early-access version 1816

This commit is contained in:
pineappleEA 2021-06-23 19:45:43 +02:00
parent ffbdea6deb
commit 2016b09e73
15 changed files with 578 additions and 60 deletions

View File

@ -1,7 +1,7 @@
yuzu emulator early access yuzu emulator early access
============= =============
This is the source code for early-access 1815. This is the source code for early-access 1816.
## Legal Notice ## Legal Notice

View File

@ -242,6 +242,7 @@ public:
return 4; return 4;
default: default:
UNREACHABLE(); UNREACHABLE();
return 1;
} }
} }

View File

@ -69,11 +69,16 @@ void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
} else { } else {
UNREACHABLE_MSG("Unmapping non-existent GPU address=0x{:x}", gpu_addr); UNREACHABLE_MSG("Unmapping non-existent GPU address=0x{:x}", gpu_addr);
} }
// Flush and invalidate through the GPU interface, to be asynchronous if possible.
const std::optional<VAddr> cpu_addr = GpuToCpuAddress(gpu_addr);
ASSERT(cpu_addr);
rasterizer->UnmapMemory(*cpu_addr, size); const auto submapped_ranges = GetSubmappedRange(gpu_addr, size);
for (const auto& map : submapped_ranges) {
// Flush and invalidate through the GPU interface, to be asynchronous if possible.
const std::optional<VAddr> cpu_addr = GpuToCpuAddress(map.first);
ASSERT(cpu_addr);
rasterizer->UnmapMemory(*cpu_addr, map.second);
}
UpdateRange(gpu_addr, PageEntry::State::Unmapped, size); UpdateRange(gpu_addr, PageEntry::State::Unmapped, size);
} }
@ -146,8 +151,14 @@ void MemoryManager::SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::s
//// Lock the new page //// Lock the new page
// TryLockPage(page_entry, size); // TryLockPage(page_entry, size);
auto& current_page = page_table[PageEntryIndex(gpu_addr)];
page_table[PageEntryIndex(gpu_addr)] = page_entry; if ((!current_page.IsValid() && page_entry.IsValid()) ||
current_page.ToAddress() != page_entry.ToAddress()) {
rasterizer->ModifyGPUMemory(gpu_addr, size);
}
current_page = page_entry;
} }
std::optional<GPUVAddr> MemoryManager::FindFreeRange(std::size_t size, std::size_t align, std::optional<GPUVAddr> MemoryManager::FindFreeRange(std::size_t size, std::size_t align,
@ -193,6 +204,19 @@ std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
return page_entry.ToAddress() + (gpu_addr & page_mask); return page_entry.ToAddress() + (gpu_addr & page_mask);
} }
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr, std::size_t size) const {
size_t page_index{addr >> page_bits};
const size_t page_last{(addr + size + page_size - 1) >> page_bits};
while (page_index < page_last) {
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (page_addr && *page_addr != 0) {
return page_addr;
}
++page_index;
}
return std::nullopt;
}
template <typename T> template <typename T>
T MemoryManager::Read(GPUVAddr addr) const { T MemoryManager::Read(GPUVAddr addr) const {
if (auto page_pointer{GetPointer(addr)}; page_pointer) { if (auto page_pointer{GetPointer(addr)}; page_pointer) {
@ -389,4 +413,79 @@ bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const {
return page <= Core::Memory::PAGE_SIZE; return page <= Core::Memory::PAGE_SIZE;
} }
bool MemoryManager::IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const {
size_t page_index{gpu_addr >> page_bits};
const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits};
std::optional<VAddr> old_page_addr{};
while (page_index != page_last) {
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (!page_addr || *page_addr == 0) {
return false;
}
if (old_page_addr) {
if (*old_page_addr + page_size != *page_addr) {
return false;
}
}
old_page_addr = page_addr;
++page_index;
}
return true;
}
bool MemoryManager::IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const {
size_t page_index{gpu_addr >> page_bits};
const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits};
while (page_index < page_last) {
if (!page_table[page_index].IsValid() || page_table[page_index].ToAddress() == 0) {
return false;
}
++page_index;
}
return true;
}
std::vector<std::pair<GPUVAddr, std::size_t>> MemoryManager::GetSubmappedRange(
GPUVAddr gpu_addr, std::size_t size) const {
std::vector<std::pair<GPUVAddr, std::size_t>> result{};
size_t page_index{gpu_addr >> page_bits};
size_t remaining_size{size};
size_t page_offset{gpu_addr & page_mask};
std::optional<std::pair<GPUVAddr, std::size_t>> last_segment{};
std::optional<VAddr> old_page_addr{};
const auto extend_size = [this, &last_segment, &page_index](std::size_t bytes) {
if (!last_segment) {
GPUVAddr new_base_addr = page_index << page_bits;
last_segment = {new_base_addr, bytes};
} else {
last_segment->second += bytes;
}
};
const auto split = [this, &last_segment, &result] {
if (last_segment) {
result.push_back(*last_segment);
last_segment = std::nullopt;
}
};
while (remaining_size > 0) {
const size_t num_bytes{std::min(page_size - page_offset, remaining_size)};
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (!page_addr) {
split();
} else if (old_page_addr) {
if (*old_page_addr + page_size != *page_addr) {
split();
}
extend_size(num_bytes);
} else {
extend_size(num_bytes);
}
++page_index;
page_offset = 0;
remaining_size -= num_bytes;
}
split();
return result;
}
} // namespace Tegra } // namespace Tegra

View File

@ -76,6 +76,8 @@ public:
[[nodiscard]] std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const; [[nodiscard]] std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const;
[[nodiscard]] std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr, std::size_t size) const;
template <typename T> template <typename T>
[[nodiscard]] T Read(GPUVAddr addr) const; [[nodiscard]] T Read(GPUVAddr addr) const;
@ -112,10 +114,28 @@ public:
void WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size); void WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size);
/** /**
* IsGranularRange checks if a gpu region can be simply read with a pointer. * Checks if a gpu region can be simply read with a pointer.
*/ */
[[nodiscard]] bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const; [[nodiscard]] bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
* Checks if a gpu region is mapped by a single range of cpu addresses.
*/
[[nodiscard]] bool IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
* Checks if a gpu region is mapped entirely.
*/
[[nodiscard]] bool IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
* Returns a vector with all the subranges of cpu addresses mapped beneath.
* if the region is continous, a single pair will be returned. If it's unmapped, an empty vector
* will be returned;
*/
std::vector<std::pair<GPUVAddr, std::size_t>> GetSubmappedRange(GPUVAddr gpu_addr,
std::size_t size) const;
[[nodiscard]] GPUVAddr Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size); [[nodiscard]] GPUVAddr Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size);
[[nodiscard]] GPUVAddr MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align); [[nodiscard]] GPUVAddr MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align);
[[nodiscard]] GPUVAddr MapAllocate32(VAddr cpu_addr, std::size_t size); [[nodiscard]] GPUVAddr MapAllocate32(VAddr cpu_addr, std::size_t size);

View File

@ -93,6 +93,9 @@ public:
/// Unmap memory range /// Unmap memory range
virtual void UnmapMemory(VAddr addr, u64 size) = 0; virtual void UnmapMemory(VAddr addr, u64 size) = 0;
/// Remap GPU memory range. This means underneath backing memory changed
virtual void ModifyGPUMemory(GPUVAddr addr, u64 size) = 0;
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory /// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
/// and invalidated /// and invalidated
virtual void FlushAndInvalidateRegion(VAddr addr, u64 size) = 0; virtual void FlushAndInvalidateRegion(VAddr addr, u64 size) = 0;

View File

@ -631,6 +631,13 @@ void RasterizerOpenGL::UnmapMemory(VAddr addr, u64 size) {
shader_cache.OnCPUWrite(addr, size); shader_cache.OnCPUWrite(addr, size);
} }
void RasterizerOpenGL::ModifyGPUMemory(GPUVAddr addr, u64 size) {
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UnmapGPUMemory(addr, size);
}
}
void RasterizerOpenGL::SignalSemaphore(GPUVAddr addr, u32 value) { void RasterizerOpenGL::SignalSemaphore(GPUVAddr addr, u32 value) {
if (!gpu.IsAsync()) { if (!gpu.IsAsync()) {
gpu_memory.Write<u32>(addr, value); gpu_memory.Write<u32>(addr, value);

View File

@ -82,6 +82,7 @@ public:
void OnCPUWrite(VAddr addr, u64 size) override; void OnCPUWrite(VAddr addr, u64 size) override;
void SyncGuestHost() override; void SyncGuestHost() override;
void UnmapMemory(VAddr addr, u64 size) override; void UnmapMemory(VAddr addr, u64 size) override;
void ModifyGPUMemory(GPUVAddr addr, u64 size) override;
void SignalSemaphore(GPUVAddr addr, u32 value) override; void SignalSemaphore(GPUVAddr addr, u32 value) override;
void SignalSyncPoint(u32 value) override; void SignalSyncPoint(u32 value) override;
void ReleaseFences() override; void ReleaseFences() override;

View File

@ -577,6 +577,13 @@ void RasterizerVulkan::UnmapMemory(VAddr addr, u64 size) {
pipeline_cache.OnCPUWrite(addr, size); pipeline_cache.OnCPUWrite(addr, size);
} }
void RasterizerVulkan::ModifyGPUMemory(GPUVAddr addr, u64 size) {
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UnmapGPUMemory(addr, size);
}
}
void RasterizerVulkan::SignalSemaphore(GPUVAddr addr, u32 value) { void RasterizerVulkan::SignalSemaphore(GPUVAddr addr, u32 value) {
if (!gpu.IsAsync()) { if (!gpu.IsAsync()) {
gpu_memory.Write<u32>(addr, value); gpu_memory.Write<u32>(addr, value);

View File

@ -74,6 +74,7 @@ public:
void OnCPUWrite(VAddr addr, u64 size) override; void OnCPUWrite(VAddr addr, u64 size) override;
void SyncGuestHost() override; void SyncGuestHost() override;
void UnmapMemory(VAddr addr, u64 size) override; void UnmapMemory(VAddr addr, u64 size) override;
void ModifyGPUMemory(GPUVAddr addr, u64 size) override;
void SignalSemaphore(GPUVAddr addr, u32 value) override; void SignalSemaphore(GPUVAddr addr, u32 value) override;
void SignalSyncPoint(u32 value) override; void SignalSyncPoint(u32 value) override;
void ReleaseFences() override; void ReleaseFences() override;

View File

@ -69,6 +69,9 @@ ImageBase::ImageBase(const ImageInfo& info_, GPUVAddr gpu_addr_, VAddr cpu_addr_
} }
} }
ImageMapView::ImageMapView(GPUVAddr gpu_addr_, VAddr cpu_addr_, size_t size_, ImageId image_id_)
: gpu_addr{gpu_addr_}, cpu_addr{cpu_addr_}, size{size_}, image_id{image_id_} {}
std::optional<SubresourceBase> ImageBase::TryFindBase(GPUVAddr other_addr) const noexcept { std::optional<SubresourceBase> ImageBase::TryFindBase(GPUVAddr other_addr) const noexcept {
if (other_addr < gpu_addr) { if (other_addr < gpu_addr) {
// Subresource address can't be lower than the base // Subresource address can't be lower than the base

View File

@ -25,12 +25,14 @@ enum class ImageFlagBits : u32 {
Strong = 1 << 5, ///< Exists in the image table, the dimensions are can be trusted Strong = 1 << 5, ///< Exists in the image table, the dimensions are can be trusted
Registered = 1 << 6, ///< True when the image is registered Registered = 1 << 6, ///< True when the image is registered
Picked = 1 << 7, ///< Temporary flag to mark the image as picked Picked = 1 << 7, ///< Temporary flag to mark the image as picked
Remapped = 1 << 8, ///< Image has been remapped.
Sparse = 1 << 9, ///< Image has non continous submemory.
// Garbage Collection Flags // Garbage Collection Flags
BadOverlap = 1 << 8, ///< This image overlaps other but doesn't fit, has higher BadOverlap = 1 << 10, ///< This image overlaps other but doesn't fit, has higher
///< garbage collection priority ///< garbage collection priority
Alias = 1 << 9, ///< This image has aliases and has priority on garbage Alias = 1 << 11, ///< This image has aliases and has priority on garbage
///< collection ///< collection
}; };
DECLARE_ENUM_FLAG_OPERATORS(ImageFlagBits) DECLARE_ENUM_FLAG_OPERATORS(ImageFlagBits)
@ -57,6 +59,12 @@ struct ImageBase {
return cpu_addr < overlap_end && overlap_cpu_addr < cpu_addr_end; return cpu_addr < overlap_end && overlap_cpu_addr < cpu_addr_end;
} }
[[nodiscard]] bool OverlapsGPU(GPUVAddr overlap_gpu_addr, size_t overlap_size) const noexcept {
const VAddr overlap_end = overlap_gpu_addr + overlap_size;
const GPUVAddr gpu_addr_end = gpu_addr + guest_size_bytes;
return gpu_addr < overlap_end && overlap_gpu_addr < gpu_addr_end;
}
void CheckBadOverlapState(); void CheckBadOverlapState();
void CheckAliasState(); void CheckAliasState();
@ -84,6 +92,29 @@ struct ImageBase {
std::vector<AliasedImage> aliased_images; std::vector<AliasedImage> aliased_images;
std::vector<ImageId> overlapping_images; std::vector<ImageId> overlapping_images;
ImageMapId map_view_id{};
};
struct ImageMapView {
explicit ImageMapView(GPUVAddr gpu_addr, VAddr cpu_addr, size_t size, ImageId image_id);
[[nodiscard]] bool Overlaps(VAddr overlap_cpu_addr, size_t overlap_size) const noexcept {
const VAddr overlap_end = overlap_cpu_addr + overlap_size;
const VAddr cpu_addr_end = cpu_addr + size;
return cpu_addr < overlap_end && overlap_cpu_addr < cpu_addr_end;
}
[[nodiscard]] bool OverlapsGPU(GPUVAddr overlap_gpu_addr, size_t overlap_size) const noexcept {
const GPUVAddr overlap_end = overlap_gpu_addr + overlap_size;
const GPUVAddr gpu_addr_end = gpu_addr + size;
return gpu_addr < overlap_end && overlap_gpu_addr < gpu_addr_end;
}
GPUVAddr gpu_addr;
VAddr cpu_addr;
size_t size;
ImageId image_id;
bool picked{};
}; };
struct ImageAllocBase { struct ImageAllocBase {

View File

@ -13,6 +13,7 @@
#include <span> #include <span>
#include <type_traits> #include <type_traits>
#include <unordered_map> #include <unordered_map>
#include <unordered_set>
#include <utility> #include <utility>
#include <vector> #include <vector>
@ -155,6 +156,9 @@ public:
/// Remove images in a region /// Remove images in a region
void UnmapMemory(VAddr cpu_addr, size_t size); void UnmapMemory(VAddr cpu_addr, size_t size);
/// Remove images in a region
void UnmapGPUMemory(GPUVAddr gpu_addr, size_t size);
/// Blit an image with the given parameters /// Blit an image with the given parameters
void BlitImage(const Tegra::Engines::Fermi2D::Surface& dst, void BlitImage(const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Surface& src, const Tegra::Engines::Fermi2D::Surface& src,
@ -193,7 +197,22 @@ public:
private: private:
/// Iterate over all page indices in a range /// Iterate over all page indices in a range
template <typename Func> template <typename Func>
static void ForEachPage(VAddr addr, size_t size, Func&& func) { static void ForEachCPUPage(VAddr addr, size_t size, Func&& func) {
static constexpr bool RETURNS_BOOL = std::is_same_v<std::invoke_result<Func, u64>, bool>;
const u64 page_end = (addr + size - 1) >> PAGE_BITS;
for (u64 page = addr >> PAGE_BITS; page <= page_end; ++page) {
if constexpr (RETURNS_BOOL) {
if (func(page)) {
break;
}
} else {
func(page);
}
}
}
template <typename Func>
static void ForEachGPUPage(GPUVAddr addr, size_t size, Func&& func) {
static constexpr bool RETURNS_BOOL = std::is_same_v<std::invoke_result<Func, u64>, bool>; static constexpr bool RETURNS_BOOL = std::is_same_v<std::invoke_result<Func, u64>, bool>;
const u64 page_end = (addr + size - 1) >> PAGE_BITS; const u64 page_end = (addr + size - 1) >> PAGE_BITS;
for (u64 page = addr >> PAGE_BITS; page <= page_end; ++page) { for (u64 page = addr >> PAGE_BITS; page <= page_end; ++page) {
@ -220,7 +239,7 @@ private:
FramebufferId GetFramebufferId(const RenderTargets& key); FramebufferId GetFramebufferId(const RenderTargets& key);
/// Refresh the contents (pixel data) of an image /// Refresh the contents (pixel data) of an image
void RefreshContents(Image& image); void RefreshContents(Image& image, ImageId image_id);
/// Upload data from guest to an image /// Upload data from guest to an image
template <typename StagingBuffer> template <typename StagingBuffer>
@ -269,6 +288,16 @@ private:
template <typename Func> template <typename Func>
void ForEachImageInRegion(VAddr cpu_addr, size_t size, Func&& func); void ForEachImageInRegion(VAddr cpu_addr, size_t size, Func&& func);
template <typename Func>
void ForEachImageInRegionGPU(GPUVAddr gpu_addr, size_t size, Func&& func);
template <typename Func>
void ForEachSparseImageInRegion(GPUVAddr gpu_addr, size_t size, Func&& func);
/// Iterates over all the images in a region calling func
template <typename Func>
void ForEachSparseSegment(ImageBase& image, Func&& func);
/// Find or create an image view in the given image with the passed parameters /// Find or create an image view in the given image with the passed parameters
[[nodiscard]] ImageViewId FindOrEmplaceImageView(ImageId image_id, const ImageViewInfo& info); [[nodiscard]] ImageViewId FindOrEmplaceImageView(ImageId image_id, const ImageViewInfo& info);
@ -279,10 +308,10 @@ private:
void UnregisterImage(ImageId image); void UnregisterImage(ImageId image);
/// Track CPU reads and writes for image /// Track CPU reads and writes for image
void TrackImage(ImageBase& image); void TrackImage(ImageBase& image, ImageId image_id);
/// Stop tracking CPU reads and writes for image /// Stop tracking CPU reads and writes for image
void UntrackImage(ImageBase& image); void UntrackImage(ImageBase& image, ImageId image_id);
/// Delete image from the cache /// Delete image from the cache
void DeleteImage(ImageId image); void DeleteImage(ImageId image);
@ -340,7 +369,13 @@ private:
std::unordered_map<TSCEntry, SamplerId> samplers; std::unordered_map<TSCEntry, SamplerId> samplers;
std::unordered_map<RenderTargets, FramebufferId> framebuffers; std::unordered_map<RenderTargets, FramebufferId> framebuffers;
std::unordered_map<u64, std::vector<ImageId>, IdentityHash<u64>> page_table; std::unordered_map<u64, std::vector<ImageMapId>, IdentityHash<u64>> page_table;
std::unordered_map<u64, std::vector<ImageId>, IdentityHash<u64>> gpu_page_table;
std::unordered_map<u64, std::vector<ImageId>, IdentityHash<u64>> sparse_page_table;
std::unordered_map<ImageId, std::vector<ImageViewId>> sparse_views;
VAddr virtual_invalid_space{};
bool has_deleted_images = false; bool has_deleted_images = false;
u64 total_used_memory = 0; u64 total_used_memory = 0;
@ -349,6 +384,7 @@ private:
u64 critical_memory; u64 critical_memory;
SlotVector<Image> slot_images; SlotVector<Image> slot_images;
SlotVector<ImageMapView> slot_map_views;
SlotVector<ImageView> slot_image_views; SlotVector<ImageView> slot_image_views;
SlotVector<ImageAlloc> slot_image_allocs; SlotVector<ImageAlloc> slot_image_allocs;
SlotVector<Sampler> slot_samplers; SlotVector<Sampler> slot_samplers;
@ -459,7 +495,7 @@ void TextureCache<P>::RunGarbageCollector() {
} }
} }
if (True(image->flags & ImageFlagBits::Tracked)) { if (True(image->flags & ImageFlagBits::Tracked)) {
UntrackImage(*image); UntrackImage(*image, image_id);
} }
UnregisterImage(image_id); UnregisterImage(image_id);
DeleteImage(image_id); DeleteImage(image_id);
@ -658,7 +694,9 @@ void TextureCache<P>::WriteMemory(VAddr cpu_addr, size_t size) {
return; return;
} }
image.flags |= ImageFlagBits::CpuModified; image.flags |= ImageFlagBits::CpuModified;
UntrackImage(image); if (True(image.flags & ImageFlagBits::Tracked)) {
UntrackImage(image, image_id);
}
}); });
} }
@ -695,13 +733,30 @@ void TextureCache<P>::UnmapMemory(VAddr cpu_addr, size_t size) {
for (const ImageId id : deleted_images) { for (const ImageId id : deleted_images) {
Image& image = slot_images[id]; Image& image = slot_images[id];
if (True(image.flags & ImageFlagBits::Tracked)) { if (True(image.flags & ImageFlagBits::Tracked)) {
UntrackImage(image); UntrackImage(image, id);
} }
UnregisterImage(id); UnregisterImage(id);
DeleteImage(id); DeleteImage(id);
} }
} }
template <class P>
void TextureCache<P>::UnmapGPUMemory(GPUVAddr gpu_addr, size_t size) {
std::vector<ImageId> deleted_images;
ForEachImageInRegionGPU(gpu_addr, size,
[&](ImageId id, Image&) { deleted_images.push_back(id); });
for (const ImageId id : deleted_images) {
Image& image = slot_images[id];
if (True(image.flags & ImageFlagBits::Remapped)) {
continue;
}
image.flags |= ImageFlagBits::Remapped;
if (True(image.flags & ImageFlagBits::Tracked)) {
UntrackImage(image, id);
}
}
}
template <class P> template <class P>
void TextureCache<P>::BlitImage(const Tegra::Engines::Fermi2D::Surface& dst, void TextureCache<P>::BlitImage(const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Surface& src, const Tegra::Engines::Fermi2D::Surface& src,
@ -833,9 +888,10 @@ typename P::ImageView* TextureCache<P>::TryFindFramebufferImageView(VAddr cpu_ad
if (it == page_table.end()) { if (it == page_table.end()) {
return nullptr; return nullptr;
} }
const auto& image_ids = it->second; const auto& image_map_ids = it->second;
for (const ImageId image_id : image_ids) { for (const ImageMapId map_id : image_map_ids) {
const ImageBase& image = slot_images[image_id]; const ImageMapView& map = slot_map_views[map_id];
const ImageBase& image = slot_images[map.image_id];
if (image.cpu_addr != cpu_addr) { if (image.cpu_addr != cpu_addr) {
continue; continue;
} }
@ -915,13 +971,13 @@ bool TextureCache<P>::IsRegionGpuModified(VAddr addr, size_t size) {
} }
template <class P> template <class P>
void TextureCache<P>::RefreshContents(Image& image) { void TextureCache<P>::RefreshContents(Image& image, ImageId image_id) {
if (False(image.flags & ImageFlagBits::CpuModified)) { if (False(image.flags & ImageFlagBits::CpuModified)) {
// Only upload modified images // Only upload modified images
return; return;
} }
image.flags &= ~ImageFlagBits::CpuModified; image.flags &= ~ImageFlagBits::CpuModified;
TrackImage(image); TrackImage(image, image_id);
if (image.info.num_samples > 1) { if (image.info.num_samples > 1) {
LOG_WARNING(HW_GPU, "MSAA image uploads are not implemented"); LOG_WARNING(HW_GPU, "MSAA image uploads are not implemented");
@ -958,7 +1014,7 @@ void TextureCache<P>::UploadImageContents(Image& image, StagingBuffer& staging)
template <class P> template <class P>
ImageViewId TextureCache<P>::FindImageView(const TICEntry& config) { ImageViewId TextureCache<P>::FindImageView(const TICEntry& config) {
if (!IsValidAddress(gpu_memory, config)) { if (!IsValidEntry(gpu_memory, config)) {
return NULL_IMAGE_VIEW_ID; return NULL_IMAGE_VIEW_ID;
} }
const auto [pair, is_new] = image_views.try_emplace(config); const auto [pair, is_new] = image_views.try_emplace(config);
@ -1000,14 +1056,20 @@ ImageId TextureCache<P>::FindOrInsertImage(const ImageInfo& info, GPUVAddr gpu_a
template <class P> template <class P>
ImageId TextureCache<P>::FindImage(const ImageInfo& info, GPUVAddr gpu_addr, ImageId TextureCache<P>::FindImage(const ImageInfo& info, GPUVAddr gpu_addr,
RelaxedOptions options) { RelaxedOptions options) {
const std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr); std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr);
if (!cpu_addr) { if (!cpu_addr) {
return ImageId{}; cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr, CalculateGuestSizeInBytes(info));
if (!cpu_addr) {
return ImageId{};
}
} }
const bool broken_views = runtime.HasBrokenTextureViewFormats(); const bool broken_views = runtime.HasBrokenTextureViewFormats();
const bool native_bgr = runtime.HasNativeBgr(); const bool native_bgr = runtime.HasNativeBgr();
ImageId image_id; ImageId image_id;
const auto lambda = [&](ImageId existing_image_id, ImageBase& existing_image) { const auto lambda = [&](ImageId existing_image_id, ImageBase& existing_image) {
if (True(existing_image.flags & ImageFlagBits::Remapped)) {
return false;
}
if (info.type == ImageType::Linear || existing_image.info.type == ImageType::Linear) { if (info.type == ImageType::Linear || existing_image.info.type == ImageType::Linear) {
const bool strict_size = False(options & RelaxedOptions::Size) && const bool strict_size = False(options & RelaxedOptions::Size) &&
True(existing_image.flags & ImageFlagBits::Strong); True(existing_image.flags & ImageFlagBits::Strong);
@ -1033,7 +1095,16 @@ ImageId TextureCache<P>::FindImage(const ImageInfo& info, GPUVAddr gpu_addr,
template <class P> template <class P>
ImageId TextureCache<P>::InsertImage(const ImageInfo& info, GPUVAddr gpu_addr, ImageId TextureCache<P>::InsertImage(const ImageInfo& info, GPUVAddr gpu_addr,
RelaxedOptions options) { RelaxedOptions options) {
const std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr); std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr);
if (!cpu_addr) {
const auto size = CalculateGuestSizeInBytes(info);
cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr, size);
if (!cpu_addr) {
const VAddr fake_addr = ~(1ULL << 40ULL) + virtual_invalid_space;
virtual_invalid_space += Common::AlignUp(size, 32);
cpu_addr = std::optional<VAddr>(fake_addr);
}
}
ASSERT_MSG(cpu_addr, "Tried to insert an image to an invalid gpu_addr=0x{:x}", gpu_addr); ASSERT_MSG(cpu_addr, "Tried to insert an image to an invalid gpu_addr=0x{:x}", gpu_addr);
const ImageId image_id = JoinImages(info, gpu_addr, *cpu_addr); const ImageId image_id = JoinImages(info, gpu_addr, *cpu_addr);
const Image& image = slot_images[image_id]; const Image& image = slot_images[image_id];
@ -1053,10 +1124,16 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
const bool broken_views = runtime.HasBrokenTextureViewFormats(); const bool broken_views = runtime.HasBrokenTextureViewFormats();
const bool native_bgr = runtime.HasNativeBgr(); const bool native_bgr = runtime.HasNativeBgr();
std::vector<ImageId> overlap_ids; std::vector<ImageId> overlap_ids;
std::unordered_set<ImageId> overlaps_found;
std::vector<ImageId> left_aliased_ids; std::vector<ImageId> left_aliased_ids;
std::vector<ImageId> right_aliased_ids; std::vector<ImageId> right_aliased_ids;
std::unordered_set<ImageId> ignore_textures;
std::vector<ImageId> bad_overlap_ids; std::vector<ImageId> bad_overlap_ids;
ForEachImageInRegion(cpu_addr, size_bytes, [&](ImageId overlap_id, ImageBase& overlap) { const auto region_check = [&](ImageId overlap_id, ImageBase& overlap) {
if (True(overlap.flags & ImageFlagBits::Remapped)) {
ignore_textures.insert(overlap_id);
return;
}
if (info.type != overlap.info.type) { if (info.type != overlap.info.type) {
return; return;
} }
@ -1067,6 +1144,7 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
} }
return; return;
} }
overlaps_found.insert(overlap_id);
static constexpr bool strict_size = true; static constexpr bool strict_size = true;
const std::optional<OverlapResult> solution = ResolveOverlap( const std::optional<OverlapResult> solution = ResolveOverlap(
new_info, gpu_addr, cpu_addr, overlap, strict_size, broken_views, native_bgr); new_info, gpu_addr, cpu_addr, overlap, strict_size, broken_views, native_bgr);
@ -1090,12 +1168,35 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
bad_overlap_ids.push_back(overlap_id); bad_overlap_ids.push_back(overlap_id);
overlap.flags |= ImageFlagBits::BadOverlap; overlap.flags |= ImageFlagBits::BadOverlap;
} }
}); };
ForEachImageInRegion(cpu_addr, size_bytes, region_check);
const auto region_check_gpu = [&](ImageId overlap_id, ImageBase& overlap) {
if (!overlaps_found.contains(overlap_id)) {
ignore_textures.insert(overlap_id);
}
};
ForEachSparseImageInRegion(gpu_addr, size_bytes, region_check_gpu);
const ImageId new_image_id = slot_images.insert(runtime, new_info, gpu_addr, cpu_addr); const ImageId new_image_id = slot_images.insert(runtime, new_info, gpu_addr, cpu_addr);
Image& new_image = slot_images[new_image_id]; Image& new_image = slot_images[new_image_id];
if (!gpu_memory.IsContinousRange(new_image.gpu_addr, new_image.guest_size_bytes)) {
new_image.flags |= ImageFlagBits::Sparse;
}
for (const ImageId overlap_id : ignore_textures) {
Image& overlap = slot_images[overlap_id];
if (True(overlap.flags & ImageFlagBits::GpuModified)) {
UNIMPLEMENTED();
}
if (True(overlap.flags & ImageFlagBits::Tracked)) {
UntrackImage(overlap, overlap_id);
}
UnregisterImage(overlap_id);
DeleteImage(overlap_id);
}
// TODO: Only upload what we need // TODO: Only upload what we need
RefreshContents(new_image); RefreshContents(new_image, new_image_id);
for (const ImageId overlap_id : overlap_ids) { for (const ImageId overlap_id : overlap_ids) {
Image& overlap = slot_images[overlap_id]; Image& overlap = slot_images[overlap_id];
@ -1107,7 +1208,7 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VA
runtime.CopyImage(new_image, overlap, copies); runtime.CopyImage(new_image, overlap, copies);
} }
if (True(overlap.flags & ImageFlagBits::Tracked)) { if (True(overlap.flags & ImageFlagBits::Tracked)) {
UntrackImage(overlap); UntrackImage(overlap, overlap_id);
} }
UnregisterImage(overlap_id); UnregisterImage(overlap_id);
DeleteImage(overlap_id); DeleteImage(overlap_id);
@ -1242,7 +1343,8 @@ void TextureCache<P>::ForEachImageInRegion(VAddr cpu_addr, size_t size, Func&& f
using FuncReturn = typename std::invoke_result<Func, ImageId, Image&>::type; using FuncReturn = typename std::invoke_result<Func, ImageId, Image&>::type;
static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>; static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>;
boost::container::small_vector<ImageId, 32> images; boost::container::small_vector<ImageId, 32> images;
ForEachPage(cpu_addr, size, [this, &images, cpu_addr, size, func](u64 page) { boost::container::small_vector<ImageMapId, 32> maps;
ForEachCPUPage(cpu_addr, size, [this, &images, &maps, cpu_addr, size, func](u64 page) {
const auto it = page_table.find(page); const auto it = page_table.find(page);
if (it == page_table.end()) { if (it == page_table.end()) {
if constexpr (BOOL_BREAK) { if constexpr (BOOL_BREAK) {
@ -1251,12 +1353,63 @@ void TextureCache<P>::ForEachImageInRegion(VAddr cpu_addr, size_t size, Func&& f
return; return;
} }
} }
for (const ImageMapId map_id : it->second) {
ImageMapView& map = slot_map_views[map_id];
if (map.picked) {
continue;
}
if (!map.Overlaps(cpu_addr, size)) {
continue;
}
map.picked = true;
maps.push_back(map_id);
Image& image = slot_images[map.image_id];
if (True(image.flags & ImageFlagBits::Picked)) {
continue;
}
image.flags |= ImageFlagBits::Picked;
images.push_back(map.image_id);
if constexpr (BOOL_BREAK) {
if (func(map.image_id, image)) {
return true;
}
} else {
func(map.image_id, image);
}
}
if constexpr (BOOL_BREAK) {
return false;
}
});
for (const ImageId image_id : images) {
slot_images[image_id].flags &= ~ImageFlagBits::Picked;
}
for (const ImageMapId map_id : maps) {
slot_map_views[map_id].picked = false;
}
}
template <class P>
template <typename Func>
void TextureCache<P>::ForEachImageInRegionGPU(GPUVAddr gpu_addr, size_t size, Func&& func) {
using FuncReturn = typename std::invoke_result<Func, ImageId, Image&>::type;
static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>;
boost::container::small_vector<ImageId, 8> images;
ForEachGPUPage(gpu_addr, size, [this, &images, gpu_addr, size, func](u64 page) {
const auto it = gpu_page_table.find(page);
if (it == gpu_page_table.end()) {
if constexpr (BOOL_BREAK) {
return false;
} else {
return;
}
}
for (const ImageId image_id : it->second) { for (const ImageId image_id : it->second) {
Image& image = slot_images[image_id]; Image& image = slot_images[image_id];
if (True(image.flags & ImageFlagBits::Picked)) { if (True(image.flags & ImageFlagBits::Picked)) {
continue; continue;
} }
if (!image.Overlaps(cpu_addr, size)) { if (!image.OverlapsGPU(gpu_addr, size)) {
continue; continue;
} }
image.flags |= ImageFlagBits::Picked; image.flags |= ImageFlagBits::Picked;
@ -1278,6 +1431,69 @@ void TextureCache<P>::ForEachImageInRegion(VAddr cpu_addr, size_t size, Func&& f
} }
} }
template <class P>
template <typename Func>
void TextureCache<P>::ForEachSparseImageInRegion(GPUVAddr gpu_addr, size_t size, Func&& func) {
using FuncReturn = typename std::invoke_result<Func, ImageId, Image&>::type;
static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>;
boost::container::small_vector<ImageId, 8> images;
ForEachGPUPage(gpu_addr, size, [this, &images, gpu_addr, size, func](u64 page) {
const auto it = sparse_page_table.find(page);
if (it == sparse_page_table.end()) {
if constexpr (BOOL_BREAK) {
return false;
} else {
return;
}
}
for (const ImageId image_id : it->second) {
Image& image = slot_images[image_id];
if (True(image.flags & ImageFlagBits::Picked)) {
continue;
}
if (!image.OverlapsGPU(gpu_addr, size)) {
continue;
}
image.flags |= ImageFlagBits::Picked;
images.push_back(image_id);
if constexpr (BOOL_BREAK) {
if (func(image_id, image)) {
return true;
}
} else {
func(image_id, image);
}
}
if constexpr (BOOL_BREAK) {
return false;
}
});
for (const ImageId image_id : images) {
slot_images[image_id].flags &= ~ImageFlagBits::Picked;
}
}
template <class P>
template <typename Func>
void TextureCache<P>::ForEachSparseSegment(ImageBase& image, Func&& func) {
using FuncReturn = typename std::invoke_result<Func, GPUVAddr, VAddr, size_t>::type;
static constexpr bool RETURNS_BOOL = std::is_same_v<FuncReturn, bool>;
const auto segments = gpu_memory.GetSubmappedRange(image.gpu_addr, image.guest_size_bytes);
for (auto& segment : segments) {
const auto gpu_addr = segment.first;
const auto size = segment.second;
std::optional<VAddr> cpu_addr = gpu_memory.GpuToCpuAddress(gpu_addr);
ASSERT(cpu_addr);
if constexpr (RETURNS_BOOL) {
if (func(gpu_addr, *cpu_addr, size)) {
break;
}
} else {
func(gpu_addr, *cpu_addr, size);
}
}
}
template <class P> template <class P>
ImageViewId TextureCache<P>::FindOrEmplaceImageView(ImageId image_id, const ImageViewInfo& info) { ImageViewId TextureCache<P>::FindOrEmplaceImageView(ImageId image_id, const ImageViewInfo& info) {
Image& image = slot_images[image_id]; Image& image = slot_images[image_id];
@ -1295,8 +1511,6 @@ void TextureCache<P>::RegisterImage(ImageId image_id) {
ASSERT_MSG(False(image.flags & ImageFlagBits::Registered), ASSERT_MSG(False(image.flags & ImageFlagBits::Registered),
"Trying to register an already registered image"); "Trying to register an already registered image");
image.flags |= ImageFlagBits::Registered; image.flags |= ImageFlagBits::Registered;
ForEachPage(image.cpu_addr, image.guest_size_bytes,
[this, image_id](u64 page) { page_table[page].push_back(image_id); });
u64 tentative_size = std::max(image.guest_size_bytes, image.unswizzled_size_bytes); u64 tentative_size = std::max(image.guest_size_bytes, image.unswizzled_size_bytes);
if ((IsPixelFormatASTC(image.info.format) && if ((IsPixelFormatASTC(image.info.format) &&
True(image.flags & ImageFlagBits::AcceleratedUpload)) || True(image.flags & ImageFlagBits::AcceleratedUpload)) ||
@ -1304,6 +1518,27 @@ void TextureCache<P>::RegisterImage(ImageId image_id) {
tentative_size = EstimatedDecompressedSize(tentative_size, image.info.format); tentative_size = EstimatedDecompressedSize(tentative_size, image.info.format);
} }
total_used_memory += Common::AlignUp(tentative_size, 1024); total_used_memory += Common::AlignUp(tentative_size, 1024);
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes,
[this, image_id](u64 page) { gpu_page_table[page].push_back(image_id); });
if (False(image.flags & ImageFlagBits::Sparse)) {
auto map_id =
slot_map_views.insert(image.gpu_addr, image.cpu_addr, image.guest_size_bytes, image_id);
ForEachCPUPage(image.cpu_addr, image.guest_size_bytes,
[this, map_id](u64 page) { page_table[page].push_back(map_id); });
image.map_view_id = map_id;
return;
}
std::vector<ImageViewId> sparse_maps{};
ForEachSparseSegment(
image, [this, image_id, &sparse_maps](GPUVAddr gpu_addr, VAddr cpu_addr, size_t size) {
auto map_id = slot_map_views.insert(gpu_addr, cpu_addr, size, image_id);
ForEachCPUPage(cpu_addr, size,
[this, map_id](u64 page) { page_table[page].push_back(map_id); });
sparse_maps.push_back(map_id);
});
sparse_views.emplace(image_id, std::move(sparse_maps));
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes,
[this, image_id](u64 page) { sparse_page_table[page].push_back(image_id); });
} }
template <class P> template <class P>
@ -1320,34 +1555,125 @@ void TextureCache<P>::UnregisterImage(ImageId image_id) {
tentative_size = EstimatedDecompressedSize(tentative_size, image.info.format); tentative_size = EstimatedDecompressedSize(tentative_size, image.info.format);
} }
total_used_memory -= Common::AlignUp(tentative_size, 1024); total_used_memory -= Common::AlignUp(tentative_size, 1024);
ForEachPage(image.cpu_addr, image.guest_size_bytes, [this, image_id](u64 page) { const auto& clear_page_table =
const auto page_it = page_table.find(page); [this, image_id](
if (page_it == page_table.end()) { u64 page,
UNREACHABLE_MSG("Unregistering unregistered page=0x{:x}", page << PAGE_BITS); std::unordered_map<u64, std::vector<ImageId>, IdentityHash<u64>>& selected_page_table) {
return; const auto page_it = selected_page_table.find(page);
} if (page_it == selected_page_table.end()) {
std::vector<ImageId>& image_ids = page_it->second; UNREACHABLE_MSG("Unregistering unregistered page=0x{:x}", page << PAGE_BITS);
const auto vector_it = std::ranges::find(image_ids, image_id); return;
if (vector_it == image_ids.end()) { }
UNREACHABLE_MSG("Unregistering unregistered image in page=0x{:x}", page << PAGE_BITS); std::vector<ImageId>& image_ids = page_it->second;
return; const auto vector_it = std::ranges::find(image_ids, image_id);
} if (vector_it == image_ids.end()) {
image_ids.erase(vector_it); UNREACHABLE_MSG("Unregistering unregistered image in page=0x{:x}",
page << PAGE_BITS);
return;
}
image_ids.erase(vector_it);
};
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes,
[this, &clear_page_table](u64 page) { clear_page_table(page, gpu_page_table); });
if (False(image.flags & ImageFlagBits::Sparse)) {
const auto map_id = image.map_view_id;
ForEachCPUPage(image.cpu_addr, image.guest_size_bytes, [this, map_id](u64 page) {
const auto page_it = page_table.find(page);
if (page_it == page_table.end()) {
UNREACHABLE_MSG("Unregistering unregistered page=0x{:x}", page << PAGE_BITS);
return;
}
std::vector<ImageMapId>& image_map_ids = page_it->second;
const auto vector_it = std::ranges::find(image_map_ids, map_id);
if (vector_it == image_map_ids.end()) {
UNREACHABLE_MSG("Unregistering unregistered image in page=0x{:x}",
page << PAGE_BITS);
return;
}
image_map_ids.erase(vector_it);
});
slot_map_views.erase(map_id);
return;
}
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes, [this, &clear_page_table](u64 page) {
clear_page_table(page, sparse_page_table);
}); });
auto it = sparse_views.find(image_id);
ASSERT(it != sparse_views.end());
auto& sparse_maps = it->second;
for (auto& map_view_id : sparse_maps) {
const auto& map_range = slot_map_views[map_view_id];
const VAddr cpu_addr = map_range.cpu_addr;
const std::size_t size = map_range.size;
ForEachCPUPage(cpu_addr, size, [this, image_id](u64 page) {
const auto page_it = page_table.find(page);
if (page_it == page_table.end()) {
UNREACHABLE_MSG("Unregistering unregistered page=0x{:x}", page << PAGE_BITS);
return;
}
std::vector<ImageMapId>& image_map_ids = page_it->second;
auto vector_it = image_map_ids.begin();
while (vector_it != image_map_ids.end()) {
ImageMapView& map = slot_map_views[*vector_it];
if (map.image_id != image_id) {
vector_it++;
continue;
}
if (!map.picked) {
map.picked = true;
}
vector_it = image_map_ids.erase(vector_it);
}
});
slot_map_views.erase(map_view_id);
}
sparse_views.erase(it);
} }
template <class P> template <class P>
void TextureCache<P>::TrackImage(ImageBase& image) { void TextureCache<P>::TrackImage(ImageBase& image, ImageId image_id) {
ASSERT(False(image.flags & ImageFlagBits::Tracked)); ASSERT(False(image.flags & ImageFlagBits::Tracked));
image.flags |= ImageFlagBits::Tracked; image.flags |= ImageFlagBits::Tracked;
rasterizer.UpdatePagesCachedCount(image.cpu_addr, image.guest_size_bytes, 1); if (False(image.flags & ImageFlagBits::Sparse)) {
rasterizer.UpdatePagesCachedCount(image.cpu_addr, image.guest_size_bytes, 1);
return;
}
if (True(image.flags & ImageFlagBits::Registered)) {
auto it = sparse_views.find(image_id);
ASSERT(it != sparse_views.end());
auto& sparse_maps = it->second;
for (auto& map_view_id : sparse_maps) {
const auto& map = slot_map_views[map_view_id];
const VAddr cpu_addr = map.cpu_addr;
const std::size_t size = map.size;
rasterizer.UpdatePagesCachedCount(cpu_addr, size, 1);
}
return;
}
ForEachSparseSegment(image,
[this]([[maybe_unused]] GPUVAddr gpu_addr, VAddr cpu_addr, size_t size) {
rasterizer.UpdatePagesCachedCount(cpu_addr, size, 1);
});
} }
template <class P> template <class P>
void TextureCache<P>::UntrackImage(ImageBase& image) { void TextureCache<P>::UntrackImage(ImageBase& image, ImageId image_id) {
ASSERT(True(image.flags & ImageFlagBits::Tracked)); ASSERT(True(image.flags & ImageFlagBits::Tracked));
image.flags &= ~ImageFlagBits::Tracked; image.flags &= ~ImageFlagBits::Tracked;
rasterizer.UpdatePagesCachedCount(image.cpu_addr, image.guest_size_bytes, -1); if (False(image.flags & ImageFlagBits::Sparse)) {
rasterizer.UpdatePagesCachedCount(image.cpu_addr, image.guest_size_bytes, -1);
return;
}
ASSERT(True(image.flags & ImageFlagBits::Registered));
auto it = sparse_views.find(image_id);
ASSERT(it != sparse_views.end());
auto& sparse_maps = it->second;
for (auto& map_view_id : sparse_maps) {
const auto& map = slot_map_views[map_view_id];
const VAddr cpu_addr = map.cpu_addr;
const std::size_t size = map.size;
rasterizer.UpdatePagesCachedCount(cpu_addr, size, -1);
}
} }
template <class P> template <class P>
@ -1489,10 +1815,10 @@ void TextureCache<P>::PrepareImage(ImageId image_id, bool is_modification, bool
if (invalidate) { if (invalidate) {
image.flags &= ~(ImageFlagBits::CpuModified | ImageFlagBits::GpuModified); image.flags &= ~(ImageFlagBits::CpuModified | ImageFlagBits::GpuModified);
if (False(image.flags & ImageFlagBits::Tracked)) { if (False(image.flags & ImageFlagBits::Tracked)) {
TrackImage(image); TrackImage(image, image_id);
} }
} else { } else {
RefreshContents(image); RefreshContents(image, image_id);
SynchronizeAliases(image_id); SynchronizeAliases(image_id);
} }
if (is_modification) { if (is_modification) {

View File

@ -16,6 +16,7 @@ constexpr size_t MAX_MIP_LEVELS = 14;
constexpr SlotId CORRUPT_ID{0xfffffffe}; constexpr SlotId CORRUPT_ID{0xfffffffe};
using ImageId = SlotId; using ImageId = SlotId;
using ImageMapId = SlotId;
using ImageViewId = SlotId; using ImageViewId = SlotId;
using ImageAllocId = SlotId; using ImageAllocId = SlotId;
using SamplerId = SlotId; using SamplerId = SlotId;

View File

@ -664,6 +664,16 @@ LevelArray CalculateMipLevelOffsets(const ImageInfo& info) noexcept {
return offsets; return offsets;
} }
LevelArray CalculateMipLevelSizes(const ImageInfo& info) noexcept {
const u32 num_levels = info.resources.levels;
const LevelInfo level_info = MakeLevelInfo(info);
LevelArray sizes{};
for (u32 level = 0; level < num_levels; ++level) {
sizes[level] = CalculateLevelSize(level_info, level);
}
return sizes;
}
std::vector<u32> CalculateSliceOffsets(const ImageInfo& info) { std::vector<u32> CalculateSliceOffsets(const ImageInfo& info) {
ASSERT(info.type == ImageType::e3D); ASSERT(info.type == ImageType::e3D);
std::vector<u32> offsets; std::vector<u32> offsets;
@ -776,14 +786,20 @@ std::vector<ImageCopy> MakeShrinkImageCopies(const ImageInfo& dst, const ImageIn
return copies; return copies;
} }
bool IsValidAddress(const Tegra::MemoryManager& gpu_memory, const TICEntry& config) { bool IsValidEntry(const Tegra::MemoryManager& gpu_memory, const TICEntry& config) {
if (config.Address() == 0) { const GPUVAddr address = config.Address();
if (address == 0) {
return false; return false;
} }
if (config.Address() > (u64(1) << 48)) { if (address > (1ULL << 48)) {
return false; return false;
} }
return gpu_memory.GpuToCpuAddress(config.Address()).has_value(); if (gpu_memory.GpuToCpuAddress(address).has_value()) {
return true;
}
const ImageInfo info{config};
const size_t guest_size_bytes = CalculateGuestSizeInBytes(info);
return gpu_memory.GpuToCpuAddress(address, guest_size_bytes).has_value();
} }
std::vector<BufferImageCopy> UnswizzleImage(Tegra::MemoryManager& gpu_memory, GPUVAddr gpu_addr, std::vector<BufferImageCopy> UnswizzleImage(Tegra::MemoryManager& gpu_memory, GPUVAddr gpu_addr,

View File

@ -40,6 +40,8 @@ struct OverlapResult {
[[nodiscard]] LevelArray CalculateMipLevelOffsets(const ImageInfo& info) noexcept; [[nodiscard]] LevelArray CalculateMipLevelOffsets(const ImageInfo& info) noexcept;
[[nodiscard]] LevelArray CalculateMipLevelSizes(const ImageInfo& info) noexcept;
[[nodiscard]] std::vector<u32> CalculateSliceOffsets(const ImageInfo& info); [[nodiscard]] std::vector<u32> CalculateSliceOffsets(const ImageInfo& info);
[[nodiscard]] std::vector<SubresourceBase> CalculateSliceSubresources(const ImageInfo& info); [[nodiscard]] std::vector<SubresourceBase> CalculateSliceSubresources(const ImageInfo& info);
@ -55,7 +57,7 @@ struct OverlapResult {
const ImageInfo& src, const ImageInfo& src,
SubresourceBase base); SubresourceBase base);
[[nodiscard]] bool IsValidAddress(const Tegra::MemoryManager& gpu_memory, const TICEntry& config); [[nodiscard]] bool IsValidEntry(const Tegra::MemoryManager& gpu_memory, const TICEntry& config);
[[nodiscard]] std::vector<BufferImageCopy> UnswizzleImage(Tegra::MemoryManager& gpu_memory, [[nodiscard]] std::vector<BufferImageCopy> UnswizzleImage(Tegra::MemoryManager& gpu_memory,
GPUVAddr gpu_addr, const ImageInfo& info, GPUVAddr gpu_addr, const ImageInfo& info,