
						|
        // Abort searching the chunks; we won't be able to free this
 | 
						|
        //  block because a chunk is not free.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // We do not increment prev_free_p because we are in the same block
 | 
						|
      free_p = nextof(free_p);
 | 
						|
    }
 | 
						|
 | 
						|
    // post: if the memory block has any chunks, free_p points to one of them
 | 
						|
    // otherwise, our assertions above are still valid
 | 
						|
 | 
						|
    const details::PODptr<size_type> next = ptr.next();
 | 
						|
 | 
						|
    if (!all_chunks_free)
 | 
						|
    {
 | 
						|
      if (is_from(free_p, ptr.begin(), ptr.element_size()))
 | 
						|
      {
 | 
						|
        std::less<void *> lt;
 | 
						|
        void * const end = ptr.end();
 | 
						|
        do
 | 
						|
        {
 | 
						|
          prev_free_p = free_p;
 | 
						|
          free_p = nextof(free_p);
 | 
						|
        } while (free_p && lt(free_p, end));
 | 
						|
      }
 | 
						|
      // This invariant is now restored:
 | 
						|
      //     free_p points to the first free chunk in some next memory block, or
 | 
						|
      //       0 if there is no such chunk.
 | 
						|
      //     prev_free_p points to the last free chunk in this memory block.
 | 
						|
 | 
						|
      // We are just about to advance ptr.  Maintain the invariant:
 | 
						|
      // prev is the PODptr whose next() is ptr, or !valid()
 | 
						|
      // if there is no such PODptr
 | 
						|
      prev = ptr;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      // All chunks from this block are free
 | 
						|
 | 
						|
      // Remove block from list
 | 
						|
      if (prev.valid())
 | 
						|
        prev.next(next);
 | 
						|
      else
 | 
						|
        list = next;
 | 
						|
 | 
						|
      // Remove all entries in the free list from this block
 | 
						|
      if (prev_free_p != 0)
 | 
						|
        nextof(prev_free_p) = free_p;
 | 
						|
      else
 | 
						|
        this->first = free_p;
 | 
						|
 | 
						|
      // And release memory
 | 
						|
      (UserAllocator::free)(ptr.begin());
 | 
						|
      ret = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Increment ptr
 | 
						|
    ptr = next;
 | 
						|
  }
 | 
						|
 | 
						|
  next_size = start_size;
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
 | 
						|
template <typename UserAllocator>
 | 
						|
bool pool<UserAllocator>::purge_memory()
 | 
						|
{ //! pool must be ordered.
 | 
						|
  //! Frees every memory block.
 | 
						|
  //!
 | 
						|
  //! This function invalidates any pointers previously returned
 | 
						|
  //! by allocation functions of t.
 | 
						|
  //! \returns true if at least one memory block was freed.
 | 
						|
 | 
						|
  details::PODptr<size_type> iter = list;
 | 
						|
 | 
						|
  if (!iter.valid())
 | 
						|
    return false;
 | 
						|
 | 
						|
  do
 | 
						|
  {
 | 
						|
    // hold "next" pointer
 | 
						|
    const details::PODptr<size_type> next = iter.next();
 | 
						|
 | 
						|
    // delete the storage
 | 
						|
    (UserAllocator::free)(iter.begin());
 | 
						|
 | 
						|
    // increment iter
 | 
						|
    iter = next;
 | 
						|
  } while (iter.valid());
 | 
						|
 | 
						|
  list.invalidate();
 | 
						|
  this->first = 0;
 | 
						|
  next_size = start_size;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <typename UserAllocator>
 | 
						|
void * pool<UserAllocator>::malloc_need_resize()
 | 
						|
{ //! No memory in any of our storages; make a new storage,
 | 
						|
  //!  Allocates chunk in newly malloc aftert resize.
 | 
						|
  //! \returns pointer to chunk.
 | 
						|
  size_type partition_size = alloc_size();
 | 
						|
  size_type POD_size = static_cast<size_type>(next_size * partition_size +
 | 
						|
      integer::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
 | 
						|
  char * ptr = (UserAllocator::malloc)(POD_size);
 | 
						|
  if (ptr == 0)
 | 
						|
  {
 | 
						|
     if(next_size > 4)
 | 
						|
     {
 | 
						|
        next_size >>= 1;
 | 
						|
        partition_size = alloc_size();
 | 
						|
        POD_size = static_cast<size_type>(next_size * partition_size +
 | 
						|
            integer::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
 | 
						|
        ptr = (UserAllocator::malloc)(POD_size);
 | 
						|
     }
 | 
						|
     if(ptr == 0)
 | 
						|
        return 0;
 | 
						|
  }
 | 
						|
  const details::PODptr<size_type> node(ptr, POD_size);
 | 
						|
 | 
						|
  BOOST_USING_STD_MIN();
 | 
						|
  if(!max_size)
 | 
						|
    next_size <<= 1;
 | 
						|
  else if( next_size*partition_size/requested_size < max_size)
 | 
						|
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);
 | 
						|
 | 
						|
  //  initialize it,
 | 
						|
  store().add_block(node.begin(), node.element_size(), partition_size);
 | 
						|
 | 
						|
  //  insert it into the list,
 | 
						|
  node.next(list);
 | 
						|
  list = node;
 | 
						|
 | 
						|
  //  and return a chunk from it.
 | 
						|
  return (store().malloc)();
 | 
						|
}
 | 
						|
 | 
						|
template <typename UserAllocator>
 | 
						|
void * pool<UserAllocator>::ordered_malloc_need_resize()
 | 
						|
{ //! No memory in any of our storages; make a new storage,
 | 
						|
  //! \returns pointer to new chunk.
 | 
						|
  size_type partition_size = alloc_size();
 | 
						|
  size_type POD_size = static_cast<size_type>(next_size * partition_size +
 | 
						|
      integer::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
 | 
						|
  char * ptr = (UserAllocator::malloc)(POD_size);
 | 
						|
  if (ptr == 0)
 | 
						|
  {
 | 
						|
     if(next_size > 4)
 | 
						|
     {
 | 
						|
       next_size >>= 1;
 | 
						|
       partition_size = alloc_size();
 | 
						|
       POD_size = static_cast<size_type>(next_size * partition_size +
 | 
						|
                    integer::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
 | 
						|
       ptr = (UserAllocator::malloc)(POD_size);
 | 
						|
     }
 | 
						|
     if(ptr == 0)
 | 
						|
       return 0;
 | 
						|
  }
 | 
						|
  const details::PODptr<size_type> node(ptr, POD_size);
 | 
						|
 | 
						|
  BOOST_USING_STD_MIN();
 | 
						|
  if(!max_size)
 | 
						|
    next_size <<= 1;
 | 
						|
  else if( next_size*partition_size/requested_size < max_size)
 | 
						|
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);
 | 
						|
 | 
						|
  //  initialize it,
 | 
						|
  //  (we can use "add_block" here because we know that
 | 
						|
  //  the free list is empty, so we don't have to use
 | 
						|
  //  the slower ordered version)
 | 
						|
  store().add_ordered_block(node.begin(), node.element_size(), partition_size);
 | 
						|
 | 
						|
  //  insert it into the list,
 | 
						|
  //   handle border case
 | 
						|
  if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
 | 
						|
  {
 | 
						|
    node.next(list);
 | 
						|
    list = node;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    details::PODptr<size_type> prev = list;
 | 
						|
 | 
						|
    while (true)
 | 
						|
    {
 | 
						|
      // if we're about to hit the end or
 | 
						|
      //  if we've found where "node" goes
 | 
						|
      if (prev.next_ptr() == 0
 | 
						|
          || std::greater<void *>()(prev.next_ptr(), node.begin()))
 | 
						|
        break;
 | 
						|
 | 
						|
      prev = prev.next();
 | 
						|
    }
 | 
						|
 | 
						|
    node.next(prev.next());
 | 
						|
    prev.next(node);
 | 
						|
  }
 | 
						|
  //  and return a chunk from it.
 | 
						|
  return (store().malloc)();
 | 
						|
}
 | 
						|
 | 
						|
template <typename UserAllocator>
 | 
						|
void * pool<UserAllocator>::ordered_malloc(const size_type n)
 | 
						|
{ //! Gets address of a chunk n, allocating new memory if not already available.
 | 
						|
  //! \returns Address of chunk n if allocated ok.
 | 
						|
  //! \returns 0 if not enough memory for n chunks.
 | 
						|
 | 
						|
  const size_type partition_size = alloc_size();
 | 
						|
  const size_type total_req_size = n * requested_size;
 | 
						|
  const size_type num_chunks = total_req_size / partition_size +
 | 
						|
      ((total_req_size % partition_size) ? true : false);
 | 
						|
 | 
						|
  void * ret = store().malloc_n(num_chunks, partition_size);
 | 
						|
 | 
						|
#ifdef BOOST_POOL_INSTRUMENT
 | 
						|
  std::cout << "Allocating " << n << " chunks from pool of size " << partition_size << std::endl;
 | 
						|
#endif
 | 
						|
  if ((ret != 0) || (n == 0))
 | 
						|
    return ret;
 | 
						|
 | 
						|
#ifdef BOOST_POOL_INSTRUMENT
 | 
						|
  std::cout << "Cache miss, allocating another chunk...\n";
 | 
						|
#endif
 | 
						|
 | 
						|
  // Not enough memory in our storages; make a new storage,
 | 
						|
  BOOST_USING_STD_MAX();
 | 
						|
  next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
 | 
						|
  size_type POD_size = static_cast<size_type>(next_size * partition_size +
 | 
						|
      integer::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
 | 
						|
  char * ptr = (UserAllocator::malloc)(POD_size);
 | 
						|
  if (ptr == 0)
 | 
						|
  {
 | 
						|
     if(num_chunks < next_size)
 | 
						|
     {
 | 
						|
        // Try again with just enough memory to do the job, or at least whatever we
 | 
						|
        // allocated last time:
 | 
						|
        next_size >>= 1;
 | 
						|
        next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
 | 
						|
        POD_size = static_cast<size_type>(next_size * partition_size +
 | 
						|
            integer::static_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type));
 | 
						|
        ptr = (UserAllocator::malloc)(POD_size);
 | 
						|
     }
 | 
						|
     if(ptr == 0)
 | 
						|
       return 0;
 | 
						|
  }
 | 
						|
  const details::PODptr<size_type> node(ptr, POD_size);
 | 
						|
 | 
						|
  // Split up block so we can use what wasn't requested.
 | 
						|
  if (next_size > num_chunks)
 | 
						|
    store().add_ordered_block(node.begin() + num_chunks * partition_size,
 | 
						|
        node.element_size() - num_chunks * partition_size, partition_size);
 | 
						|
 | 
						|
  BOOST_USING_STD_MIN();
 | 
						|
  if(!max_size)
 | 
						|
    next_size <<= 1;
 | 
						|
  else if( next_size*partition_size/requested_size < max_size)
 | 
						|
    next_size = min BOOST_PREVENT_MACRO_SUBSTITUTION(next_size << 1, max_size*requested_size/ partition_size);
 | 
						|
 | 
						|
  //  insert it into the list,
 | 
						|
  //   handle border case.
 | 
						|
  if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
 | 
						|
  {
 | 
						|
    node.next(list);
 | 
						|
    list = node;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    details::PODptr<size_type> prev = list;
 | 
						|
 | 
						|
    while (true)
 | 
						|
    {
 | 
						|
      // if we're about to hit the end, or if we've found where "node" goes.
 | 
						|
      if (prev.next_ptr() == 0
 | 
						|
          || std::greater<void *>()(prev.next_ptr(), node.begin()))
 | 
						|
        break;
 | 
						|
 | 
						|
      prev = prev.next();
 | 
						|
    }
 | 
						|
 | 
						|
    node.next(prev.next());
 | 
						|
    prev.next(node);
 | 
						|
  }
 | 
						|
 | 
						|
  //  and return it.
 | 
						|
  return node.begin();
 | 
						|
}
 | 
						|
 | 
						|
template <typename UserAllocator>
 | 
						|
details::PODptr<typename pool<UserAllocator>::size_type>
 | 
						|
pool<UserAllocator>::find_POD(void * const chunk) const
 | 
						|
{ //! find which PODptr storage memory that this chunk is from.
 | 
						|
  //! \returns the PODptr that holds this chunk.
 | 
						|
  // Iterate down list to find which storage this chunk is from.
 | 
						|
  details::PODptr<size_type> iter = list;
 | 
						|
  while (iter.valid())
 | 
						|
  {
 | 
						|
    if (is_from(chunk, iter.begin(), iter.element_size()))
 | 
						|
      return iter;
 | 
						|
    iter = iter.next();
 | 
						|
  }
 | 
						|
 | 
						|
  return iter;
 | 
						|
}
 | 
						|
 | 
						|
#else // BOOST_POOL_VALGRIND
 | 
						|
 | 
						|
template<typename UserAllocator> 
 | 
						|
class pool 
 | 
						|
{
 | 
						|
public:
 | 
						|
  // types
 | 
						|
  typedef UserAllocator                  user_allocator;   // User allocator. 
 | 
						|
  typedef typename UserAllocator::size_type       size_type;        // An unsigned integral type that can represent the size of the largest object to be allocated. 
 | 
						|
  typedef typename UserAllocator::difference_type difference_type;  // A signed integral type that can represent the difference of any two pointers. 
 | 
						|
 | 
						|
  // construct/copy/destruct
 | 
						|
  explicit pool(const size_type s, const size_type = 32, const size_type m = 0) : chunk_size(s), max_alloc_size(m) {}
 | 
						|
  ~pool()
 | 
						|
  {
 | 
						|
     purge_memory();
 | 
						|
  }
 | 
						|
 | 
						|
  bool release_memory()
 | 
						|
  {
 | 
						|
     bool ret = free_list.empty() ? false : true;
 | 
						|
     for(std::set<void*>::iterator pos = free_list.begin(); pos != free_list.end(); ++pos)
 | 
						|
     {
 | 
						|
        (user_allocator::free)(static_cast<char*>(*pos));
 | 
						|
     }
 | 
						|
     free_list.clear();
 | 
						|
     return ret;
 | 
						|
  }
 | 
						|
  bool purge_memory()
 | 
						|
  {
 | 
						|
     bool ret = free_list.empty() && used_list.empty() ? false : true;
 | 
						|
     for(std::set<void*>::iterator pos = free_list.begin(); pos != free_list.end(); ++pos)
 | 
						|
     {
 | 
						|
        (user_allocator::free)(static_cast<char*>(*pos));
 | 
						|
     }
 | 
						|
     free_list.clear();
 | 
						|
     for(std::set<void*>::iterator pos = used_list.begin(); pos != used_list.end(); ++pos)
 | 
						|
     {
 | 
						|
        (user_allocator::free)(static_cast<char*>(*pos));
 | 
						|
     }
 | 
						|
     used_list.clear();
 | 
						|
     return ret;
 | 
						|
  }
 | 
						|
  size_type get_next_size() const
 | 
						|
  {
 | 
						|
     return 1;
 | 
						|
  }
 | 
						|
  void set_next_size(const size_type){}
 | 
						|
  size_type get_max_size() const
 | 
						|
  {
 | 
						|
     return max_alloc_size;
 | 
						|
  }
 | 
						|
  void set_max_size(const size_type s)
 | 
						|
  {
 | 
						|
     max_alloc_size = s;
 | 
						|
  }
 | 
						|
  size_type get_requested_size() const
 | 
						|
  {
 | 
						|
     return chunk_size;
 | 
						|
  }
 | 
						|
  void * malloc BOOST_PREVENT_MACRO_SUBSTITUTION()
 | 
						|
  {
 | 
						|
     void* ret;
 | 
						|
     if(free_list.empty())
 | 
						|
     {
 | 
						|
        ret = (user_allocator::malloc)(chunk_size);
 | 
						|
        VALGRIND_MAKE_MEM_UNDEFINED(ret, chunk_size);
 | 
						|
     }
 | 
						|
     else
 | 
						|
     {
 | 
						|
        ret = *free_list.begin();
 | 
						|
        free_list.erase(free_list.begin());
 | 
						|
        VALGRIND_MAKE_MEM_UNDEFINED(ret, chunk_size);
 | 
						|
     }
 | 
						|
     used_list.insert(ret);
 | 
						|
     return ret;
 | 
						|
  }
 | 
						|
  void * ordered_malloc()
 | 
						|
  {
 | 
						|
     return (this->malloc)();
 | 
						|
  }
 | 
						|
  void * ordered_malloc(size_type n)
 | 
						|
  {
 | 
						|
     if(max_alloc_size && (n > max_alloc_size))
 | 
						|
        return 0;
 | 
						|
     void* ret = (user_allocator::malloc)(chunk_size * n);
 | 
						|
     used_list.insert(ret);
 | 
						|
     return ret;
 | 
						|
  }
 | 
						|
  void free BOOST_PREVENT_MACRO_SUBSTITUTION(void *const chunk)
 | 
						|
  {
 | 
						|
     BOOST_ASSERT(used_list.count(chunk) == 1);
 | 
						|
     BOOST_ASSERT(free_list.count(chunk) == 0);
 | 
						|
     used_list.erase(chunk);
 | 
						|
     free_list.insert(chunk);
 | 
						|
     VALGRIND_MAKE_MEM_NOACCESS(chunk, chunk_size);
 | 
						|
  }
 | 
						|
  void ordered_free(void *const chunk)
 | 
						|
  {
 | 
						|
     return (this->free)(chunk);
 | 
						|
  }
 | 
						|
  void free BOOST_PREVENT_MACRO_SUBSTITUTION(void *const chunk, const size_type)
 | 
						|
  {
 | 
						|
     BOOST_ASSERT(used_list.count(chunk) == 1);
 | 
						|
     BOOST_ASSERT(free_list.count(chunk) == 0);
 | 
						|
     used_list.erase(chunk);
 | 
						|
     (user_allocator::free)(static_cast<char*>(chunk));
 | 
						|
  }
 | 
						|
  void ordered_free(void *const chunk, const size_type n)
 | 
						|
  {
 | 
						|
     (this->free)(chunk, n);
 | 
						|
  }
 | 
						|
  bool is_from(void *const chunk) const
 | 
						|
  {
 | 
						|
     return used_list.count(chunk) || free_list.count(chunk);
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
   size_type chunk_size, max_alloc_size;
 | 
						|
   std::set<void*> free_list, used_list;
 | 
						|
};
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
} // namespace boost
 | 
						|
 | 
						|
#ifdef BOOST_MSVC
 | 
						|
#pragma warning(pop)
 | 
						|
#endif
 | 
						|
 | 
						|
#endif // #ifdef BOOST_POOL_HPP
 | 
						|
 |